
Measuring Separability in Spatio-temporal Covariance

Functions

Thaís C.O. Fonseca ∗and Mark F.J. Steel †

May 2, 2017

Abstract

In this work, we propose a measure of space-time dependence for general nonsepa-

rable (possibly nonstationary) covariance models. It is well known that nonseparable

covariance functions are more realistic for modeling many geophysical and environmen-

tal processes. However, little is known about the strength of dependence in space-time

that is achieved by the models proposed in the literature. We compute the proposed

measure for various nonseparable models which reveals that some of these models gener-

ate a rather limited range of nonseparability in space-time. Moreover, spatio-temporal

interaction parameters do not always have a monotonous relation to our measure of

separability, as they often are not the only parameters affecting the degree of nonsepa-

rability obtained by the models.
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1 Introduction

Let {Z(s, t); s ∈ D ⊂ <d, t ∈ T ⊆ <+} be a stationary spatiotemporal stochastic

process with covariance function Cov(Z(s1, t1), Z(s2, t2)) = C(s, t), where s = s1 − s2

and t = t1 − t2, s1, s2 ∈ D, t1, t2 ∈ T . If a spatiotemporal covariance function C(s, t)

is separable then it can be written as C1(s)C2(t), where C1(s) and C2(t) are purely

spatial and temporal covariance functions, respectively. In terms of the joint covariance

function, a fully symmetric (Gneiting, 2002) covariance function is separable if and only

if

C(s, t) =
C(s, 0)C(0, t)

C(0, 0)
, (1)

where s ∈ D, t ∈ T are spatial and temporal lags, respectively. The separability as-

sumption is computationally very convenient but usually unrealistic in practice. There

are some papers in the literature that propose tests for assessing separability such as

Mitchell et al. (2005), Fuentes (2006), Li et al. (2007) and Crujeiras et al. (2010). How-

ever these tests are designed only to assess whether a covariance function is separable,

and not for measuring the degree of nonseparability. The models proposed in Fonseca

and Steel (2011) suggest a measure of nonseparability, that is always between 0 and

1, which is easily assessed as it is a simple function of the parameters in the model.

Gneiting (2002) also proposed a valid covariance model that has a parameter measur-

ing the degree of nonseparability that is always between 0 and 1. This model has been

very often used in the literature to derive more general and flexible models in several

applications. To cite a few, recently Apanasovich and Genton (2010) proposed a class

of cross-covariance functions for multivariate random fields which considers the non-

separable proposal of Gneiting (2002) to model space-component dependence through

latent dimensions. Also Genton (2007) considered Gneiting functions to derive sep-

arable approximations of space-time covariance matrices obtained from nonseparable

functions. It is natural then to ask which are the degrees of nonseparability attained

by these different models and whether their parameters are comparable. Moreover, it

is important to consider how separability in general nonseparable models can be mea-

sured.

In this work we show that some of the models proposed in the literature do not achieve

strong degrees of nonseparability and that the parameters do not always have clear in-
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terpretations. In particular, we investigate the nonseparable models proposed in Cressie

and Huang (1999), Gneiting (2002) and Rodrigues and Diggle (2010). Furthermore, we

illustrate how our proposal can be applied to nonstationary fields.

Firstly, define the function

C̃(s, t) =
C(s, 0)C(0, t)

C(0, 0)
, (2)

where s ∈ D and t ∈ T . If the spatiotemporal covariance function is separable then

C̃(s, t) = C(s, t) from (1). The intuitive idea is that if C̃(s, t) is close to C(s, t) then

the covariance is roughly separable and if C̃(s, t) is very different from C(s, t) it is very

nonseparable. Notice that C̃(s, 0) = C(s, 0) and C̃(0, t) = C(0, t), that is, the margins

of C̃(s, t) and C(s, t) are the same.

So if the covariance function is separable then the ratio R(s, t) = C̃(s,t)
C(s,t) is equal to 1.

Rodrigues and Diggle (2010) define the concept of positive and negative nonseparability.

De Iaco and Posa (2013) further investigate the properties of negatively and positively

defined separability of space-time covariance functions. If a covariance is positively

nonseparable then R(s, t) < 1 and if a covariance is negatively nonseparable then

R(s, t) > 1. Since negative nonseparability is uncommon in practice we consider mostly

positively nonseparable functions in what follows. In this case, the more nonseparable

the model is, the closer the ratio R(s, t) is to 0. This happens because the covariance

function C(s, t) decreases less rapidly in space at larger temporal lags.

