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Abstract

In this paper we present a novel inference methodology to perform Bayesian in-
ference for spatio-temporal Cox processes where the intensity function depends on a
multivariate Gaussian process. Dynamic Gaussian processes are introduced to allow
for evolution of the intensity function over discrete time. The novelty of the method
lies on the fact that no discretisation error is involved despite the non-tractability
of the likelihood function and infinite dimensionality of the problem. The method
is based on a Markov chain Monte Carlo algorithm that samples from the joint pos-
terior distribution of the parameters and latent variables of the model. A particular
choice of the dominating measure to obtain the likelihood function is shown to be
crucial to devise a valid MCMC. The models are defined in a general and flexible
way but they are amenable to direct sampling from the relevant distributions, due
to careful characterisation of its components. The models also allow for the inclu-
sion of regression covariates and/or temporal components to explain the variability
of the intensity function. These components may be subject to relevant interaction
with space and/or time. Simulated examples illustrate the methodology, followed
by concluding remarks.
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1 Introduction

A Cox process is an inhomogeneous Poisson process where the intensity function evolves
stochastically. It is also referred to as doubly stochastic process. Cox processes (Cox,
1955) have been extensively used in a variety of areas to model point process phenomena.
Effects in Cox processes may present spatio-temporal variation to reflect the possibility
of interaction between space-time and other model components. They can be traced
back to log-Gaussian Cox processes (Møller et al., 1998), where a Gaussian Process (GP)
representation is used for the log-intensity (see also Diggle, 2014, and references within).

The application of (GP driven) Cox processes is closely related to two main problems:
simulation and inference. These are hard problems due to the infinite dimensionality of
the process and the intractability of the likelihood function. Simulation is one of the main
tools to tackle the inference problem which primarily consists of estimating the unknown
intensity function (IF) and potential unknown parameters. However, prediction is often
a concern, i.e., what should one expect in a future realisation of the same phenomenon.

Solutions for the inference problem have required, until recently, the use of discrete
approximations (see, for example, Møller et al., 1998; Brix and Diggle, 2001; Reis et al.,
2013). These represent a considerable source of error and, therefore, ought to be used with
care. Moreover, quantifying and controlling this error may be hard and expensive. This
motivates the development of exact methodologies, i.e. free from discretisation errors.
Exact solutions for inference on infinite-dimensional processes with intractable likelihood
can be found, for example, in Beskos et al. (2006), Sermaidis et al. (2013) and Gonçalves
et al. (2015).

One non-parametric exact approach to the analysis of spatial point patterns was pro-
posed in Adams et al. (2009). They consider a univariate Gaussian process to describe
the IF dynamics and an augmented model for the data and latent variables that simplifies
the likelihood function. Another non-parametric exact approach was adopted in Kottas
and Sansó (2007), where a particular factorisation of the IF was proposed and Dirichlet
processes priors were used. Their work was extended to the spatio-temporal context by
Xiao et al. (2015).

The aim of this work is to propose an exact inference methodology for spatio-temporal
Cox processes in which the intensity function dynamics is driven by a Gaussian process.
The exactness stems from an augmented model approach as in Adams et al. (2009).
However, we generalise their point pattern models by firstly considering spatio-temporal
models and, secondly, by using multivariate (possibly dynamic) Gaussian processes to
allow the inclusion of different model components (regression and temporal effects) in a
flexible manner. Space and time may be considered continuous or discrete. In this paper
we ultimately consider the general formulation of continuous space and discrete time.
This is actually the most general formulation, since its continuous time version can be
seen as a continuous space process where time is one of the dimensions.

Our methodology also introduces a particularly suited MCMC algorithm that enables
direct simulation from the full conditional distributions of the Gaussian process and of
other relevant latent variables. A particular choice of dominating measure to obtain the
likelihood function is crucial to derive these sampling steps. Moreover, estimation of
(possibly intractable) functionals of the IF and prediction based on the output of the
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MCMC is straightforward. We also provide formal proofs of the validity of the MCMC
algorithm.

This paper is organised as follows. Section 2 presents the class of models to be con-
sidered and the augmented model to derive the MCMC. Section 3 presents the gen-
eral Bayesian approach and addresses some identifiability issues. Section 4 describes
the MCMC algorithm for the spatial model and Section 5 presents its extension to the
spatio-temporal case. Section 6 presents simulated examples to illustrate the proposed
methodology. Final remarks and possible directions for future work are presented in
Section 7.

2 Model specification

In this section we present the complete probabilistic model for spatio-temporal point
processes with Gaussian process driven intensities. We break the presentation in parts
considering the different levels and generalisations of the model.

2.1 The general Cox process model

We consider a Poisson process (PP) Y = {Yt; t ∈ T } in S×T , where S is some compact
region in Rd and T is a finite set of N. It can be seen as a Poisson process in a region S that
evolves in time. We assume the Poisson process has an intensity function λt(s) : S×T →
R+. This implies, for example, that the number of points Nt(A) in A ⊆ S - a compact

region in S, follows a Poisson distribution with mean

∫
A

λt(s)ds, at time t. Moreover,

from standard properties of Poisson process, given λS,T := {λt(s), s ∈ S, t ∈ T }, for each
t ∈ T , Yt is a Poisson process in S with intensity function λS,t := {λt(s), s ∈ S} and the
Yt’s are mutually independent.

We assume that the IF is a function of a (multivariate spatio-temporal) Gaussian
process and covariates. A Gaussian process β is a stochastic process in some space such
that the joint distribution of any finite collection of points in this space is Gaussian. This
space may be defined so that we have spatial or spatio-temporal processes.

A detailed presentation of (dynamic) Gaussian processes is given in Section 2.3. For
now, let β := {β0, β1, . . . , βp} be a collection of p + 1 independent GP’s (a multivariate
GP) in S × T , for T = {0, . . . , T}. We assume the following model for Y :

(Yt|λS,t) ∼ PP (λS,t), ∀ t ∈ T , (1)

λt(s) = λ∗tΦ(f(βt(s),Wt(s))), ∀ t ∈ T , (2)

(β|θ) ∼ GPθ, (3)

(λ∗T , θ) ∼ prior, (4)

where λ∗T = (λ∗0, . . . , λ
∗
T ), Φ is the distribution function of the standard Gaussian distri-

bution, GPθ is a Gaussian process indexed by (unknown) parameters θ and W = {Wt(s)}
is a set of covariates. We assume f to be linear in the coordinates of β and write W in
a way such that f(βt(s),Wt(s)) = Wt(s)βt(s). Any distribution function of a continuous
r.v. or any general bounded function may be used instead of Φ. For example, a common

3



choice is the logistic function, which is used by Adams et al. (2009) and is very similar
to Φ (the largest difference is 0.0095). The particular choice in (2) contributes to the
construction of an efficient MCMC algorithm as discussed in Section 4. We are interested
in estimating not only the overall rate λS,T but also the univariate GP’s, separately, given
their meaningful interpretation.

