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Abstract

This paper describes a flexible methodology for the class of finite mixture of regressions with

scale mixture of skew-normal errors (SMSN-MRM) introduced by Zeller et al. (2016). Bayesian

inference based on the data augmentation principle is derived and a Markov chain Monte Carlo

(MCMC) algorithm is developed. These procedures are proposed with the aim of understand-

ing the possible effects caused by the restrictions commonly imposed in the context of robust

mixture regression modeling. In order to make the comparisons between the results possible,

the Tone Perception data is analysed.

Keywords: Finite mixture of regressions, scale mixture of skew-normal distributions, Markov

chain Monte Carlo.
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1 Introduction

Finite mixture of regression models (FMRM) enable investigating the association between vari-

ables coming from several unknown latent homogeneous groups. First introduced under the titles

“switching regression” or “clusterwise linear regression” (Quandt, 1972; Spath, 1979), FMRM of

Gaussian distributions are frequently applied in areas like marketing (DeSarbo and Cron, 1988;

DeSarbo et al., 1992) and economics (Cosslett and Lee, 1985; Hamilton, 1989). In order to model

properly data sets arising from a class or several classes with heavy tails observations, Song et al.

(2014) and Yao et al. (2014) proposed a robust estimation procedure for mixture linear regression

models assuming that the error terms follow, respectively, a Laplace and a Student-t distribution.

As an attempt to accommodate asymmetric observations, Liu and Lin (2014) proposed a version

of the FMRM based on skew-normal (Azzalini, 1985) errors.

More recently, as an attractive way to deal with both skewness as well as heavy tails, Zeller et al.

(2016) proposed a mixture regression model based on scale mixtures of skew-normal distributions

(Branco and Dey, 2001, SMSN) as follow:

f(yi|xi,ϑ,η) =
G∑
j=1

ηjg(yi|xi,θj), (1)

where g(·|xi,θj) denotes the SMSN(xiβj+µj , σ
2
j , λj , νj) probability density function, θj = (βj , σ

2
j , λj , νj),

the specific parametric vector for the component j, ηj ≥ 0, j = 1, . . . , G,
∑G

j=1 ηj = 1, ϑ and η

denote the unknown parameters with ϑ = (θ1, . . . ,θG) and η = (η1, . . . , ηG). Nevertheless, Zeller

et al. (2016) impose the constraints γ21 = . . . = γ2G and ν1 = . . . = νG about the parameters during

the estimation process in which γ2j = σ2j − σ2j δ2j and δj = λj/(
√

1 + λ2j ).

The aim of this paper, therefore, is to propose a flexible version for the mixture of regressions

based on scale mixtures of skew-normal distributions introduced by Zeller et al. (2016) and make

an empirical analysis about the possible effects caused by the restrictions imposed by the previous

authors. Towards this end, Bayesian inference is developed using the ideas of the data augmentation

principle, the stochastic representation in terms of a random-effects model (Azzalini, 1986; Henze,

1986) and the standard hierarchical representation of a finite mixture model introduced by Diebolt

and Robert (1994).
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The remainder of the paper is organized as follows. Section 2 is related to the development of

a flexible methodology for the mixture regression models based on scale mixture of skew-normal

(SMSN-MRM) distributions from a Bayesian perspective. Section 3 is devoted to a real data set

application and comparison among the results obtained by the present work and Zeller et al. (2016).

Finally, some concluding remarks and suggestions for future developments are given in Section 4.

2 Mixture regression model based on scale mixtures of skew-

normal distributions

2.1 The model

Let y = (y1, . . . , yn)T be a random sample from a G-component mixture model (G > 1), x =

(xT1 , . . . ,x
T
n )T , a p-dimensional vector of explanatory variables, and consider a mixture regression

model in which the random errors follow a scale mixtures of skew-normal distributions (SMSN-

MRM) as defined by the equation 1. Introducing the allocation vector S = (S1, . . . ,Sn), i. e., the

vector containing the information about in which group the observation yi of the random variable

Yi is. The indicator variable Si = (Si1, . . . , SiG)>, with

Sij =


1, if Yi belongs to component j

0, otherwise

(2)

and
∑G

j=1 Sij = 1. Given the weights vector η, the latent variables S1, . . . ,Sn are independent

with multinomial densities

p(Si|η) = ηSi1
1 ηSi2

2 . . . (1− η1 − · · · − ηG−1)SiG . (3)

The joint density of Y = (Y1, . . . , Yn) and S = (S1, . . . ,Sn) is given by

f(y, s|x,ϑ) =
G∏
j=1

n∏
i=1

[ηjg(yi|xi,θj)]Sij . (4)