In the following sections we further investigate these properties for some models

proposed in the literature.

1.1 Example 1

Consider the isotropic nonseparable class proposed in Fonseca and Steel (2011) with

covariance function given by

C(s, t) = σ2M0(−γ1(s)− γ2(t))M1(−γ1(s))M2(−γ2(t)), (3)

where, for instance, γ1(s) = ||s/a||α and γ2(t) = |t/b|β with α ∈ (0, 2] and β ∈ (0, 2]. Let

us assume that M0(x) = (1− x)−λ0 and Mi(x) = (1− x)−1, i = 1, 2. For this class, the

degree of nonseparability used in Fonseca and Steel (2011) is given by c = λ0/(λ0 + 1).

This is a benchmark measure that makes sense in this model and is motivated by the
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construction of the dependence in space and time through mixing. Since the class is

isotropic, C(s, t) is a function of ||s|| and |t| only.

By construction, this model always leads to positive (or zero) nonseparability in the

sense that R(s, t) ≤ 1 for all s and t. In particular, the ratio R(s, t) is a function of 2

arguments ||s||, |t| ∈ <+ given by

R(s, t) =
M0(−γ1(s))M0(−γ2(t))
M0(−γ1(s)− γ2(t))

=

{
1 + γ1(s) + γ2(t)

1 + γ1(s) + γ2(t) + γ1(s)γ2(t)

}λ0
. (4)

Thus, R(s, t) < 1 when both ||s||, |t| and λ0 are strictly positive. It is one when λ0 = 0

(the separable case) and is also one on the margins where either one of ||s|| or t is zero.

Clearly, away from the margins the ratio R(s, t) is a decreasing function of (||s||, |t|)

since γ1(s) and γ2(t) increase with ||s|| and |t|.

Figure 1 presents some 3-D graphs of R(s, t) for this class where c = 0 indicates

separability and c tending to one indicates strong nonseparability. Notice that for c = 0

this ratio is constant, as mentioned above. Also, for c→ 1 this ratio goes to zero. But

how can we measure how much C̃(s, t) and C(s, t) resemble each other? That is, what

measure should we use to reflect the discrepancy of these two functions of space and

time?

2 Measuring separability in stationary nonsepa-

rable models

From the discussion in the previous section, we conclude that a sensible measure of

nonseparability should measure the distance between the surface defined by R(s, t) and

the plane surface equal to one in the usable domain D × T . Therefore we define a

measure based on the volume contained between these two surfaces. Define

B =

∫
D

∫
T
R(s, t)dsdt (5)

Note that in the case of a separable covariance function B = Bs =
∫
D

∫
T 1dsdt. Then

we define

v0 =
Bs −Bns

Bs
(6)

as a measure of separability such that 0 ≤ v0 ≤ 1. Bns is the integral defined in (5) for

the nonseparable model under study. This measure is the volume between the constant
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surface equal to 1 and the surface defined by R(s, t) = C̃(s, t)/C(s, t) in the region

D× T . We divide by Bs in order to obtain values of v0 that are always between 0 and

1.

In order to compute v0 it is, however, necessary to define the regions of integrationD

and T . In the case of an isotropic covariance function we can write R(s, t) = R∗(||s||, |t|)

and B =
∫ h10
0

∫ h20
0 R∗(h1, h2)dh1dh2 and depending on the chosen values for (h10, h20)

we obtain different values of v0. In the choice of (h10, h20) we want to cover the region

where the covariance is nonnegligible. On the other hand, if we take a very large region

for integration, the integrand of Bns will have very small values for large (h1, h2) so

that Bns will hardly be affected while Bs = h10h20 keeps increasing when the region

of integration increases. Thus v0 = 1 − Bns/h10h20 will tend to one as we expand

the region. Therefore, we need to define a reasonable value for (h10, h20) that is not

too large nor too small, for the model in question. Define the correlation function

ρ(s, t) = C(s, t)/C(0, 0). One way to deal with this issue is to find the minimum value

of (h10, h20)=(||s0||, |t0|) that satisfies ρ(s0, 0) ≤ ε and ρ(0, t0) ≤ ε for a given ε. The

reason to use the correlation margins instead of ρ(s0, t0) is that there are several values

of (h10, h20) that leads to ρ(s0, t0) ≤ ε, while with the margins (h10, h20) is uniquely

defined by choosing ε.