Parameter λ∗t ought to represent the supremum of the intensity function at time t.
One extreme possibility is to assume λ∗t = λ∗, which is a reasonable assumption in the
case of purely spatial processes or processes whose maximum intensity is time invariant.
In this case, a common choice for the prior distribution of λ∗ is G(αλ, βλ) - a Gamma
distribution. At the other extreme, unrelated parameters vary independently over time
according to independent G(αλt , βλt) prior distributions. In between them, models allow
for temporal dependence between (successive) λ∗t ’s. One such formulation with attractive
features is described in Section 5.

The Gaussian processes may represent a number of relevant model features such as
the effect of covariates and/or spatio-temporal components such as the spatially-varying
trend components or seasonality of the baseline intensity. They may also be space and/or
time invariant. One common example is the model with p covariates:

f(βt(s),Wt(s)) = β0,t(s) + β1,t(s)W1,t(s) + . . .+ βq,t(s)Wq,t(s). (5)

This approach allows the use of extra prior information through covariates. The spatio-
temporal variation of the effects is particularly relevant in applications where covariates
present significant interaction with space and/or time. Examples are provided in Pinto Jr
et al. (2015).

The first advantage of the formulation in (1)-(4) is that it allows exact simulation of
data from the model which is the key to develop exact inference methods. Exact simula-
tion of the model is based on a key result from Poisson processes called Poisson thinning.
This is a variant of rejection sampling for point processes proposed by Lewis and Shedler
(1979) and is given in Algorithm 1 below:

Algorithm 1

1. Simulate a Poisson process (s1, . . . , sK) with constant intensity function λ∗
t on S:

(a) Simulate Kt ∼ Poisson(λ∗
tµ(S)), where µ(S) is the volume of S;

(b) Distribute the Kt points uniformly on S.

2. Simulate βt and observe Wt at points {s1, . . . , sK};

3. Keep each of the Kt points with probability λt(sk)/λ
∗
t ;

4. OUTPUT the points kept at the previous step.

To simulate the process at additional times t ∈ T , it is enough to perform the algorithm
above for each t and simulate the Gaussian process conditional on the points previously
simulated. The idea of Poisson thinning is applied in related contexts by Gonçalves and
Roberts (2014).
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2.2 The augmented model

Performing exact inference for Cox processes is a challenging problem mainly because of
the intractability of the likelihood function, which is given by

L(λS,T , y) = exp

{
−

T∑
t=0

∫
S

λt(s)ds

}
T∏
t=1

Nt∏
n=1

λt(st,n), (6)

where sn,t is the location of the n-th event of Yt.
The crucial step to develop exact methods is to avoid dealing with the likelihood

above. One possible solution is to define an augmented model for Y and some additional
variable X, such that the joint (pseudo-)likelihood based on (X, Y ) is tractable. This
poses the problem as a missing data problem and allows us to use standard methods. The
augmented model is constructed based on the Poisson thinning presented in Algorithm 1.

Firstly, define X = {Xt; t ∈ T } where each Xt is a homogeneous PP with intensity
λ∗t on S and the Xt’s are mutually independent. Now let {st,k}Kt

k=1 be the locations of the
Kt events of Xt. We also define T vectors Zt, t = 1, . . . , T , with each coordinate taking
values in {0, 1} such that (Zt|X, βKt ,WKt) is a random vector (Zt,1, . . . , Zt,Kt), where the
Zt,k’s are all independent with Zt,k ∼ Ber(Φ(Wt(st,k)βt(st,k))) and (βKt ,WKt) is (β,W )
at the points from Xt. Finally, define Yt = h(Zt, Xt) as the non-zero coordinates of the
vector (Zt,1st,1, . . . , Zt,Ktst,Kt), which leads to the model (1).

Namely, the augmented model defines Y as the events remaining from performing the
Poisson thinning to a PP X. It is important to note, however, that only Y is observed.
We define {st,n}Nt

n=1 as the Nt events of Yt and {st,m}Kt−Nt
m=1 as the Mt := Kt −Nt thinned

events. Most importantly, this approach leads to a tractable likelihood when the joint
distribution of X and Y is considered, as it is shown in Section 3.1.

The spatial model is a particular case where T = 1 which implies that X and Y are
Poisson processes on S with intensity functions λ∗ and λ(s), respectively. We observe
{sn}Nn=1 from Y and simplify the notation above accordingly. Note that the space model
for unidimensional S is generally seen as the commonly used Cox process in time.

2.3 Dynamic Gaussian processes

Gaussian processes are a very flexible component to handle spatial variation, specially
when smooth processes are expected. We say that β follows a stationary Gaussian process
in S if β(s) ∼ N(µ, σ2) and Cov(β(s), β(s′)) = h(s, s′), for s, s′ ∈ S, constants µ and σ2

and a (almost everywhere) differentiable function h. Further simplification is obtained
if isotropy can be assumed, leading to h(s, s′) = ρ(|s − s′|). In this case, the process is
denoted by β ∼ GP (µ, σ2, ρ) and ρ is referred to as the correlation function.

Typical choices for h belong to the γ-exponential family of covariance functions:

h(s, s′) = σ2 exp
{
−1/(2τ 2)|s− s′|γ

}
, 0 < γ ≤ 2. (7)

The special case when γ = 2 leads to almost-surely differentiable paths (surfaces).
GP’s can be extended in many directions. The most important ones here are extensions

to handle multivariate GP’s and extensions to cope with space and time. There are a
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number of different ways to allow for multivariate responses. The main ones are reviewed
in Gamerman et al. (2007) and include independent GP’s, dependent processes with a
common correlation function, or linear mixtures of independent GP’s.

Extensions to cope with space and time were introduced by Gelfand et al. (2005). A
process β follows a dynamic Gaussian process in discrete time if it can be described by a
difference equation

βt′(·) = Gt′,tβt(·) + wt′,t(·) , wt′,t ∼ GP, (8)

where the multivariate Gaussian process disturbances wt′,t(·) are zero mean and time-
independent; they are also taken as identically distributed in the equidistant case t′ = t+1.
The law of the process is completed with a Gaussian process specification for β0(·). Similar
processes were proposed in continuous-time by Brix and Diggle (2001).

A number of options are available for the temporal transition matrix G, including the
identity matrix. If additionally the disturbance processes w consist of independent GP’s
then the resulting process consist of independent univariate dynamic GP’s.

We present some alternatives to model trend and seasonality of the IF. Typically, one
ought to consider a baseline process β0 that evolves according to (8), that is

β0,t+1(s) = αt+1,tβ0,t(s) + wt+1,t(s). (9)

The simplest temporal model one can think of for the IF would then be:

f(βt(s),Wt(s)) = β0,t(s), (10)

with αt+1,t = 1, ∀ t. In the case with q covariates, one may consider other q independent
DGP’s as in (5).

