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Abstract

Forecasts of meteorological variables from numerical models are sys-
tematically subject to errors. Such errors are mainly due to determinis-
tic simulations of thermodynamic processes of the atmosphere from their
current conditions through systems of differential equations. In addition,
these systems are solved in a discrete grid, presenting uniform forecasts for
every region belonging to the same grid cell. Consequently, forecasts from
numerical models may not be representative at specific locations. In this
context, statistical post-processing techniques are appropriate for calibra-
tion of these forecasts, minimizing possible distortions. This work aims
to minimize the errors of Eta mesoscale model’s forecasts for the wind
speed through the development of improved spatiotemporal extensions of
the main statistical post-processing models for meteorological variables.
The proposed models were structured by the data augmentation tech-
nique and Bayesian Dynamic Linear Models. In particular, it considers
trans-Gaussian random fields to account for asymmetric behaviour of me-
teorological variables such as wind speed. An optimized MCMC scheme
based on robust adaptive Metropolis is employed for statistical inference
and prediction. Three case studies illustrates the usefulness of our pro-
posed correction in comparison with the usual postprocessing alternatives
such as EMOS and GOP.

Wind speed Eta mesoscale model calibration dynamical spatiotempo-
ral linear models data augmentation technique

1 Introduction

Numerical forecasts of meteorological variables are often based on mathe-
matical models which make deterministic predictions from current atmospheric
conditions. These are basically differential equations that have no analytic so-
lution and use the numerical integration to simulate physical, dynamic and
thermodynamic processes of the atmosphere depending on their current condi-
tions. From this solution it is possible to obtain the solution of the system for
any future time of interest. (Krishnamurti, 1995).
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The Eta mesoscale model’s numerical forecasts (Mesinger et al., 1988; Black,
1994) are useful in this context and, operationally, have been used by Centro
de Previsão de Tempo Estudos Climáticos (CPTEC) of Instituto Nacional de
Pesquisas Espaciais (INPE) since 1996 in order to provide short-term and long-
term weather forecasts in Brazil. Its prognostic variables are air temperature,
zonal and meridional components of the wind, specific humidity and surface
pressure. Its current horizontal resolution is 5 km and the model operates twice
a day (00 UTC and 12 UTC), providing hourly outputs for a forecast horizon
of up to 72 hours (INPE/CPTEC, 2018).

These numerical systems are solved in a discrete grid, i.e., they present uni-
form predictions for every region belonging to the same cell of this grid. In
particular each forecast is obtained based on average data of the region (e.g.
average altitude and predominant vegetation). Notice that the representative-
ness of the predictions in places with complex orography and dense vegetation
becomes deficient due to the differences in the real characteristics of the surface
with the homogenization made by this model. Therefore, predictions generated
by the Eta model may not be representative at a specific location (Chou et al.,
2007), thus producing systematic errors.

In order to produce predictions at different points, minimizing these and
other limitations of numerical models, statistical postprocessing techniques are
appropriate and can improve the the estimates accuracy in a probabilistic con-
text (Glahn and Lowry, 1972). In this context, spatial models may be useful
in correcting predictions errors in regions where the numerical models have
smoothed important characteristics of the terrain such as orography and land
use.

Very often the estimation of parameters in postprocessing statistical meth-
ods consists of defining a training period based on a moving temporal window
accounting for the effect of past observations and predictions from numerical
models. If these training periods are reasonably long it becomes easier to es-
timate the uncertainty in predictions (Gneiting, 2014). However, these longer
training periods may introduce distortions due to seasonal effects. Gneiting
et al. (2005) and Raftery et al. (2005) analyze the effects of the training win-
dow size in the uncertainty estimation of parameters. The authors highlight
that gains are obtained for windows as large as 25 days and that the window
size must be tailored for the specific application to achieve better uncertainty
measurements.

To account for seasonality the Kalman Filter (Kalman, 1960) and Bayesian
dynamical models West and Harrison (1997) are natural alternatives to non-
temporal calibration models allowing for seasonality and dynamics in the bias
parameters.

This work proposes a unifying approach to statistical postprocessing by ac-
counting for temporal dependencies overcoming the temporal window definition
besides accommodating spatial features from the terrain which might be essen-
tial for wind prediction and uncertainty quantification. The proposal is based
on spatial dynamical models and considers data augmentation to allow for an
efficient estimation algorithm. An optimized MCMC scheme based on robust
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adaptive Metropolis is employed for statistical inference and prediction. Three
case studies illustrates the usefulness of our proposed correction in comparison
with the usual postprocessing alternatives such as EMOS and GOP.