2.1 Example 1 continued

By the construction of this class of models, nonseparability is meaningfully related to

the parameter λ0. As is clear from (4), R(s, t) is a decreasing function of λ0, that is, as

the model becomes more nonseparable (as λ0 increases) the ratio decreases and tends

towards zero.

Let us now verify to what extent the generic measure v0 in (6) accords with the

measure c which is based on the specific construction of the model in this example. In

particular, we compare v0 and c for a grid of values of λ0 (which defines c). We use

numerical integration in R with A.C. Genz’s Fortran ADAPT subroutine to do all of

the calculations. In the specification of Section 1.1 we set the parameters as α = 1.5,

a = 1, β = 1.5 b = 1. Figures 2(a)-(c) plot the values of v0 against c for 3 different

regions of integration. Each region was found based on the margins ρ(s0, 0) and ρ(0, t0)
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of the separable model (λ0 = 0) given a value of ε. It seems that v0 and c give a

very similar representation of the degree of separability. Notice that as expected, the

values of v0 will depend on the limits used for integration of the covariance function.

In Figure 2(b) we see that it is possible to obtain v0 very close to c, for the entire range

(0, 1). The region of integration increases as ε decreases. In Figure 2(a-c) ε = 0.200

implies ||s0|| = |t0| = 2.41, ε = 0.072 implies ||s0|| = |t0| = 5.43 and ε = 0.010 implies

||s0|| = |t0| = 21.26, respectively (in this example, a = b and α = β).

We perform a sensitivity study where we vary ε. As in this model we have one

natural measure of nonseparability, c, we aim to choose ε that makes v0 as close as

possible to c. Given ε (and thus (||s0||, |t0|)) we compute v0 for several values of c

(c1, . . . , cr). Then we compute the difference |ci − v
(i)
0 |, i = 1, . . . , r. The mean of

this difference over all considered values of ci is presented in Figure 3 for different

parametrizations of the covariance model. Notice from this picture that the smoother

the process is, the smaller ε has to be. Notice in Figure 3(b) that changing the value

of the range parameters doesn’t change the value of ε at all. This might be because

we find different regions of integration for each combination of scales and these scales

are clearly only affecting the range not the nonseparability. This reinforce that the

role of parameters in our model are very clear. In Table 1 we present the value of ε

that minimizes the mean difference |c− v0| for each configuration of the parameter set

used in this study. For the parametrizations considered the values of ε that minimized

the difference varied from 0.0457 (smoother process, configuration 7) to 0.1881 (rough

process, configuration 6). In Figure 4 we present εm = arg min{|ci − v(i)0 |} for each

value of c for some parametrizations of the covariance model (3). The smooth process

(configuration 7) is the one that requires the lower values of ε for all values of c in the

minimization of the difference. It seems that as c increases the value of ε has to be

larger, except for values of c very close to 1. As a general rule we would recommend

the use of ε = 0.0660, which is the value that minimizes the difference |c − v0| for a

process that is mean squared continuous.

In this example, we conclude that v0 provides a useful measure of separability that

can be very close to c, which is a measure of separability derived in a completely different

manner by the construction of this particular model.
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Configuration α β a b ε with min{mean|c− v0|}

1 1.5 1.5 1 1 0.0660

2 1.0 1.5 1 1 0.0864

3 2.0 1.5 1 1 0.0559

4 1.5 1.5 2 2 0.0660

5 1.5 1.5 0.5 0.3 0.0660

6 0.5 0.5 1 1 0.1881

7 2 2 1 1 0.0457

8 0.5 2 1 1 0.0864

9 1.5 0.5 1 1 0.1169

10 0.5 1 1 1 0.1474

Table 1: Value of ε that minimizes the mean difference for each configuration of the param-

eters in Example 1.

2.2 Example 2: The model of Gneiting (2002)

Gneiting (2002) proposed a valid space-time covariance model based on complete mono-

tone functions. The model is given by

C(s, t) = σ2
1

ψ(|t|2)d/2
ϕ

(
||s||2

ψ(|t|2)

)
, (7)

where ϕ(.) is a complete monotone function ((−1)nϕ(n)(x) ≥ 0, ∀x and for n = 0, 1, . . .)

with ϕ(0) = 1 and ψ(.) has a complete monotone derivative with ψ(0) = 1.