The α parameters can be used to model trend, for example when the IF is subject
to a (local) growth process. Seasonality may be modelled by considering a multivariate
process (β0, β1) such that

(β0,t+1(s), β1,t+1(s))
′ = Gt+1,t(β0,t(s), β1,t(s))

′ + (w0;t+1,t(s), w1;t+1,t(s))
′, (11)

and
f(βt(s),Wt(s)) = β0,t(s) + β1,t(s) cos (2πt/p+ ϕ) , (12)

where p is the period and ϕ is the harmonic phase angle. For example, for quarterly
data with annual cycles we have p = 4. A simple but useful choice would be G = I and
w1;t+1,t = 0, ∀ t. These modelling ideas are illustrated in Section 6.

2.4 Using non-spatiotemporal covariates

The use of non-spatio-temporal covariates to explain the intensity function variation is
appealing when such information is available. For example, individual covariates may
carry important information about the spatial distribution of the mortality due to some
disease (see, for example, Pinto Jr et al., 2015). This approach, however, requires some
adaptations in the original model presented in Section 2.1. Firstly, we define {ν1, . . . , νqt}
as the set of all the configurations of the covariates appearing in the data at time t. Now,
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for each t, the PP Yt is decomposed into qt independent PP’s (Yt,1 . . . , Yt,qt) such that
each of them has a intensity function λt(s, ν) = λ∗tΦ(f(βt(s), ν)). This allows the use of
the inference methodology proposed in this paper and the prediction for non-observed
configurations.

3 Inference for the spatial model

We now focus on the inference problem of estimating the intensity function λS,T , param-
eter λ∗ and potential unknown parameters θ from the (multivariate) Gaussian process,
based on observations from the Poisson process Y . We shall also discuss how to make
prediction. In order to make the presentation of the methodology as clear as possible,
we consider first the (purely) spatial process and then the generalisation for the spatio-
temporal case. The extension for non-spatio-temporal covariates is omitted but it is
straightforwardly devised from the original methodology.

3.1 Posterior distribution

Let us first establish some notation. We have that {sk}Kk=1, {sn}Nn=1 are the points from
X and Y , respectively, and {sm}K−N

m=1 are the thinned events. Naturally, {sk}Kk=1 =
{sn}Nn=1

∪
{sm}K−N

m=1 . Furthermore, βK , βN , and βM are β at {sk}Kk=1, {sn}Nn=1 and {sm}K−N
m=1 ,

respectively. Naturally βK = (βN , βM). Analogously, WK , WN and WM are the respec-
tive subsets of W . Keeping in mind the existent redundancies, the vector of all random
components of the model is given by

(
{sn}Nn=1 , {sm}K−N

m=1 , β , {sk}Kk=1 , K , λ∗ , θ, W
)
.

Initially, assume W to be deterministic and consider only βK instead of β. Thus,
define ψ :=

(
{sn}Nn=1 , {sm}K−N

m=1 , βK , {sk}Kk=1 , K , λ∗ , θ
)
. This strategy simplifies the

problem (making it finite-dimensional) but still makes it possible to estimate the infinite-
dimensional remainder of β - to be discussed further ahead. Note that, due to redundance
issues, the components of the model could be specified in other ways.

We now specify the joint distribution of all the random components of the model
- (ψ|W,S). Note that the joint posterior density we aim is proportional to this. It is
important to make an appropriate choice of a dominating measure w.r.t. which we write
the density of ψ. This choice depends on the specification of the components and is not
unique. For example, one may choose to write the density of (K, {sk}Kk=1|λ∗) w.r.t. the
measure of a unit rate Poisson process, resulting in

exp (−(λ∗ − 1)µ(S)) (λ∗)K ∝ exp (−λ∗µ(S)) (λ∗)K , (13)

which is the usual Poisson process likelihood function. However, note that this is a valid
likelihood for λ∗ only, since the dominating measure is independent of this parameter.
It is not a valid likelihood function for K, which, in our case, is unknown and must be
estimated. This gives good intuition to why this is not a good choice for the dominating
measure. Although it is one possibility, it makes the derivation of the full conditional
distributions (or the acceptance probability of potential MH steps) more difficult.

We choose to write the density of (ψ|W,S) w.r.t. the dominating measure given by the
product measure Q := δK ⊗LK ⊗LK ⊗ δ⊗L⊗Ldθ , where δ is the counting measure, Ld
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is the d-dimensional Lebesgue measure and dθ is the dimension of the parameter vector θ.
This choice is related to the factorisation we choose. If we let P be the probability measure
of our full model, the density π of (ψ|W,S), defined as the Radon-Nikodym derivative of
P w.r.t. Q, is given by

π(ψ|W,S) = π({sn}, {sm}|{sk}, βK ,W )π(βK |{sk}, θ)π({sk}|K,S)π(K|λ∗, S)π(λ∗)π(θ)

=

[
N∏

n=1

Φ(W (sn)β(sn))
K−N∏
m=1

Φ(−W (sm)β(sm))

]
πGP (βK |θ)

[µ(S)]−K

[
e−λ∗µ(S) (λ∗µ(S))K

1

K!

]
π(λ∗)π(θ)

= [ΦN(WNβN ; IN)ΦK−N(−WMβM ; IK−N)]πGP (βK |θ)
[
e−λ∗µ(S) (λ∗)K

1

K!

]
π(λ∗)π(θ)

(14)

where {sn} = {sn}Nn=1, {sm} = {sm}K−N
m=1 , {sk} = {sk}Kk=1. Φk(·; Ik) is the distribution

function of the k-dimensional Gaussian distribution with mean vector zero and covariance
matrix Ik (k-dimensional identity matrix) and βN = (β0(s1) . . . β0(sN) . . . βq(s1) . . . βq(sN))′.
Also, WN = (IN W1 . . .Wq), where Wi is a N ×N diagonal matrix with the (n, n)-entry
being Wi(sn) - the i-th covariate at location sn. Furthermore, πGP (βK |θ) is the density
of the multivariate Gaussian process at locations {sk}Kk=1 w.r.t. LK . Finally, π(λ∗) and
π(θ) are the prior densities of λ∗ and θ, respectively, w.r.t. L and Ldθ .

3.2 Estimation of the intensity function

The MCMC algorithm to be proposed in Section 4.2 outputs samples from the posterior
distribution of the intensity function λS at the observed locations {sn}Nn=1 and at another
finite collection of locations {sm}K−N

m=1 which varies among the iterations of the algorithm.
Nevertheless, we need to have posterior estimates of λS over the whole space S. It is quite
simple to sample from this posterior. This may be equivalently done by adding an extra
step to the MCMC algorithm or by a sampling procedure after the MCMC runs. Both
schemes may suffer from high computational cost but the former is considerably cheaper
if well-designed.