1.1 Motivation: Minas Gerais wind speed data

The state of Minas Gerais is located in the Southeast region of Brazil and re-
cently interest has grown in the installation of wind turbines in order to expand
the wind power use in the State. Throughout Minas Gerais and its surround-
ings, there are 59 meteorological monitoring stations, where hourly information
is collected on the wind speed at 10 meters high, relative humidity, surface
temperature, atmospheric pressure and precipitation. Figure 1 presents the
distribution of these stations.

Figure 1: Meteorological stations locations in Minas Gerais. The solid triangles
represent the stations and the lines represent the discrete grid used by the Eta
mesoscale model.

The observed dataset in this stations could be used in order to decrease the
systematic errors produced by the Eta mesoscale model’s for the wind speed
forecasts. According to Ailliot et al. (2006) some common features observed
in wind dataset are: intermittent atmospheric regimes with predominance of a
certain direction of wind in certain regions; spatial and temporal correlation; no
Gaussianity; no stationarity; conditional heteroscedasticity - the variance of the
wind speed changes frequently in time; seasonal annual and diurnal components
due to the effects of the sun and seasons; possible trends. Thus, statistical post-
processing models should take into account these characteristics.

However, in addition to the behaviors previously mentioned, Eta mesoscale
model’s forecasts in Minas Gerais usually overestimate wind speed at 10 meters.
This is due to the fact that models usually considered for wind modelling are
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restricted to positive valued winds and do not allow for zero speed predictions.
This is an important limitation of most of postprocessing models, as low and
zero speeds are very often observed in the region of Minas Gerais as evidenced
in Figure 2 which presents histograms of the wind speed at 10 meters for some
weather stations. In general, the wind speed distribution at 10 meters in Minas
Gerais is asymmetric, with great variability, with a mass point at 0 and reaching
a maximum velocity of 12 m/s.

(a) A517 - Summer (b) A517 - Autumn (c) A517 - Winter (d) A517 - Spring

(e) A549 - Summer (f) A549 - Autumn (g) A549 - Winter (h) A549 - Spring

(i) A557 - Summer (j) A557 - Autumn (k) A557 - Winter (l) A557 - Spring

Figure 2: Histograms of wind speed collected at three different stations during
each season.

In this way, the main aim is to propose statistical post-processing mod-
els which consider the spatial-temporal correlation and accommodate the fairly
skew and censoring behaviour present in the dataset, in order to minimize the
systematic error presented in the Eta mesoscale model’s numerical predictions
due to its intrinsic limitations. In particular, the proposed models are based
on Box-Cox transformation and spatial dynamic linear models. The data aug-
mentation approach for models with censored variables allow for an efficient
estimation algorithm in this case.

2 Statistical postprocessing models

One numerical prediction does not describe a meteorological phenomena,
thus, ensembles are often considered to allow for some sort of uncertainty quan-
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tification. The ensembles might be interpreted as a Monte Carlo experiment
aiming to produce a range of future states of the atmosphere from different
initial conditions (Epstein, 1969). Besides, the simulation of scenarios might in-
dicate extreme events which would not be identified by one run of the numerical
model (Grimit and Mass, 2007).

The statistical postprocessing techniques are an attractive bias correction
alternative to larger grid resolutions. The pioneer work in this context is the
Model Output Statistics (MOS, Glahn and Lowry, 1972) which considers a mul-
tiple linear regression relating the responses (observed wind) with m ensemble
members F1, ..., Fm (numerical predictions) assuming constant variance.

An extension of the MOS known as Ensemble MOS (EMOS, Gneiting et al.,
2005), allows for a relation between the dispersion of ensemble members and the
response variance, the spread-skill relationship (Whitaker and Loughe, 1998).

In the context of spatial calibration the Geostatistical Output Perturbation
(GOP, Gel et al., 2004) allows for spatial dependence resulting in meteorolog-
ical fields for a fixed temporal horizon. The Spatial Ensemble Model Output
Statistics (SEMOS, Feldmann et al., 2015) combines the EMOS method with
GOP in its formulation.