Notice that this class is either separable or positively nonseparable as R(s, t) =

ϕ(||s||2)/{ϕ[||s||2/ψ(|t|2)]} ≤ 1. This result follows from the fact that ϕ(.) is a complete

monotone function and ψ(.) has a complete monotone derivative and is also mentioned

in Rodrigues and Diggle (2010).

One example of this class would be ϕ(x) = exp{−bxγ}, b > 0, 0, γ ≤ 1 and

ψ(x) = (axα + 1)βG , a > 0, 0 < α ≤ 1, 0 ≤ βG ≤ 1. But this model is either non-

separable (βG > 0) or separable with the covariance only varying over space (if βG = 0

then C(s, t) = σ2ϕ(||s||2)). A related model proposed in Gneiting (2002) is the product

of this covariance with the valid temporal covariance (a|t|2α+1)−δ. After reparametriza-
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tion (τ = δ + βGd/2) we obtain

C(s, t) = σ2(a|t|2α + 1)−τ exp

{
− b||s||2γ

(a|t|2α + 1)βGγ

}
, (8)

where βG ∈ [0, 1] is a parameter measuring interaction in space-time: βG = 0 means

separability and the degree of nonseparability increases with βG. We refer to this model

as Gneiting’s model 1. Gneiting (2002) suggests to parametrize in terms of τ in order to

obtain a more easily interpretable interaction parameter βG (but see our comments at

the end of this subsection). For model (8), R(s, t) = exp
{
−b||s||2γ

[
1− 1

(a|t|2α+1)βGγ

]}
.

When βG = 0 we have that R(s, t) = 1 and as βG increases towards 1, R(s, t) decreases.

Note, however, that R(s, t) does not decrease to zero as the nonseparability parameter

βG → 1, unlike the situation in Example 1.

Another model presented in Gneiting (2002) uses ϕ(t) =

(2ν−1Γ(ν))−1(bt1/2)νKν(bt1/2), with Kν the modified Bessel function of the sec-

ond kind of order ν > 0 and ψ(t) = (atα + 1)β, a > 0, 0 < α ≤ 1, 0 ≤ β ≤ 1, where

the resulting covariance is again constructed as the product of this covariance with the

valid temporal covariance (a|t|2α + 1)−δ. This leads to

C(s, t) = σ2(a|t|2α + 1)−τ (2ν−1Γ(ν))−1
(

b||s||
(a|t|2α + 1)βG/2

)ν
Kν

(
b||s||

(a|t|2α + 1)βG/2

)
,

(9)

with βG ∈ [0, 1] again the parameter measuring interaction in space-time. We refer to

this model as Gneiting’s model 2. If ν = 0.5 we obtain the covariance (8). Notice that

for model (9), R(s, t) = (a|t|2α + 1)βG/2νKν(b||s||)/Kν

(
b||s||

(a|t|2α+1)βG/2

)
. For βG = 0

we have that R(s, t) = 1 and R(s, t) decreases as a function of βG. However, as βG

increases towards 1, R(s, t) again does not tend to zero.

For both Gneiting models, we computed the value of v0 for this model for several

values of βG. We set σ2 = 1, a = 1, γ = 0.5, b = 1 and for Model 1 we take α = 0.8

and τ = (1, 2, 3), whereas for Model 2 we adopt α = (0.2, 0.5, 0.8) and ν = (0.2, 2, 4).

The values of v0 are presented in Figures 5 (Model 1) and 7 (Model 2) for 3 values of ε.

Notice that in this case, the margins ρ(s0, 0) and ρ(0, t0) do not depend on βG. Thus

given a value of ε the region of integration is the same for different values of βG.

The effect of R(s, t) > 0 even for βG = 1 is obvious for both Gneiting models. The

clear consequence is that Bns in (5) does not tend to zero and v0 = 1 − Bns/h10h20

does not tend to one as βG grows. In other words, even for very large values of βG we

8



do not obtain values of v0 close to one unless ε is very small (and thus h10 and h20 are

very large). Rather, for βG varying in a very large range, the degree of nonseparability

(as measured by v0) varies very little. This means that very different values of βG

generate very similar degrees of nonseparability. In addition, the achievable range of

nonseparability depends on other parameters in the model. In particular, for Model 1

the parameter τ greatly influences the degree of nonseparability as illustrated in Figure

5. If we parametrize in terms of the original parameter δ (i.e. avoid the reparametriza-

tion implicit in (8)), then we obtain the situation described in Figure 6. Interestingly,

the influence of δ on v0 is pretty close to that of τ in the other parametrization, with

slightly less influence for the (perhaps more relevant) case with ε = 0.001 where the

model can cover a reasonable range of nonseparability. Thus, the use of our criterion

can give us a benchmark for comparing parametrizations in terms of how clearly defined

the role of any separability parameter is.