Firstly note that λS = {λ(s), s ∈ S} and λ(s) = λ∗Φ(W (s)β(s)), which means that to
sample from the posterior of λS at a fixed location s we need to sample from the posterior
of (λ∗, β(s)). In order to have a practical algorithm we choose a fine (squared) grid
determined by locations S0 = {s̃1, . . . , s̃G} and use the discrete field λS0 = {λ(s), s ∈ S0}
to access the posterior of the intensity function. We need the following lemma.

Lemma 1. Given (βK , θ), βS0 is independent of
(
{sn}Nn=1,W

)
and its posterior distribu-

tion is given by

π(βS0 |{sn}Nn=1,W, S) =

∫
π(βS0 |βK , θ)π(βK , θ|{sn}Nn=1,W, S)dβKdθ (15)

Proof. See Appendix A.

This implies that a sample from the posterior of λS0 can be obtained by sampling from
a multivariate Gaussian as it will be discussed in details in Section 4.3.
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3.3 Model identifiability and practical implementation

As we have mentioned before, our model may suffer from identifiability problems concern-
ing parameter λ∗. The natural way to identify it is to have this parameter as the supremum
of the intensity function which, under the Bayesian approach, should be achieved by an
appropriate specification of the prior distribution. This means that, under all possible
most likely configurations of (λ∗, β), we are looking for the one that minimises λ∗.

A reasonable choice for the prior of λ∗ is an Exponential distribution for which the
hyperparameter could be specified through an empirical analysis of the data set. More
specifically, by obtaining an empirical estimate of the intensity in a small area with the
highest concentration of points. This area should not be too small nor too large. Note
that the data is being used only to identify the model, which is different from using the
data twice in a model which is already identified. Moreover, note that having λ∗ as the
supremum also optimises the computational cost as it minimises M - the smaller is M
the smaller the dimension of the covariance matrix that needs to be inverted to simulate
β.

Generally speaking, identifiability is an important issue when estimating the intensity
function of a non-homogeneous PP. It is well known that the reliability of the estimates
rely on the amount of data available. In this sense, the higher is the actual function the
better. In a Bayesian framework, in particular, the prior on the intensity function plays
an important role on the identification and estimation of this function. This is related to
the fact that the data does not contain much information about the hyperparameters of
GP priors. The simulated examples from Section 6 explore this issue and provides some
insight on how to proceed in general.

Another important issue is the computational cost from dealing with GP’s. Despite
their great flexibility on a variety of statistical modelling problems, Gaussian processes
have a considerable practical limitation when it comes to computational cost. More
specifically, simulating a n-dimensional GP has a cost which is typically on the order of
n3. This means that in our case the cost would be of order (q + 1)K3, without involving
the procedures in Sections 3.2. Given nowadays computational resources, this cost is
reasonable for quite large values of n. For the cases where the cost is too high, several
approximating solutions have been proposed in the literature (see Banerjee et al., 2013;
Carlin et al., 2007).

There are other model-based solutions to reduce the computational cost without the
need of approximating solutions. Instead of considering one parameter λ∗ for the whole
space S, one may consider a partition {S1, . . . , SL} of S and assign one λ∗l to each sub-space
Sl. This means that the general model is now λ(s) = λ∗l(s)σ(s), where l(s) corresponds to
the sub-space that contains s. Inference is carried out analogously to the case where no
partition of the space is considered. The advantage of this approach is that it will generate
less thinned events sm and, consequently, reduce the computational cost. Naturally, the
choice of the partition determines the cost reduction. One general rule is that the rate λ(s)
should be as close as possible to being homogeneous in each sub-space. Furthermore, L
should not be very large and, equivalently, each sub-space should have a sizeable number
of points to ensure informative estimates of the λ∗l parameters.
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4 Computation for the spatial model

In this Section, we present the computational details to perform inference in the spatial
model. The proposed methodology consists of a MCMC algorithm which has the exact
joint posterior distribution of the unknown components of the model as its invariant
distribution. More specifically, the algorithm is a Gibbs sampler. The derivation of the
full conditional distributions is not straightforward due to several reasons: intractability
issues; the redundancy among some of the components; the hierarchical structure of the
model, specially the fact that the observations are not (explicitly) on the first level, due to
thinning. In order to sample efficiently from the full conditional distributions, it is essential
to be able to simulate from a general class of multivariate skew-normal distributions. We
define such class and propose an efficient algorithm to sample from it.

4.1 A general class of multivariate skew-normal distributions

We consider a general class of skew-normal distributions originally proposed in Arellano-
Valle and Azzalini (2006) and present it here in a particularly useful way for the context
of our work. Equally important, we also propose an algorithm to sample from this distri-
bution.

For a d-dimensional vector ξ, a m× d matrix W and a d× d matrix Σ, we define

U =

(
U0

U1

)
∼ Nm+d(0,Σ

∗) and Σ∗ =

(
Γ ∆′

∆ Σ

)
, (16)

where Γ = Im + WΣW ′ and ∆′ = WΣ. Let a = (a1, . . . , ar) > b = (b1, . . . , br) mean
that ai > bi, ∀i and define γ = Wξ. We say that (U1 + ξ|U0 > −γ) has a SN(ξ,Σ,W )
distribution whose density is given in the following proposition.

Proposition 1. The density of (U1 + ξ|U0 > −γ) is given by

f(z) =
1

Φm(γ; Γ)
ϕd(z − ξ; Σ)Φm(Wz; Im), (17)

where ϕd(·; Ω) and Φd(·; Ω) are the density and distribution function, respectively, of the
d-dimensional Gaussian distribution with mean vector zero and covariance matrix Ω.

Proof. See Appendix A.

We propose the following algorithm to sample from the density in (17). Define U∗
0 =

A−1U0, where A is the lower diagonal matrix obtained from the Cholesky decomposition
of Γ, i.e. Γ = AA′. This implies that U∗

0 ∼ Nm(0, Im) and U0 = AU∗
0 . We use the

following results to construct our algorithm.

f(U1, U0|U0 > −γ) = f(U1|U0, U0 > −γ)f(U0|U0 > −γ). (18)

Proposition 2. (AU∗
0 |U∗

0 ∈ B) has the same distribution as (U0|U0 > −γ), where B =
{u∗0 : Au∗0 > −γ}.

Proof. See Appendix A.
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The decomposition in (18) suggests that simulation from (1) may be performed by
firstly simulating (U0|U0 > −γ) and then using this value to simulate from (U1|U0).
Moreover, the simulation of U0 is more efficient (as described below) if we first simulate
U∗
0 and then apply the appropriate transformation, as suggested by Proposition 2. The

algorithm to simulate from (1) is the following.