As follows, an alternative spatial model is presented which accounts for tem-
poral dynamics, a mass at zero and asymmetry through a spatiotemporal model
with censoring.

2.1 Proposed models

Let
{
Yt(s), s ∈ S ⊂ R2, t = 1, ..., T

}
be a spatial random field in discrete time

t. The observed response vector in n locations Yt,s = (yt(s1), ..., yt(sn))′ is
composed by censured variables, yt(si) ≥ c, i = 1, . . . , n, t = 1, . . . , T . Assume
that Yt,s follows a Truncated Gaussian distribution as follows.

Yt(s) =

{
BC−1 (Xt(s);λ) , se BC−1 (Xt(s);λ) ≥ c,

c∗, se BC−1 (Xt(s);λ) < c.
(1)

with c and c∗ known constants, λ is the unknown parameters of the Box-Cox
transformation, Xt(s) is a Gaussian process and BC(.;λ) represents the Box-
Cox transformation (Box and Cox, 1964) defined as:

BC(y;λ) =

{ (
yλ − 1

)
/λ, se λ 6= 0 e y > 0,

log y, se λ = 0 e y > 0,

Thus, Xt(s) is a latent Gaussian process which allows for asymmetry in the
resulting process of interest Yt(s), that is, after transforming the possibly asym-
metric process Yt(s) the resulting field follows a Gaussian process model. This
behavior is illustrated in Figure 3 which presents a simulation of a transformed
Gaussian field at a single location.

Furthermore, the constant c allows for censoring, that is, winds observed
from a minimum value which could be 0, but could be larger than 0 depending
on the configuration of the turbine. Figure 4 illustrates the practical effect of
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(a) Observed wind.
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(b) Transformed wind.

Figure 3: Histograms of observed wind speed and transformed wind speed ob-
tained after taking the squared root transformation.

this modelling setup. Notice that the latent process corresponding to values of
the Gaussian process below c naturally induces a mass at zero at the process of
interest Xt(s) after being truncated at c. The truncated Gaussian model has
been useful in applied setting, such as precipitation modelling Bardossy and
Plate (1992)). The complete model with Box-Cox transformation and censoring
is facilitated by the use of data augmentation techniques (Tanner and Wong,
1987) and naturally allows for missing data.
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(b) Potential wind.

Figure 4: Histograms of observed wind speed and transformed wind speed ob-
tained after censoring the latent process.

In the usual setup for statistical calibration of numerical models training
sets, time windows are defined to account for observed and predicted temporal
variation. Although larger training windows result in smaller uncertainty, it
introduces distortions due to seasonal effects.

In general, the seasonal patterns of meteorological variables are well defined,
e.g. radioactive forcing - 24 hours and seasons - 3 months.
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In this context, the Kalman filter (Kalman, 1960) allows for both longer tem-
poral training periods and inclusion of temporal dynamics in the bias parame-
ters. As follows we consider the Bayesian dynamical approach which considers
the Kalman filter for forward filtering and the backwards posterior smoothing
for full Bayesian inference as proposed by West and Harrison (1997).

Therefore, we propose the use of dynamic linear spatial models which allow
for regression coefficients to vary over time besides accounting for spatial depen-
dence in the region of interest which might be oversmoothed by the numerical
model.

2.1.1 Dynamical Geostatistical Output Perturbation

The proposed model adds a temporal dynamic to the GOP formulation by
allowing the coefficients to vary over time. The covariance modeling is stochastic
over time with Beta-Gamma evolution depending on discount factors. The
dynamics are introduced by defining the observation and state equations as
follows.

Xt,s = F′t,sθt + εt, εt ∼ N(0n, ϕ
−1
t Σ), (2a)

θt = Gtθt−1 + ωt, ωt ∼ Tnt−1
(0p,Wt), (2b)

ϕt = γtϕt−1/δ
∗, γt ∼ Beta(κt, κ̄t), (2c)

κt = δ∗nt−1/2 e κ̄t = (1− δ∗)nt−1/2 (2d)

where εt = (εt(s1), ..., εt(sn))
′
follows a zero mean multivariate normal distribu-

tion with correlation matrix Σt, with elements Σi,j = C(si, sj), i, j = 1, . . . , n
and ϕt = 1/σ2

t . C(., φ) is a valid correlation function depending on an un-
known parameter φ. In particular, we assume C(si, sj) = exp(−φ‖si − sj‖),
the exponential correlation function, with φ > 0 representing the exponential
decay parameter and ‖si − sj‖,the Euclidean distance between locations si and
sj , i, j = 1, ..., n. Xt,s = (xt(s1), ..., xt(sn))

′
, F′t,s matrix with dimension n × r

(r ≥ m) composed by covariates (e.g. predicted ensembles, latitude, longitude
and altitude), θt represents the state variables with dimension r.