From the stochastic representation, a random variable Yi drawn from the scale mixture of skew-

normal distributions has a hierarchical representation. Hence, the individual Yi belonging to the
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j−th component can be written as

Yi|Sij = 1,xi, wi, ui,θj ∼ N(xiβj + µj + σjδjwi, k(ui)σj

√
1− δ2j ),

Wi|Sij = 1, ui ∼ TN[0,+∞)(0, k(ui)), (5)

Ui|Sij = 1, νj ∼ h(·; νj),

where µj = −
√

2
πm1,jσjδj , m1 = E[U−1/2], which corresponds to the regression model where the

error distribution has zero mean and hence the regression parameters are all comparable. Thus,

the joint density of Y and the latent variables S, W and U is

f(y, s,w,u|x,ϑ,η) =
G∏
j=1

[
n∏
i=1

[ηjf(yi|θj ,xi, wi, ui)f(wi|ui)f(ui|νj)]Sij

]
p(s|η). (6)

Along the following sections, the restriction to the case in that k(U) = U−1 is made, since it

leads to good mathematical properties. Without loss of generality, the distributions skew normal

(Azzalini, 1985, SN), skew-t (Azzalini and Capitanio, 2003, ST) and skew-slash (Wang and Genton,

2006, SSL) are studied, it means that mixing variables are chosen as: U = 1, U ∼ G(ν2 ,
ν
2 ) and

U ∼ Be(ν, 1), where G(·, ·) and Be(·, ·) indicate the gamma and beta distributions respectively.

Last but not least, following Fruhwirth-Schnatter and Pyne (2010), a parameterization in terms

of θ∗j = (βj , ψj , τ
2
j , νj), where ψj = σjδj and τ2j = σ2j (1 − δ2j ), is applied for the scale mixtures of

skew-normal distributions. The original parametric vector θj = (βj , σ
2
j , λj , νj) is recovered through

λj =
ψj
τj
, σ2j = τ2j + ψ2

j . (7)

2.2 Bayesian Inference

Performing a Bayesian analysis, an important step is the priors distributions selection. In the

context of finite mixture models, in particular, mixture regression models, a special attention

on these choices is quite relevant since it is not possible to choose an improper prior because

it implies in an improper posterior density (Fruhwirth-Schnatter, 2006). In addition, as noticed

by Jennison (1997), it is recommended to avoid be as “noninformative as possible” by choosing

large prior variances because the number of components is highly influenced by the prior choices.

For these reasons, as in Fruhwirth-Schnatter and Pyne (2010), it was adopted the hierarchical
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priors introduced by Richardson and Green (1997) for mixtures of normal distributions to reduce

sensitivity with respect to choosing the prior variances.

Hence, considering the parametric vector θ∗j = (βj , ψj , τ
2
j , νj) for an arbitrary mixture compo-

nent j, the prior set was specified as: η ∼ D(e0, . . . , e0), (βj , ψj)|τ2j ∼ Np+1(b0, τ
2
jB0), τ

2
j |C0 ∼

IG(c0, C0) and C0 ∼ G(g0, G0), where e0, b0 ∈ <2, B0 ∈ <2×2, c0, g0 and G0 are known hyper

parameters, Nq(·, ·), D(·, . . . , ·) and IG(·, ·) indicate the q-variate normal, the dirichlet and inverse

gamma distributions. Considering the parameter ν priors, p(νj) ∝ νj/(νj + d)31(2,40)(νj) (Juárez

and Steel, 2010) and νj ∼ G(2,40)(α, γ), where α and γ are known hyper parameters and GA(·, ·)

denotes the truncated gamma on set A, are specified for the ST-MRM and SSL-MRM respectively.

The joint posterior density of parameters and latent unobservable variables can be written as

p(ϑ,η,w,u, s|y,x) ∝


G∏
j=1

[ n∏
i=1

[
ηjf(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij

]
p(θ∗j )

 p(s | η)p(η), (8)

where p(θ∗j ) = p(βj , ψj |τ2j )p(τ2j |C0)p(C0)p(νj). As expressed in Tanner and Wong (1987), in light of

the data augmentation technique, conditional on the allocation vector S, the parameters estimation

may be executed independently for each parametric component θ∗j and for the weights distribution

η, as a consequence, the full conditionals of the parameters and the latent unobservable variables

for the mixture regression models based on the SMSN distributions are written as follows:

p(η|s) ∝ p(s|η)p(η) (9)

p(wi|Sij = 1, · · · ) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)