Algorithm 4.1

1. Simulate a value u∗ from (U∗
0 |U∗

0 ∈ B);

2. Obtain u = Au∗;

3. Simulate a value z∗ from (U1|U0 = u) ∼ N (∆Γ−1u,Σ−∆Γ−1∆′);

4. Obtain z = z∗ + ξ;

5. OUTPUT z;

The simulation of step 3 is trivial. Step 1 consists of the simulation of a truncated (by
linear constraints) multivariate Normal and cannot be performed directly. The simulation
from this distribution is described in Appendix B.

4.2 The Gibbs sampling algorithm

Notice that, given the data {sk}, the remaining unknown quantities are ({sm}, βK , K, λ∗, θ).
We block these quantities as:

({sm}, βM , K) , βK , θ , λ∗.

Note that βM is sampled twice. That is mainly because updating BK instead of only
βN significantly improves the mixing of the chain (by reducing the correlation among
blocks) and because sampling the first block without βM is virtually impossible. All full
conditional densities are proportional to π(ψ|W,S). Thus, elimination of constant terms
leads to

π({sm}, βM , K|·) ∝ ΦK−N(−WMβM ; IK−N)πGP (βM |βN , θ)
[
(λ∗)K

1

K!

]
1(K ≥ N), (19)

π(βK |·) ∝ ΦN(WNβN ; IN)ΦK−N(−WMβM ; IK−N)πGP (βK |θ), (20)

π(λ∗|·) ∝
[
e−λ∗µ(S) (λ∗)K

]
π(λ∗), (21)

π(θ|·) ∝ πGP (βK |θ)π(θ). (22)

The four densities above are written with respect to the dominating measures: LK−N ⊗
LK−N ⊗ δ, LK , L and Ldθ , respectively, in accordance with the dominating measure used
to write (14).

Define π0 as a Poisson(λ∗µ(S)) distribution truncated to {N,N +1, . . .}. We propose
the following rejection sampling (RS) algorithm to sample from (19):

11



Algorithm 4.2

1. Simulate K̇ from π0;

2. IF K̇ = N, make {ṡm}K̇−N
m=1 = β̇M = ∅ and GOTO 8, ELSE GOTO 3;

3. Make m = 1 and β̇1:m−1 = ∅;

4. Make rm = 1;

5. Simulate ṡrm ∼ U(S) and β̇rm (ṡrm ) from πGP (β̇rm (ṡrm )|βN , β̇1:m−1, θ);

6. Simulate Zrm ∼ Ber(Φ(−W (ṡrm )β(ṡrm )));

7. • IF Zrm = 1 and m < K − N, set ṡm = ṡrm, β̇(ṡm) = β̇rm (ṡrm ), β̇1:m−1 =
β̇1:m−1

∪
β̇rm (ṡrm ), m = m+ 1 and GOTO 4;

• IF Zrm = 1 and m = K −N, set ṡm = ṡrm, β̇(ṡm) = β̇rm (ṡrm ) and GOTO 8;

• IF Zrm = 0, set rm = rm + 1 and GOTO 5;

8. OUTPUT
(
K̇, {ṡm}K̇−N

m=1 , β̇M

)
.

Note that β̇M =
(
β̇(ṡ1), . . . , β̇(ṡK̇−N)

)
.

Lemma 2. The output of algorithm 4.2 is an exact draw from the full conditional distri-
bution in (19).

Proof. See Appendix A.

Note that Algorithm 4.2 takes advantage of the factorisation of the global acceptance
probability to perform the accept/reject procedure pointwise and avoid a much higher
cost. The straightforward version of this algorithm would propose and accept/reject the
variables all at once, resulting in a possibly very small acceptance probability. Firstly, K
is sampled from π0 then, for each of the K−N locations, a pair (s, β(s)) is proposed from
a U(S) and the prior GP and accepted with probability Φ(−W (s)β(s)). MH alternatives
may sound like an attractive possibility because of the lower computational cost but the
usual choices for the proposal distribution may lead to slower convergence. This option
performed poorly even for simple examples in some simulated studies considering both
dependent and independent proposals.

The choice of the Gaussian c.d.f. in (2) is justified by the fact that it makes it possible
to sample directly from the full conditional distribution in (20). This means that we have
an algorithm with a reasonable computational cost and good convergence properties. The
algorithm is the following.

Algorithm 4.3

1. Obtain WK from (WN ,WM ) such that

ΦK(WKβK ; IK) = ΦN (WNβN ; IN )ΦK−N (−WMβM ; IK−N );

2. Sample βK ∼ SN(µK ,ΣK ,WK) using Algorithm 4.1, where µK and ΣK are the

mean vector and covariance matrix, respectively, of πGP (βK |θ);

3. OUTPUT βK.

12



Lemma 3. The output of Algorithm 4.3 is an exact draw from the full conditional distri-
bution in (20).

Proof. Simply note that (20) is proportional to the density of a SN(µK ,ΣK ,WK).

The algorithms above are expected to contribute to the efficiency of the MCMC algo-
rithm because of the blocking scheme with high-dimensional blocks that help controlling
the autocorrelation of the chain which in turn improves its convergence properties.

Algorithm 4.2 may suggest a high computational cost as every try of the RS algorithm
requires the simulation of the GP at a location given the existent ones. However, the most
expensive part of this simulation is the computation of the inverse covariance matrix of
the existing points which can be computed only once for every location. Moreover, once
a location is accepted and we move to the next one, the new inverse covariance matrix
may be obtained from the previous one at a very low cost using Schur complement.

The MCMC algorithm from Adams et al. (2009) uses the same blocking scheme con-
sidered here but with great differences in each update step. Whilst in here the two most
crucial steps (first and second blocks) are performed by sampling directly from their re-
spective full conditional distribution, they are performed via MH and Hamiltonian MC,
respectively, in Adams et al. (2009). Their first block has a proposal distribution that, at
each iteration of the chain, proposes a removal or an insertion of a single thinned event.
This indicates that our algorithm will produce larger moves at every iteration and is,
therefore, bound to have better mixing and convergence properties. Moreover, sampling
the second block directly from its full conditional is expected to be more efficient than
using a Hamiltonian update.

The next step of the Gibbs sampler draws θ from its full conditional distribution.
This task may be carried out ordinarily - using direct simulation when possible or via
an appropriately tuned MH step. There is also the option of breaking θ into smaller
blocks if that is convenient for computational reasons. One attractive option is to use an
adaptive Gaussian random walk Metropolis-Hastings step where the covariance matrix of
the proposal is based on the empirical covariance matrix of the previous steps, as proposed
by Roberts and Rosenthal (2009).

The forth and last step from the Gibbs sampler draws λ∗ from its full conditional
distribution. This can be obtained by routine calculations: if a conjugated Gamma prior
G(αλ, βλ) is adopted for λ∗, its full conditional is G(αλ +K, βλ + µ(S)).