For the purely temporal components in (2b) and (2c), Gt is a evolution
matrix with dimension r, ωt are mutually independent, zero mean, Student-
t distributed, with nt−1 degrees of freedom and unknown scale matrix Wt,
which might be estimated using discounting factors. The degrees of freedom
parameters nt−1 are defined through a Beta-Gamma stochastic evolution (West
and Harrison, 1997). The parameter δ∗ ∈ [0, 1] behaves as a discount factor ,
that is, the larger the discount smaller the random chock in the observational
covariance. When δ∗ = 1, the covariance is static in time, that is, σ2

t = σ2,
∀t. The initial information at time t = 0 assumes θ0|D0 ∼ Tn0

(m0,C0) and
ϕ0|D0 ∼ G(n0/2, d0/2).
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2.1.2 Spatiotemporal Ensemble Model Output Statistics

Analogously, the proposed model combines the spatial EMOS with DLMs.
Assuming the structure stated in 1 for the original process Yt(s), the spatiotem-
poral Gaussian model for Xt(s) is given by:

Xt,s = F′t,sθt + εt, εt ∼ N(0n,Σ
∗
t ), (3a)

θt = Gtθt−1 + ωt, ωt ∼ N(0p,Wt), (3b)

where εt = (εt(s1), . . . , εt(sn))
′

follows a zero mean multivariate normal distri-
bution with covariance matrix Σ, with elements Σ∗ti,j = Dti,iC(si, sj)Dtj,j , i, j =
1, . . . , n, with also C(si, sj) = exp(−φ‖si − sj‖), the exponential correlation

function and Dt = diag(
√
β0 + β1S2

1,t, ...,
√
β0 + β1S2

n,t) a n-dimensional diag-

onal matrix, such that S2
i,t is the sample variance of the ensemble for the location

i in time t. Thus, its main difference from EMOS is to insert the ensemble dis-
persion to the variance, since there is a positive relation between its width and
the forecast absolute error. This is called spread-skill relationship. Different
from the model (2), ωt is now normally distributed, with unknown covariance
matrix Wt, which might also be estimated using discounting factors.

2.2 Inference procedure

Let y = (y1, ...,yT ) be the collection of T observed time series at n spatial
locations in R2 and, Θ = (θ0:T , σ

2
0:T , φ, λ)′ and Θ∗ = (θ0:T ,β, φ, λ)′ be the

parameter vector in (2) and (3), respectively, such that θ0:T = (θ0, ...,θT ) and
σ2
0:T = (σ2

0 , ..., σ
2
T ).

The inference procedure is performed under the Bayesian paradigm, and
model specification is complete after assigning a prior distribution for the pa-
rameter vector Θ and Θ∗. An advantage of following the Bayesian paradigm
is that the inference procedure is performed under a single framework, and un-
certainty about parameters estimation is naturally accounted for. Moreover,
uncertainty about spatial interpolations, and temporal predictions is naturally
described through the credible intervals of the respective posterior predictive
distributions.

Assuming some components of Θ and Θ∗ are independent a priori, we get
by Bayes’ theorem, the following posterior distribution for Θ:

p(Θ|y) ∝
T∏
t=1

|Σt|−1/2 exp

{
−1

2

T∑
t=1

(Xt,s − F′t,sθt)
′Σt
−1(Xt,s − F′t,sθt)

}
(4)

× exp

{
−1

2

T∑
t=1

(θt −Gtθt−1)′Wt
−1(θt −Gtθt−1)

}
(5)

×
∏

{i,t:Yit>c}

Y λ−1it × p(θ0, σ2
0 , φ, λ). (6)

The posterior distribution for Θ∗ is obtained analogously.
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The kernel of this distribution does not result in a known distribution.
Markov chain Monte Carlo (MCMC) methods are considered to obtain sam-
ples from the posterior distribution of interest. In particular, Gibbs sampler
algorithm is used for Zt(s) and Ut(s), the forward filtering backward sampling
algorithm (FFBS, Frühwirth-Schnatter, 1994; Carter and Kohn, 1994) for θ0:T
and σ2

0:T and the Robust adaptive Metropolis algorithm (RAM, Vihola, 2012)
for the remaining parameters which is detailed in Appendix B.