]Sij , (10)

p(ui|Sij = 1, · · · ) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij , (11)

p(βj , ψj | · · · ) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(βj , ψj |τ2j ), (12)

p(τ2j | · · · ) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(τ2j |C0), (13)

p(C0| · · · ) ∝
G∏
j=1

p(τ2j |C0)p(C0), (14)

p(νj | · · · ) ∝
∏

{i:Sij=1}

f(ui|νj)p(νj). (15)

Additional details about the full conditionals are available in Appendix A.
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In furtherance of making Bayesian analysis feasible for parameter estimation in the SMSN-

MRM class of models, random samples from the posterior distributions of (ϑ,η,w,u, s) given

(y,x) are drawn through Monte Chain Monte Carlo simulation methods. Algorithm 1 describes

the sampling scheme from the full conditionals distributions of the parameters and the latent

unobservable variables.

Algorithm 1 MCMC for finite mixture of scale mixtures of skew-normal.

1 Set t = 1 and get starting values for S(0), (θ
∗(0)
1 , . . . ,θ

∗(0)
G ), η(0), w(0) and u(0);

2 Parameter simulation conditional on the classification S(t−1):

2.1 Sample η(t) from p(η|s(t−1));

2.2 Sample the component latent variables w
(t)
i and u

(t)
i , i = 1, . . . , n, from the full con-

ditionals (11)-(12) and the component parameters β
∗(t)
j , ψ

∗(t)
j , τ2

∗(t)
j , ν

∗(t)
j , j = 1, . . . , G,

from the full conditionals (13)-(16).

3 Sample S
(t)
i independently for each i = 1, . . . , n from

Pr(Si = l|yi,xi,ϑ) =
g(yi|xi,θ∗j )Pr(Si = l|ϑ)∑G
j=1 g(yi|xi,θ∗j )Pr(Si = j|ϑ)

. (16)

4 Set t = t+ 1 and repeat the steps 2, 3 and 4 until convergence is achieved.

3 Application

In order to explore the interval memory hypothesis and the partial matching hypothesis, Cohen

(1984) designed an experiment in which a pure fundamental tone with electronically generated

overtones added was played to a trained musician. The overtones were determined by a stretching

ratio, corresponding to the harmonic pattern usually heard in traditional definite pitched instru-

ments. The musician was asked to tune an adjustable tone to the octave above the fundamental

tone and 150 trials were recorded as the ratio of the adjusted tone to the fundamental.

This data set has been analyzed in many articles which explored the mixture of linear regression

framework (DeVeaux, 1989; Viele and Tong, 2002; Hunter and Young, 2012). More recently, Yao
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et al. (2014) fitted a robust mixture regression model using the t−distribution and Zeller et al.

(2016), a robust mixture regression based on the SMSN class of distributions. Conducive to make

comparisons with the results in Zeller et al. (2016) possible, the methods proposed in this paper

are applied to the tone perception data. Additionally, in order to compare the fit of the different

models considered, we compute two classical comparison criteria, the Akaike Information Criterion

(Akaike, 1974, AIC) and the Bayesian Information Criterion (Schwarz, 1978, BIC), and two versions

proposed by Gelman et al. (2014) of the Bayesian criteria known as Watanabe-Akaike Information

Criterion (Watanabe, 2010, WAIC).
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Figure 1: Tone perception data scatter plot.

Considering the estimation process for the SN-MRM, ST-MRM and SSL-MRM, the priors

hyperparameters set was specified as: e0 = 4, b0 = (0, 0, 0), B0 = Diag(100, 100, 100), c0 = 0.01,

g0 = 0.01, G0 = 0.01. For the ST-MRM, d = 4/(1 +
√

4) was chosen and, for the SSL-MRM, α = 6

and γ = 0.8 were specified. A MCMC simulation for 50000 iterations was drawn, the first 10000

draws were discarded as a burn-in period, and then the next 40000 were recorded. In order to

reduce the autocorrelation between successive values of the simulated chain, only every 40th values

of the chain were stored. With the resulting 1000 we calculated the posterior estimates.

Table 1 contains the maximum a posteriori estimation of the parameters of the models un-

der analysis: SN-MRM, ST-MRM and SSL-MRM, besides their corresponding 95% high posterior

density credibility interval. It is important to mention that, because of the two well defined com-
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ponents, the label switching (Redner and Walker, 1984) problem was not identified. Furthermore,

we computed the BIC, AIC, WAIC1 and WAIC2 as models comparison criteria. The criteria values

indicate that the T-MRM has the best fitting result followed by the ST-MRM model.
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In comparison with Zeller et al. (2016), the ST-MRM model presented the best fitting perfor-

mance. In general, the coefficients β estimates are in line with the obtained by Zeller et al. (2016),

however, the results for the scale, skewness and degrees of freedom parameters are quite different,

mainly, if we consider the skewness parameter. These divergences are caused by the restrictions

imposed by Zeller et al. (2016). Figure 2 illustrates that the introduction of the skewness parame-

ter is unnecessary considering the data set under analysis, fact that is not observed for the models

under constraints proposed by Zeller et al. (2016). Hence, it is possible to affirm that the more

flexible estimation process introduced in this work contradicts the results observed by Zeller et al.