4.3 Estimating functionals of the intensity function

One of the purposes of fitting a Cox process to an observed point pattern is to estimate
functionals of the intensity function. These functionals may include the intensity itself,
the mean number of points at some subregion, etc. The estimation is perform by sampling
such functionals to obtain MC estimates. The sampling step is performed based on the
result in Lemma 1. Basically, it states that, in order to sample the Gaussian process at
some arbitrary location from its posterior distribution, it is enough to sample from the
GP prior conditional on the GP sample from the MCMC at locations {sk}Kk=1. The most
efficient way to do this is by adding a sampling step to each iteration of the MCMC.
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For example, in order to obtain estimates of the intensity function in a finite subset S0

of S, we need posterior samples of (λ∗, βS0). That is achieved by sampling (λ∗, βK , θ) from
π(λ∗, βK , θ|{sn}Nn=1,W, S) and then βS0 from π(βS0 |βK , θ) at each step of the Markov chain
after convergence is assumed to hold. This way, at iteration j of the chain, a draw from

the posterior of λS0 is given by
{
λ∗(j)Φ(W (s̃)β(j)(s̃)), s̃ ∈ S0

}
. In order to reduce the

computational cost, one may, for example, store the sum of βS0 over the iterations for each
location and output its posterior mean. Moreover, note that there is no particular reason
to store all the draws from βK , which also reduces the computational cost considerably.
Another option to reduce computational cost is to use the thinned events as part of the
grid and add extra locations to S0 as necessary. If S0 is a small set, it is computationally
feasible to store the whole posterior sample of λS0 and compute, for example, credibility
intervals and/or posterior marginal densities.

Another interesting functional to be estimated is the integral I =

∫
R

λ(s)ds for some

region R ⊆ S. This is the mean number of points in R. Monte Carlo estimates of E[I|y]
may be obtained without any discretisation error by introducing a r.v. U ∼ U(R) and
noting that

EU [λ(U)] =
1

µ(R)

∫
R

λ(s)ds, (23)

thus suggesting the estimator

Ê = µ(R)
1

J

J∑
j=1

λ(j)(U (j)), (24)

which is a strongly consistent estimator of E[I|y] by the SLLN (see also Beskos et al.,
2006). The samples of λ come from the posterior distribution. The accuracy of the
estimator may be improved defining a partition of R and using one uniform to approximate
the integral from each subregion of the partition.

5 Spatio-temporal model

It is straightforward to generalise the MCMC algorithm from Section 4.2 to the spatio-
temporal case. We remind that (X0, . . . , XT ) are conditionally mutually independent
homogeneous PP’s on S, given λ∗T . The temporal dependence of the model is defined
through β (and λ∗T ), as shown in Figure 1 (when considering the dashed arrows).

We now write the density of (ψ|W,S) with respect to the dominating measure given
by the product measure of the counting measure and the Lebesgue measure with corre-
sponding dimensions and get
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π(ψ|W,S) =
T∏
t=0

[π({st,n}, {st,m}|{st,k}, βKt ,Wt)] π(βKT |{sT ,K}, θ)

×
T∏
t=0

[π({st,k}|Kt)π(Kt|λ∗)π(λ∗t )] π(θ)

=
T∏
t=0

[ΦNt(WNtβNt ; INt)ΦKt−Nt(−WMtβMt ; IKt−Nt)]πGP (βKT |θ)

×
T∏
t=0

[
e−λ∗

tµ(S) (λ∗t )
Kt

Kt!
π(λ∗t )

]
π(θ) (25)

where the new notation has a natural interpretation and πGP is the density of the dynamic
GP in (8).

Figure 1: Graphical model for the spatio-temporal approach.

We have at least two options for the blocking scheme. The first one samples(
Kt, {st,m}, βMt

)
and βKt separately, for each time. This algorithm may, however, lead

to a chain with poor mixing properties if T is large due to the temporal dependence
of β (see Carter and Kohn, 1994; Fruhwirth-Schnatter, 1994; Gamerman, 1998). This

problem motivates the second blocking scheme which makes

{(
Kt, {st,m}, βMt

)}T

t=0

and{
βKt

}T

t=0

one block each. This choice eliminates the mixing problem mentioned above
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and is particularly appealing in the DGP context. To sample

{(
Kt, {st,m}, βMt

)}T

t=0

,

Algorithm 4.2 is applied for each time t and step 5 has to consider the temporal dependence
of the GP. The same idea extends Algorithm 4.3 - step 4 now considers the temporal
dependence of the GP. The one-at-a-time simulation is possible due to the following
factorisation of the full conditional distribution:

π

({
βKt

}T

t=0

|·

)
∝

T∏
t=0

[
ΦNt(WNtβNt ; INt)ΦKt−Nt(−WMtβMt ; IKt−Nt)πGP (βKt |βK(t−1)

, θ)
]
,

(26)
where βK(t−1)

:= (βK0 , . . . , βKt−1) and βK−1 = ∅.
The full conditional distribution of θ is carried out as before and particular block-

ing schemes may be motivated by the spatio-temporal structure. Finally, for a prior
G(αλt , βλt) - which may be the same for every t, the full conditional of each λ∗t is
G(αλt + Kt, βλt + µ(S)). In the case λ∗t = λ∗, ∀t, the full conditional of this parame-
ter is G(αλt +

∑T
t=1Kt, βλt + Tµ(S)).

Extensions of the spatio-temporal model above can be proposed by adding a temporal
dependence structure to λ∗1:T . This is particularly useful if prediction towards future times
is required. One interesting possibility is the Markov structure proposed by Gamerman
et al. (2013) (in a state-space model context) where λ∗1 ∼ G(wa0, wb0), λ

∗
t |K1:t−1, λ

∗
t−1 =

w−1λ∗t−1ςt and ςt ∼ Beta(wat, (1−w)at). This structure is represented in Figure 1 by the
dashed arrows. The full conditional distribution of λ∗1:T is available for direct sampling
using the results in Gamerman et al. (2013).

5.1 Prediction

A Bayesian analysis usually includes the task of prediction, i.e. what should we expect
from a new observation of the model being consider after we have updated our knowledge
about this with the current data. That is performed through the predictive distribution,
which is the conditional distribution of the future observations given the current data
and is obtained by integrating out the unknown parameters and other components of the
model. In our context, this means to integrate out the joint posterior of future data and
{intensity function, hyperparameters} over the latter.

Samples from the predictive distribution can be trivially obtained in a MCMC context.
We simply add one extra step to each iteration of the MCMC after convergence is assumed.
In this step we firstly sample λ∗T ∗ , which may be drawn from the prior (for independent
λ∗t ’s), from the posterior (for a common λ∗) or from an evolution equation (if a Markov
structure is adopted for the λ∗t ’s). Secondly, we perform Algorithm 1 to sample a new
realisation of the process. Note that this will include simulating β at the candidate points
(to be thinned), which is performed the same way βS0 is sampled.