3 Application

The state of Minas Gerais is located in the Southeast region of Brazil, being
entirely formed by plateaus. The rugged relief gives to the state a privileged
water resource, sheltering great hydroelectric potential. The predominant veg-
etation is Cerrado, consisting of large variations in the landscape between the
rainy and dry seasons, resulting in a seasonal influence of the aerodynamic
roughness of the terrain in the displacement of the winds. The climate in Minas
Gerais varies from hot semiarid to humid mesotherm. In general, the distribu-
tion of rainfall is unequal with the north presenting long periods of drought. In
the higher altitude areas of the south, the pluviometric regime is more intense.
Seasonality also influences on temperatures, with high averages predominantly
in the summer. Periodically, in most of the territory of Minas Gerais, there are
more intense winds in winter and spring (Amarante et al., 2010).

In this case study, interest lies in analyzing the error in the Eta numerical
predictions, specially in places that are affected by aspects of geographic char-
acteristics such as latitude, longitude and altitude, proximity to water bodies
and regional vegetation. This heterogeneous behaviour is illustrated by figures
11 and 12 of Appendix A which show, respectively, the time series of the wind
speed at 10 meters and its numerical predictions and the autocorrelation func-
tion (ACF) for the time series at the same stations, throughout the four seasons.
Notice that the wind at different sites across this region do not follow a similar
pattern. Stations such as A507 and A547 show higher errors during the spring
and lowest errors in the fall. In addition, there are well-defined periodic patterns
during some seasons. Stations A537, A543 and A547 do not record this pattern
during the spring, unlike A507 and A530. These periodic patterns are seasonal
effects due to solar forcing which has a direct influence on wind speed.

The dataset considered for model calibration consists of the ensemble of
hourly numerical forecasts initiated at 12 UTC of the Eta mesoscale model
for the instantaneous wind speed at 10 meters in the State of Minas Gerais
and its surroundings from November 1, 2015, 12 UTC to November 30, 2016,
11 UTC, totalizing over 10 thousand ensembles, one for each hour of forecast.
The maximum forecast horizon for this model is 255 hours. Moreover, the
dataset contains measurements of the meteorological variable under study in
the 59 monitoring stations and its surroundings, as well as georeferenced data
(e.g. latitude, longitude and relief height). The recorded numerical predictions
and weather variables are available for the same time period. The numerical
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accuracy of the data is one decimal place, with a lower non-zero value of 0.1.
This information will be important for the definition of the censorship constants
c and c∗ in (1).

The meteorological stations are irregularly spaced and the grid is consid-
erably fine in this region, as presented in Figure 1. However, the proposed
calibration models require that numerical predictions and observed wind are
available at the same spatial locations. In this context, numerical forecasts for
the observation sites are obtained by bilinear interpolation. Figure 5 illustrates
the interpolated wind speed at 10 meters in Minas Gerais.

(a) Numerical forecast (b) Bilinear interpolation

Figure 5: Bilinear interpolation in the discrete grid with cells 15km × 15km
used by mesoscale Eta model to get numerical forecasts in the observed sites.

For each fitted model, the same mean structure is defined depending on the
averaged ensemble members for each location; an auto-regressive component
with values observed in the recent past, due to the lack of local information, such
as roughness and relief; and the static auxiliary variables latitude, longitude and
altitude. To avoid the eventual unavailability of a member of the ensemble and
multicollinearity problems, the ensembles which are currently available under a
given calibration horizon are averaged. This procedure does not entail a great
loss of information, since there is a high linear correlation between the members,
as shown in Figure 6, implying a good stability of the Eta model. According
to Grimit and Mass (2007), the ensemble average may capture a possible point
anomaly (e.g. cold front) and thus its use is also indicated by theoretical aspects.

In this application, we fitted the following three models described in Table 1.
All them considered the left censoring with Box-cox transformation described
in model 1.