2.3 Example 3: The model of Cressie and Huang (1999)

Consider example 3 of Cressie and Huang (1999) where the covariance function is valid

and positively nonseparable and given by

C(s, t) = σ2
b|t|2 + 1

((b|t|2 + 1)2 + a||s||2)(d+1)/2
, (10)

s ∈ <d, t ∈ <. This model does not have a single parameter that is responsible for

the degree of nonseparability in the model. What kind of nonseparability is generated

by the parameters (a, b)? We consider d = 2, set σ2 = 1 and vary (a, b) in order to

assess the degree of nonseparability generated by this model according to our proposed

measure. In this situation we find the region of integration based on the margins

ρ(s0, 0) and ρ(0, t0) of the parametrization under study, that will depend on (a, b)

(using ε = 0.2, 0.066, 0.005). The values of v0 for various values of a and b and ε are

presented in Figure 8. (a, b) are clearly just decay parameters. Given a value of ε or a

given region of integration, it is possible to compute v0 and check which is the achieved

degree of nonseparability implied by (a, b). This might be a way of comparing the

degree of nonseparability achieved by several different models.

In this model, the ranges in space and time are confounded with the degree of

nonseparability since the parameters determine both range and the degree of nonsep-
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arability at the same time. In conclusion, the parameters of this model are not easily

interpretable in terms of nonseparability.

2.4 Example 4: The model of Rodrigues and Diggle (2009)

Rodrigues and Diggle (2010) propose a valid nonseparable convolution-based model

given by

C(s, t) = σ2
∫

ρ(h− t)ρ(h)

ρ(h− t)λ + ρ(h)λ
exp

{
− ρ(h− t)λρ(h)λ

ρ(h− t)λ + ρ(h)λ
(||s||/τ)2

}
dh. (11)

For λ = 0 the covariance is separable, and positive nonseparability is generated by

λ > 0 whereas negative nonseparability is possible with these models, corresponding to

negative values of λ.

Negative nonseparability implies that R(s, t) > 1 and thus Bns > h10h20. As v0

just represents the standardized volume between R(s, t) for the nonseparable case and

the constant surface equal to 1, we will define v0 = (Bns −Bs)/Bns in case of negative

nonseparability.

We compute the value of v0 using ρ(d) = exp{−|d|/φ}, φ = (0.5, 1, 2), σ2 = 1

and τ = (
√

0.1,
√

0.5,
√

2). The values of v0 for different parametrizations are plotted

in Figure 9. When λ is negative, v0 is monotonously increasing in |λ| and the entire

range of nonseparability is achieved. However, there is no monotonous relation between

positive λ and v0 since the degree of nonseparability decreases with λ for large positive

values of λ. Thus, different λ can lead to the same v0 and also the achievable range

of positive nonseparability is quite restricted (despite the small value of ε). This ren-

ders the parameter λ a rather unreliable measure of separability (with only negative

values conveying a clear meaning). In addition, the effect of the other two covariance

parameters on nonseparability is substantial and very nonlinear (especially for τ).

3 Measuring separability in nonstationary non-

separable models

Now we extend this idea to nonstationary nonseparable covariance models. Consider the

case of nonstationarity in space. Let {Z(s, t); s ∈ D ⊂ <d, t ∈ T ⊂ <+} be a spatiotem-
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poral random field with covariance function Cov(Z(s1, t1), Z(s2, t2)) = C(s1, s2, t),

where t = t1 − t2, s1, s2 ∈ D, t1, t2 ∈ T . If C(s1, s2, t) is separable then it can be

written as C1(s1, s2)C2(t), where C1(s1, s2) and C2(t) are purely spatial and temporal

covariance functions respectively.