Suppose that we want to predict the process at future times T ∗ = (T + 1, . . . , T +
J). The algorithm to sample from the predictive distribution of YT ∗ - the Cox process
on S × T ∗, proceeds iteratively on time from T + 1 onwards. Firstly, we sample λ∗t
(which depends on the structure that has been adopted), then apply Algorithm 1 with
the Gaussian process being simulated from πGP (βKt |βKT , βKT+1:t−1

, θ). This algorithm is
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supported by the following result:

π(yT ∗|yT ) ∝
∫
π(yT ∗ , λ∗T ∗ , βT ∗ , λ∗T , βT , θ|yT )dλ∗T ∗dβT ∗dλ∗TdβT dθ

=

∫ T+J∏
t=T+1

[
π(yt|λ∗t , βt)π(λ∗t |λ∗t−1, yt−1)π(βt|βt−1, θ)

]
π(λ∗T , βT , θ|yT )dλ∗T ∗dβT ∗dλ∗TdβT dθ,

(27)

where yT are the observed data at times T , βT is the GP at the locations of yT and
(yT ∗ , βT ∗) represent these components at a finite collection of locations at times T ∗.

The predictive distribution may be explored in different ways, specially in a point
process context, by choosing convenient functions of the observations to analyse. Note
that the same algorithm provides prediction of the intensity function in future times T ∗.

6 Simulated examples

The methodology proposed in this paper is now used to perform inference in synthetic
data sets. We present three examples, the first two examples consider spatial models
in one and two dimensions, respectively, and the third one considers a spatio-temporal
model with seasonal effect.

6.1 Spatial models

The data was simulated from a Poisson process with IF λ(s) = 2 exp(−s/15) +exp(−(s−
25)2/100), for s ∈ [0, 50]. We apply the inference methodology proposed in this paper to
study its efficiency and robustness under different prior specifications. We assume that β
is a Gaussian process with constant mean function µ and the covariance function given
in (7) with γ = 3/2.

An extensive analysis indicated that the posterior distribution of the intensity func-
tion is sensitive to the prior specification of the GP, as expected. Also, data does not
contain much information about the hyperparameters of the GP. As a consequence, non-
informative priors lead to high variance posterior for these and unstable estimates of the
intensity function. Efficient estimation requires the hyperparameters to be fixed or have
highly informative priors. Reasonable choices of the hyperparameters’ values can be ob-
tained with some knowledge about the behavior of Gaussian processes. In particular the
values should reflect the smoothness expected for the intensity function. Parameter λ∗ is
also sensitive to prior specification but good results are obtained following the guidelines
of Section 3.3.

We consider four different prior specifications. All of them consider a G(2.2, 1.5) prior
for λ∗. The first three specifications fix the parameter vector θ = (µ, σ2, τ 2) at (0, 1, 20),
(0, 1, 10) and (0, 1, 5), respectively. The last case fixes µ = 0 and estimates (σ2, τ 2) with
uniform priors σ2 ∼ U(0.25, 4) and τ 2 ∼ U(1, 30). The estimated intensity function in
each case is shown in Figure 2. Results are similar for all prior specifications which
reinforces the idea that reasonable choices for the hyperparameters lead to good results.
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Figure 2: Real and posterior mean intensity function and realisation of the unidimensional
Poisson process.

The influence of the prior is clearly seen as the estimated function is smoother for higher
choices of τ 2. The trace plots of λ∗ and (σ2, τ 2) (in case 4) suggest fast convergence of
the chain. The posterior distribution of λ∗ is very similar in all cases, with mean around
2.05 and s.d. 0.90. The parameter vector (σ2, τ 2) in case 4 has large posterior variance
indicating that the data does not have much information about it. The posterior mean
and standard deviation of (σ2, τ 2) are (2.81, 22.85) and (0.79, 5.43), respectively.

Data was also simulated from a bidimensional Poisson process on [0, 10]×[0, 10] with IF
λ(s) = 3Φ(β(0)(s)), where β(0)(s) = (8/3) exp{−s2(1)/30}+ (4/3) exp{−(s(2)−7)2/12}−2.
We assume the same covariance function as in the unidimensional example and set the
values (0,4,10) for the mean, variance and correlation parameters of β(0). Figure 3 shows
real and estimated intensity function and the realisation of the process. It is clear that
the intensity function is well estimated.

6.2 Spatio-temporal model with a seasonal component

We consider a spatio-temporal example with a seasonal component whose effect varies
in space. More specifically, we consider the model specified in (11)-(12) with p = 4,
G = I and w1,t+1,t = 0, ∀ t, to simulate four annual cycles with quarterly data (T = 15).
We consider Gaussian processes with the same covariance structure used in the previous
section, for β0,0, wt and β1. More specifically, we set their hyperparameters (0, 22, 5),
(0, 0.72, 10) and (1, 1.52, 5), respectively. The data is simulated considering (−0.2, 1.82, 15)
and (0, 0.52, 20) for β0,0 and wt and a deterministic structure for β1 - 2.4 exp{−s2(1)/25}+
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Figure 3: Real (left) and posterior mean (right) intensity function and realisation of the
bidimensional Poisson process.

0.6 exp{−(s(2) − 7)2/36} − 0.288. Furthermore, we set λ∗t = 1.5, ∀t and ϕ = π/2 (for the
generation and for the analysis). The results from this section are based on first-order
approximations to simulate the Gaussian processes.

Figure 4 shows the estimation of the space-varying seasonal coefficient to be satis-
factory, capturing the dip in the (south)eastern portion of the area of study. Figure 5
shows that the IF is very well estimated at a wide selection of times. Figure 6 shows
prediction results. Prediction for the (latent) IF and for the (observed) number of points
in [0, 2] × [0, 2] for future times is also good. Finally, we also predict the average number
of points in the whole space at time T = 16 using estimator (24), which returned the
value 114.69. The expected value based on the true model is 121.58.

Figure 4: Seasonal effect β1. Real (left) and posterior mean (right).
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Figure 5: True (top) and posterior mean (bottom) intensity function for times 0, 5, 10
and 15. Circles represent the data.

Figure 6: Prediction for times 16, 17, 18 and 19. Top: true IF and realisation of the
Y process; middle: predictive mean of the IF; bottom: predictive distribution for the
number of points in [0, 2] × [0, 2], the black dots represent the respective (future) true
values.
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7 Final remarks

This paper proposes a novel methodology to perform exact Bayesian inference in spatio-
temporal Cox processes in which the intensity function dynamics is described by a mul-
tivariate Gaussian process. We showed how usual components of spatio-temporal point
patterns such as trend, seasonality and covariates can be incorporated, with flexibility of
their effects warranted by the Gaussian process prior.