In particular, we fixed δ∗ = 1 in DGOP model described in (2), this is,
σ2
t = σ2, ∀t. Thus, σ2 in (2) would coincide with β0 in STEMOS model described

in (3) and the main difference between these models is due to the spread-skill
relationship accounted by the effect of β1 in (3). Therefore, as β1 goes to zero,
STEMOS model is closer to DGOP with fixed variance.

For models (2) and (3) we set

F′t,s =
(
1, f̄(si), Yt−h(si),height(si), latitude(si), longitude(si), 1, 0

)
,
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Figure 6: Pairwise scatterplot for different ensemble members of weather fore-
casts at 10 meters in April 1, 2016, 12 UTC.

Model Features

Dynamical GOP (DGOP)
spatio-temporal component

DLM
Beta-Gamma evolution for variance

Spatiotemporal EMOS (STEMOS)
spatio-temporal component

spread-skill relationship in variance

Spatial EMOS (SEMOS)
spatial component

Normal DLM
spread-skill relationship in variance

Table 1: Brief summary of models fitted in study case I with its main features.

Gt =

(
I6 cos(2π/24) sen(2π/24)
0 −sen(2π/24) cos(2π/24)

)
, where Ik is the identity matrix of

dimension k× k. The covariance matrix of the evolution equation, Wt, is es-
timated using the ideas of discounting factors, and we set the discount factors
equal to 0.99 to the intercept,0.99 to the components referring to geographic
location and 0.95 to the seasonality component, respectively.

We assign reasonably vague priors to model parameters, more specifically, we
assume λ ∼ N(1, 10). For the parameters in the exponential correlation function

φ, we assume G
(

2, max(d)
6

)
, which prior mean is such that the practical range

(when the correlation is equal to 0.05) is reached at half of the maximum distance
(dmax/2) between geographical locations, and the variance is infinite. Moreover,
we assume θ0 ∼ T1(0, I8) and ϕ ∼ G(1; 0, 1) in GOPD, θ0 ∼ N(08, I8) and β ∼
NT(0,∞)(02, 10I2) in STEMOS, and, θ ∼ N(08, I8) and β ∼ NT(0,∞)(02, 10I2)
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Table 2: Computational time (in minutes) for each calibration model fitted.
Model GOPD STEMOS SEMOS

34,78 42,74 34,43

(a) srMSE (b) MAE (c) WIA

Figure 7: Model comparison criteria computed under DGOP, STEMOS, SEMOS and Eta

model for each season.

in SEMOS model.
For each model, we ran two parallel chains starting from very different val-

ues and we used the diagnostic tools to check convergence of the chains. The
MCMC algorithm was implemented in the R programming language, version
3.4.1 (R Core Team, 2017), in a computer with an Intel(R) Core(TM) i5-
4590 processor 3.30 GHz, 8GB RAM memory. Some particular functions
were implemented in C++ language using the library Armadillo (Sanderson and
Curtin, 2016) through the package Rcpp (Eddelbuettel et al., 2011). Table 2
displays the computational time (in minutes) for each calibration model fitted.

Model comparison is performed using the square root of the mean square er-
ror (srMSE), mean absolute error (MAE), Willmott’s index of agreement(WIA,
Willmott, 1981) and interval score (IS, Gneiting and Raftery, 2007). The WIA
is a standardized measure ranging from 0 (absence of agreement) to 1 (perfect
agreement). The IS takes into account the amplitude and coverage of the predic-
tion intervals in a parsimonious way. In particular, the only first three criteria
seems to be appropriate to compare numerical predictions from the Eta model,
which provides only point estimates, with the proposed postprocessing statis-
tical models. Each of these criteria are described in more detail in Appendix
C.

Figure 7 shows the different model comparison criteria computed for each
proposed model and the Eta mesoscale model. All three criteria point that the
proposed models performed significantly better than the Eta model. Further-
more, between the three calibration models fitted, all three criteria point to
DGOP and STEMOS as the best.