(2016) for the tone perception data set.
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Figure 2: Skewness parameters posterior samples.

4 Conclusion

In this work a flexible Bayesian methodology is developed for the mixture regression models based

on scale mixtures of skew-normal distributions proposed by Zeller et al. (2016) with the aim of

understanding the possible effects caused by the restrictions commonly imposed in the context of

robust mixture regression modeling. The tone perception data is analysed in order to verify the

advantages that the additional flexibility introduced by the methodology developed in this article

have. In fact, this paper provided divergent results in comparison with Zeller et al. (2016) and

brought an empirical illustration about the possible effects of imposing constraint for this class of
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models.

An interesting extension which will be pursued in a future research is to develop fully Bayesian

inference, i. e., to consider the number of components as an unknown quantity of interest. Also

the proposed methods can be extended to multivariate settings, such as the recent proposals of

Galimberti and Soffritti (2014) for mixtures of multivariate Student-t distributions and to models

capable to deal with longitudinal data as discussed in Verbeke and Lesaffre (1996).

A Mixture regression based on scale mixtures of skew-normal full

conditional distributions

Considering the FM-SN model and assuming Fn×(p+1) = (x w), for each k = 1, . . . ,K, construct

a matrix Fk ∈ <Nk×(p+1), Nk =
∑n

i=1 Sik. Similarly, construct an observation matrix yk ∈ <Nk×1.

Hence, by the Bayes theorem, the full conditionals are

� η|s ∼ D(e0 +N1, . . . , e0 +NK);

� (βk, ψk)|s,y,w, τ2k ∼ Np+1(bk,Bk);

Bk =
(

1
τ2k
B−10 + 1

τ2k
(F
′
kFk)

)−1
bk = B

(
1
τ2k
B−10 b0 + 1

τ2k
(F
′
k(yk − µk))

)
� τ2k |s,y,w, C0,βk, ψk ∼ IG(ck, Ck);

ck = c0 + Nk
2 + 1

2

Ck = C0 +
(yk−Fkβ

∗
k−µk)

′
(yk−Fkβ

∗
k−µk)+(β∗k−b0)

′
B−1

0 (β∗k−b0)
2

� C0|τ21 , . . . , τ2K ∼ G(g,G).

g = g0 +Kc0

G = G0 +
∑K

k=1
1
τ2k

where β∗k = (βk ψk)
′
. Considering now the latent variable W
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� Wi|Sik = 1, yi,βk, ψk, τ
2
k ∼ TN[0,+∞)(a,A);

a =
(yi−xiβk−µk)ψk

τ2k+ψ
2
k

A =
τ2k

τ2k+ψ
2
k

For the FM-ST and the FM-SSL models the full conditionals are almost the same, the difference

is that F is replaced by Fwn×2 = (
√
ux
√
uw) and y, by yw =

√
uy, where

√
u is the square root

element by element. Considering now the latent variable W

� Wi|Sik = 1, yi, ui,βk, ψk, τ
2
k ∼ TN[0,+∞)(a,A/ui).

Lastly, for the latent variable U and the parameters ν

� Skew-T

Ui|Sik = 1, yi, wi, νk,βk, ψk, τ
2
k ∼ G

(
νk
2 + 1, νk2 +

(yi−µk−xiβk−ψkwi)
2

2τ2
+

w2
i
2

)
;

� Skew-Slash

Ui|Sik = 1, yi, wi, νk,βk, ψk, τ
2
k ∼ G(0,1)

(
νk + 1,

(yi−µk−xiβk−ψkwi)
2

2τ2
+

w2
i
2

)
;

νk|s,u ∼ G(2,40)(α+Nk, γ −
∑

i:Sik=1 ui)

For the degrees of freedom in skew-t is not possible to find a closed form to the full conditionals,

so a Metropolis-Hastings step is required. To sample νk, k = 1, . . . ,K a normal log random walk

proposal was used

log(νnewk − 2) ∼ N(log(νk − 2), cνk) (17)

with adaptive width parameter cνk (Shaby and Wells, 2010). The proposal was shifted away from

0, as it is advisable to avoid values for νk that are close to 0, see Fernández and Steel (1999).
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