The methodology is exact in the sense that no discrete approximation of the pro-
cess is used and Monte Carlo is the only source of inaccuracy. Inference is performed
via MCMC, more specifically, a Gibbs sampler whose particular choice of blocking and
sampling scheme leads to fast convergence. The validity of the methodology is estab-
lished through the proofs of the main results. Finally, simulated studies illustrate the
methodology and provide empirical evidence of its efficiency.

This work may give rise to new problems and possibilities that may be considered in
future work. For example, computational developments are required to deal with very
large data sets, which is a general problem when working with Gaussian processes. An
immediate extension is to consider stochastic marks to the Poisson events. These marks
may be described with a variety of components, whose effects are allowed to vary smoothly,
in line with the models used for the IF.
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Appendix A - Proofs

Proof of Lemma 1

The first part of the Lemma comes of the fact that π(βS0 , ψ|W,S) = π(βS0 |βK , θ)π(ψ|W,S).
For the second part we have

π(βS0 |{sn},W, S) =

∫
π(βS0 , βK , θ|{sn},W, S)dβKdθ

=

∫
π(βS0 |βK , θ, {sn},W, S)π(βK , θ|{sn},W, S)dβKdθ

=

∫
π(βS0 |βK , θ)π(βK , θ|{sn},W, S)dβKdθ

To go from the second to the third row we use the first part of the Lemma.

Proof of Proposition 1

Firstly, we prove that Γ and Σ∗ are positive definite matrices, for any m×d real matrix W
and positive definite d×d matrix Σ. Let X and ε be r.v.’s such that X ∼ N(0,Σ) and ε ∼
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N(0, Im). Now define a r.v. Y = WX+ε. This implies that Cov(Y, Y ) = Im+WΣW ′ = Γ
and Γ ≻ 0. Now, the Schur complement of Σ∗ is given by S = Γ−∆′Σ−1∆ = Γ−WΣW ′ =
Im. The fact that S ≻ 0 and Σ ≻ 0 implies that Σ∗ ≻ 0.

Now, by standard properties of the multivariate normal distribution we have that
(U0|U1 = z∗) ∼ Nm(∆′Σ−1z∗,Γ − ∆′Σ−1∆), where Γ − ∆′Σ−1∆ = Im. Therefore, by the
symmetry of the standard Gaussian cdf and the Bayes Theorem, we have that the density
of (U1|U0 > −γ) is given by

f(z∗) =
fU1(z

∗)P (U0 > −γ|U1 = z∗)

P (U0 > −γ)
=
ϕ(z∗,Σ)Φm(γ + ∆′Σ−1z∗; Im)

Φm(γ; Γ)
.

We now apply the transformation theorem to find the density of (U1 + ξ|U0 > −γ).

Proof of Proposition 2

The density f of (U∗
0 |U∗

0 ∈ B) is given by

f(u) =
1

P (U∗
0 ∈ B)

ϕm(u; Im)1(u ∈ B).

Applying the transformation theorem to find the density f ∗ of (AU∗
0 |U∗

0 ∈ B), we get

f ∗(u) =
1

Φm(γ; Γ)
ϕm(u; Γ)1(u > −γ).

Proof of Lemma 2

Firstly note that π0(K0) =
P (K̇ = K0)1(K0 ≥ N)

P (K̇ ≥ N)
∝ [λ∗µ(S)]K0

1

K0!
1(K0 ≥ N).

Now consider the case K̇ > N . The density of the algorithms’s output w.r.t. the
dominating measure δ ⊗ LK̇−N ⊗ LK̇−N is given by

π(K̇, {ṡm}K̇−N
m=1 , β̇M) ∝ π0(K̇)π(ṡr1 , β̇r1 , . . . , ṡrK−N

, β̇rK−N
|Zr1 = 1, . . . , ZrK−N

= 1)

∝ π0(K̇)P (Zr1 = 1, . . . , ZrK−N
= 1|ṡr1 , β̇r1 , . . . , ṡrK−N

, β̇rK−N
)π(ṡr1 , β̇r1 , . . . , ṡrK−N

, β̇rK−N
)

= π0(K̇)

K̇−N∏
m=1

(Φ(W (ṡrm)′β(ṡrm)))[µ(s)]K−NπGP (β̇r1 , . . . , β̇rK−N
|βN , θ)

 ∝ (19),

where β̇rm = β̇rm(ṡrm). The case where K̇ = N is straightforward - just compare π0 with
π(ψ|W,S), when M = 0.

Appendix B

Algorithm to sample from a truncated multivariate Normal dis-
tribution

Firstly note that our aim is to simulate from a multivariate Normal distribution with inde-
pendent coordinates restricted to a region R defined by linear constraints, more specifically
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R := {u∗0, Au∗0 > −γ}. Moreover, note that A is the lower triangular matrix obtained
from applying the Cholesky decomposition to Γ.

The most obvious way to simulated exactly from a truncated multivariate Normal
distribution is via a rejection sampling algorithm that proposes from the untruncated
distribution. In this case, the global acceptance probability of this algorithm is equal to
the probability of the truncated region. However, this probability is typically going to be
very small in high dimensions, making this algorithm very inefficient.

A more efficient alternative is provided by MCMC, more specifically, a Gibbs sampling.
This method could be applied directly to U0 but the resulting chain would have much
higher correlation among the blocks of the Gibbs sampler, which would considerably slow
down its convergence (see Rodriguez-Yam et al., 2004).

The Gibbs sampler alternates among the simulation of (U∗
0,i|U∗

0,−i), i = 1, . . . ,m,
where U∗

0,−i = U∗
0 {U∗

0,i}, which are all univariate standard Gaussians restricted to R.
Basically, for a given i, R consists of (m − i + 1) linear inequalities and has the form
(max{lj},min{Lj}), where lj and Lj are the lower and upper limits, respectively, of each
inequality. Note that the diagonal of A is strictly positive (Γ is positive definite) which
means that the lower limit will always be a real number whereas the upper limit may be
+∞.

In order to favor a faster convergence, we choose an initial value that already belongs
to R. This is trivially obtained by taking advantage of the triangular form of A and
simulating U∗

0 recursively from U∗
0,1 onwards. Simulation experiments suggest that m it-

erations of the chain are enough to obtain good results. The algorithm is as follows:

1. Simulate the initial value of the chain and make k = 1;

2. For i in 1 : m do:

2.1. Simulate u∗
0,i

(k) from (U∗
0,i

(k)|U∗
0,1

(k), . . . , U∗
0,i−1

(k), U∗
0,i+1

(k−1), . . . , U∗
0m

(k−1));

3. If k has reached the desired number of iterations, STOP and OUTPUT the last

sampled value of U∗
0 ; ELSE, GOTO 2;
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