In order to compare the interval forecasts, Figure 8 presents the IS through-
out the seasons. Note that in this criterion, potential disparities have been
highlighted. The proposed SEMOS has a long peak sequence, while the pro-
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Figure 8: Interval Score criteria computed under DGOP, STEMOS, SEMOS and Eta model

for each season.

posed STEMOS and GOPD are more stable.
In order to determine the local behavior of the numerical and calibrated

forecasts based on the proposed models’ fit, we select the winter months of July
and August, because they show a good performance. Although they belong
to the same season of the year, the srMSE and MAE in August seems more
like to the pattern of the following season, appearing to be a period of climatic
regime changing. From July 20, 13 UTC to July 21, 2016, 12 UTC, wind speeds
were recorded up to 8 m/s, as shown in Figure 9. Although in this application,
higher speeds (> 5 m/s) appear more frequently, most of the recorded speeds
still accommodate up to 5 m/s. The scatterplots in Figure 9 show that the pro-
posed models returns a very close relationship of linear between observed and
predicted values, even for speeds above 5 m/s. However, SEMOS seems to over-
estimate the wind velocity at 10 m, while Eta model predictions demonstrates
low representativeness.

(a) Eta (b) EMOS E (c) EMOS ET (d) GOP D

Figure 9: Scatterplot comparing the predicted with the observed values from
July 20, 13 UTC to July 21, 2016, 12 UTC for each model.
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Panels of Figure 10 show the posterior summary of the predictive distribution
for 24 hours ahead for 2 different monitoring stations for SEMOS, STEMOS
and GOPD. The first station corresponds to A512 located in Ituiutaba and
the second one to A555 in Ibirité. There is a large difference between the
numerical and calibrated forecasts, indicating a significant relevance of other
covariates. Although most of all the actual observed values fall within the
95% posterior predictive intervals, the range of their 95% credible regions differ
considerably. Clearly, the SEMOS provides predictive intervals with the highest
ranges. This is probably due to the use of a long training period, which can
introduce distortions in the parameter estimation due to seasonality provided
by the effect of solar forcing on wind speed at 10 meters. On the other hand,
the proposed STEMOS and GOPD benefits from this behavior, presenting the
intervals with smallest ranges.

(a) A512 – SEMOS (b) A512 – STEMOS (c) A512 – DGOP

(d) A555 – EMOS E (e) A555 – EMOS ET (f) A555 – GOP D

Figure 10: Temporal prediction of the wind speed for 24 hours ahead based on
SEMOS and STEMOS from July 20, 13 UTC to July 21, 2016, 12 UTC.

4 Concluding remarks

This paper presents a novel statistical calibration model for numerical fore-
casts of meteorological variables. In particular, we investigate the calibration of
wind forecasts which are well known to be locally predicted with error by nu-
merical models. The proposed model allows for spatiotemporal calibration, that
is, the coefficients are allowed to dynamically change over time and local char-
acteristics are partially captured by spatial correlation between locations. This
overcome the definition of a training period for post-processing. The proposal
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introduces data transformation withing the dynamical model which results in a
flexible sampling distribution for the errors which could be potentially asymmet-
ric as in the wind example. In the wind application, our approach clearly leads
to narrower predictions when compared to simpler models without temporal
dependence. As future directions this model might be applied to precipitation
and other asymmetric censored variables.
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A Further information about the wind speed
data

Figure 11 shows the time series of the wind speed at 10 meters and its respec-
tives numerical forecasts for each season. Figure 11 presents the autocorrelation
function in the same cases.

(a) A507 - Summer (b) A507 - Autumn (c) A507 - Winter (d) A507 - Spring

(e) A530 - Summer (f) A530 - Autumn (g) A530 - Winter (h) A530 - Spring

(i) A537 - Summer (j) A537 - Autumn (k) A537 - Winter (l) A537 - Spring

(m) A543 - Summer (n) A543 - Autumn (o) A543 - Winter (p) A543 - Spring

(q) A547 - Summer (r) A547 - Autumn (s) A547 - Winter (t) A547 - Spring

Figure 11: Time series of the wind speed at 10 meters and its respectives nu-
merical forecasts for each season starting at 12 UTC.

16



(a) A507 - Summer (b) A507 - Autumn (c) A507 - Winter (d) A507 - Spring

(e) A530 - Summer (f) A530 - Autumn (g) A530 - Winter (h) A530 - Spring

(i) A537 - Summer (j) A537 - Autumn (k) A537 - Winter (l) A537 - Spring

(m) A543 - Summer (n) A543 - Autumn (o) A543 - Winter (p) A543 - Spring

(q) A547 - Summer (r) A547 - Autumn (s) A547 - Winter (t) A547 - Spring

Figure 12: Autocorrelation functions for each monitoring location and for each
season.
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B Robust adaptive Metropolis

The method was proposed by Vihola (2012) and is used when the full condi-
tional distribution does not have an analytical closed form. It is a more efficient
extension of the well-known Metropolis-Hastings algorithm (Metropolis et al.,
1953).