In terms of the joint covariance function, a separable fully symmetric nonstationary

covariance function can be expressed as

C(s1, s2, t) =
C(s1, s2, 0)C(s1, s1, t)

C(s1, s1, 0)
, (12)

where s1, s2 ∈ D, t ∈ T are spatial locations and a temporal lag, respectively. Notice

that taking s2 as the “common” location, rather than s1 does not affect matters. This

follows from the fact that if C(s1, s2, t) is separable then C(s1, s2, t) = C1(s1, s2)C2(t).

We can then define C̃(s1, s2, t) as the right hand side of (12) so that if the spa-

tiotemporal process is separable then C̃(s1, s2, t) = C(s1, s2, t). Define

B =

∫
D

∫
D

∫
T

C̃(s1, s2, t)

C(s1, s2, t)
dtds1ds2, (13)

which is now a function of 3 variables (s1, s2, t). Then

v0 =
Bs −Bns

Bs
(14)

is a measure of separability such that 0 ≤ v0 ≤ 1. Here Bs =
∫
D

∫
D

∫
T 1ds1ds2dt and

Bns is the integral defined in (13) for the nonseparable model under study.

3.1 Example 5

Consider the nonstationary and nonseparable model given by

C(s, s′, t) =

∫
D

K(s−w)K(s′−w)σ2(w)M0(−γ1(s−s′;w)−γ2(t))M1(−γ1(s−s′;w))M2(−γ2(t))dw,

(15)

where K(.) is a convolution kernel and we mix through w ∈ D. This is a nonstationary

version of the model by Fonseca and Steel (2011) in Example 1, where we use continuous

mixtures of locally stationary processes, as in Fuentes et al. (2005). If the kernel K(.)

decreases rapidly and the parameters σ2(w) and γ1(.;w) vary slowly then we have local

stationarity. However, these parameters are allowed to vary across the whole spatial

domain resulting in a nonstationary process. For instance, here we define γ1(d;w) =
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||d/a(w)||α(w). Using (12), we obtain

C̃(s, s′, t)

C(s, s′, t)
=

∫
DK(s− w)K(s′ − w)σ2(w)M1(−γ1(s− s′;w))M0(−γ1(s− s′;w))M0(−γ2(t))dw∫
DK(s− w)K(s′ − w)σ2(w)M1(−γ1(s− s′;w))M0(−γ1(s− s′;w)− γ2(t))dw

.

(16)

In practice, the covariance function in (15) can be approximated on a grid by

C(s, s′, t) =

m∑
i=1

K(s−wi)K(s′−wi)σ
2(wi)M0(−γ1(s−s′;wi)−γ2(t))M1(−γ1(s−s′;wi))M2(−γ2(t))

(17)

We consider the kernel function K(x) = 2
πh2

(1 − ||x/h||)+ where h is the bandwidth,

which will be chosen depending on the grid of values for w ∈ D. As in the stationary

case, the value of v0 will depend on the range chosen for integration. We perform

a sensitivity study to identify a reasonable value of ε such that the difference (when

compared to c, which is still a natural separability measure in this model) is as small

as possible. In this example, the parameters that depend on the spatial location are

defined as

σ2(w) = σ20 + σ21w1, a(w) = a0 + a1w2, α(w) = α0 + α1w1. (18)

We take γ2(t) = |t|β and use λ0 = (0.0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100)′ implying c =

(0.00, 0.09, 0.17, 0.33, 0.50, 0.67, 0.83, 0.91, 0.99)′.

We would expect the construction argument to carry over from the stationary model

in Example 1 so that separability is well measured by c. However, the nonstationarity

induced by mixing over processes with parameters that may vary with location requires

us to investigate whether it is again close to the general nonseparability measure v0.

Figure 10 (a-d) presents the values of v0 for different values of a(w) = a0 +a1w and for

σ2(w) = 0.5 and α(w) = 1.5 and bandwidth h = 3. The region of integration used in

the four configurations was the same and obtained using ε = 0.03 for the (stationary)

configuration of Figure 10(a). With bandwidth h = 5 the results were essentially the

same. For Figure 10(a) we have a stationary process for which v0 is almost identical to

c. The first impression would be that v0 and c become more disparate when the model

becomes more nonstationary but this can be counteracted. In Figure 11 we have the

same covariance as in Figure 10 (b), but now we vary the region of integration using

different values of ε. Throughout, values of ε refer to the stationary case. We are able

to recover a close fit by increasing the region of integration (ε = 0.01).