In addition to generating a sample of the posterior distribution of the pa-
rameters of interest θ = (θ1, . . . , θp), it also handles the with the acceptance
rate barα, by fixing a target rate α∗ in(0, 1) and defining the proposed distri-
bution q̃(.), independently, only requiring that it must be spherically symmetric
and centered in 0p. Define

{
ζ(k)

}
k≥1 as a sequence which decays to zero. The

sampling scheme is described as follows:

1. Initialize θ(0) = (θ
(0)
1 , ..., θ

(0)
p )′, S(0) = s0Ip and k = 1;

2. Get a new value to θ(k) from θ(k−1) this way:

(a) Generate a new value for para θ(k) using that:

θ(k) = θ(k−1) + S(k−1)V (k), V (k) ∼ q̃(.);

(b) The proposed value in (a) is accepted with acceptance probability α:

α(k) = min

{
1,
p(θ(k)|θ(k−1), y)q(θ(k−1)|θ(k))
p(θ(k−1)|θ(k), y)q(θ(k)|θ(k−1))

}
;

(c) Calculate a lower triangular matrix S(k) with positive diagonal ele-
ments such that:

S(k)S′
(k)

= S(k−1)

(
Ip + ζ(k)(α(k) − α∗)V

(k)V ′
(k)∥∥V (k)
∥∥2
)
S′

(k−1)

3. Do k = k + 1 and return to 2, until the convergence is achieved.

An optimal acceptance rate to any random walk is α∗ ≈ 23, 4%. It is indi-
cated that s0 = 2.4√

p in order to achieve the convergence in a faster way with the

algorithm.

C Model comparison criteria

In this section we briefly describe the model comparison criteria we use to
compare the fitted models in Section 3.
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C.1 Mean absolute error and square root of the mean
square error

Standard measures of goodness of fit were also entertained in this study for
comparison purposes. The square root of the mean square error (srMSE) and
the mean absolute errors (MAE) are given by:

srMSE =
1

nT

n∑
i=1

T∑
t=1

(yt(si)− ŷt(si))2 and MAE =
1

nT

L∑
i=1

T∑
t=1

|yt(si)− ŷt(si)|,

where ŷt(si) is obtained through a Monte Carlo estimate of the posterior mean
of the predictive distribution, that is, E [yt(si) | y], across N draws. Smaller
values of srMSE and MAE indicate the best model among the fitted ones.

C.2 Willmott’s index of agreement

Willmott (1981) introduced a standard measure for assessing the quality of
forecasts. The Willmott’s index of agreement (WIA) ranges between 0 (absence
of agreement) and 1 (perfect agreement) and is given by:

WIA = 1−
∑n
i=1

∑T
t=1 (yt(si)− ŷt(si))2∑n

i=1

∑T
t=1 (|ŷt(si)− ȳ|+ |yt(si)− ȳ|)2

,

where ȳ = 1
n

∑n
i=1

∑T
t=1 yt(si).

C.3 Interval score

The interval score (IS, Gneiting and Raftery, 2007) is a scoring rule for
interval predictions considering the symmetric prediction interval with level (1−
α)×100%. The score is rewarded by accurate intervals and penalized when there
is no coverage of the forecast. If all true values are contained in the prediction
interval, this measure is reduced to the range amplitude. The average IS is
given by: where l̂t(si) e ût(si) are, respectively, the lower limit obtained by the
α
2 quantile, and the upper bound, obtained by the 1− α

2 quantile of the based
on the predictive distribution.

Smaller IS values indicate probabilistic forecasts more efficient.
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eta em estações do nordeste do brasil. Revista Brasileira de Meteorologia
22(3):287–296

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,
Bates D (2011) Rcpp: Seamless r and c++ integration. Journal of Statistical
Software 40(8):1–18

Epstein ES (1969) Stochastic dynamic prediction. Tellus 21(6):739–759

Feldmann K, Scheuerer M, Thorarinsdottir TL (2015) Spatial postprocessing of
ensemble forecasts for temperature using nonhomogeneous gaussian regres-
sion. Monthly Weather Review 143(3):955–971
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