12



The results for several configurations of this model for the mean absolute difference

between c and v0 are presented in Figure 12. The values of ε that minimize this

difference usually vary between 0.01 and 0.04. As a benchmark we would suggest the

use of ε around 0.03, which gives resonable results for most of the configurations studied

here. This benchmark might, of course, be sensitive to the specific model chosen.

4 Conclusions

In this paper we presented a general measure of nonseparability in space and time

that can be easily implemented and used for any nonseparable (possibly nonstationary)

covariance model. The proposed measure is a sensible measure of nonseparability based

on the intuitive concept of a direct comparison between separable and nonseparable

covariance structures. It behaves as expected for situations where another natural

separability measure is available (Examples 1 and 5), but is generally applicable. This

is useful for classes where there is no specific parameter responsible for measuring

separability (as in Example 3) or when there is such a parameter but its interpretation

is not clear (as in Examples 4). It also clarifies situations where the available range

of nonseparability is limited (as in Examples 2-4). The measure also usefully flags

up situations where several parameters are important in determining the degree of

nonseparability as we illustrated with Gneiting’s model 1 in Example 2. Finally, it can

provide a way of comparing different parametrizations of covariance structures in terms

of the role and interpretability of the parameters driving nonseparability.
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(a) c = 0 (separable model). (b) c = 0.09. (c) c = 0.17.

(d) c = 0.33. (e) c = 0.50. (f) c = 0.67.

(g) c = 0.83. (h) c = 0.91. (i) c = 0.99.

Figure 1: 3-D graph of C̃(s, t)/C(s, t) for different values of the nonseparability parameter c

in Example 1.
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Figure 2: Proposed measure of separability (v0) against the measure of separability (c)

derived from the model in Example 1. The straight line represents c = v0.

16



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

εε

m
ea

n 
di

ffe
re

nc
e

αα == 2
αα == 1.5
αα == 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.

00
0.

05
0.

10
0.

15
0.

20
εε

m
ea

n 
di

ffe
re

nc
e

a == 2,,  b == 2
a == 1,,  b == 1
a == 0.5,,  b == 0.3

(a) Varying α, a = b = 1 and β = 1.5. (b) Varying a, α = β = 1.5.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

εε

m
ea

n 
di

ffe
re

nc
e

αα == 2,,  ββ == 2
αα == 1.5,,  ββ == 1.5
αα == 0.5,,  ββ == 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

εε

m
ea

n 
di

ffe
re

nc
e

αα == 0.5,,  ββ == 2
αα == 1.5,,  ββ == 0.5
αα == 0.5,,  ββ == 1

(c) Varying α and β, a = b = 1. (d) Varying α and β, a = b = 1.
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model (3). For all configurations σ2 = 1.
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Figure 5: Proposed measure of separability (v0) against the separability parameter in Gneit-

ing’s model 1 in (8). The straight line represents βG = v0.
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Figure 6: Proposed measure of separability (v0) against the separability parameter in Gneit-

ing’s model 1 parameterized in terms of δ. The straight line represents βG = v0.
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Figure 7: Proposed measure of separability (v0) against the separability parameter in Gneit-

ing’s model 2 in (9). The straight line represents βG = v0.

19



0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

v 0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

v 0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

v 0

(a) ε = 0.2 (b) ε = 0.066 (c) ε = 0.005

Figure 8: Proposed measure of separability (v0) for different configurations of parameters
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(a) a(w) = 0.5 + 0.0w. (b) a(w) = 0.5 + 0.2w. (c) a(w) = 0.5 + 0.5w. (d) a(w) = 0.5 + 1w.

Figure 10: Proposed measure of separability (v0) against c for different values of the range

parameter a(w), w ∈ (0, 5] in Example 5. Throughout σ2(w) = 0.5 and α(w) = 1.5. The

straight line represents c = v0. The region of integration is defined by ε = 0.03 in the model

of case (a).
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Figure 11: Proposed measure of separability (v0) against c for different regions of integration

when a(w) = 0.5 + 0.2w in Example 5 with σ2(w) = 0.5 and α(w) = 1.5. The straight line

represents c = v0. Values of ε refer to the stationary model of Figure 10(a).
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Figure 12: ε against mean difference |c − v0| for several parametrisations of the covari-

ance model (15). Values of ε were obtained by letting C(s1, 0, 0) < ε, C(0, s2, 0) < ε and

C(0, 0, t) < ε.
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