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Abstract. Several authors have studied convergence in distribution to the Brownian web under diffusive
scaling of Markovian random walks. In a paper by R. Roy, K. Saha and A. Sarkar, convergence to the
Brownian web is proved for a system of coalescing random paths - the Random Directed Forest- which are not
Markovian. Paths in the Random Directed Forest do not cross each other before coalescence. Here we study
a generalization of the non-Markovian Random Directed Forest where paths can cross each other and prove
convergence to the Brownian web. This provides an example of how the techniques to prove convergence to
the Brownian web for systems allowing crossings can be applied to non-Markovian systems.

1. Introduction.

Several authors have studied convergence in distribution to the Brownian web for different processes, for
instance [BMSV06],[CV14],[FFW14],[FINR04],[FVV15],[RSS16] to mention some works. The aim at most of
these papers is the understanding of the universality class associated to the Brownian web. It was formaly
introduced in [FINR04] where only nearest neighbor simple symmetric random walks have been considered.
This was a breakthrough because it was an important question in probability theory about how to characterize
properly the convergence of systems of coalescing random walks which started to be studied by Arratia in
[Arr81]. From [FINR04] the question about the universality class for the Brownian web arises as important
one since many important systems of coalescing random paths related to applications of probability theory are
more complicated, for instance they may have long range dependence, they are not necessarily independent
before coalescence and they are not necessarily Markovian, see for instance the Poisson Tree in [FFW14], the
Drainage Network Model studied in [CFD09] and [CV14]; the Random Directed Forest studied in [RSS16]
or the Direct Spaning Forest in [BB07], where the authors made a conjecture about the convergence to a
transformation of the Brownian web in its Remark 4.9 that was proved for a similar system in [FVV15]. You
can find a review to the Brownian web, and how they arise in the scaling limits of various one-dimensional
models in [SSS15].

In [RSS16] the authors study the Random Directed Forest which is a system of coalescing space and time
random paths on Z

2 as we now describe. Suppose that the first coordinate of a point in Z
2 represents space

and the second one time. We start a space/time random path in each point of Z2. The path starting at u in
Z
2 evolves as follows: every point in Z

2 is open with some probability p or closed with 1− p independently
of each other. We say that a point v = (x̃, t̃) ∈ Z

2 is above u = (x, t) if t̃ > t. If the path is at space/time
position (v, t) then it jumps to the nearest open point in the L1 norm above (v, t) if this nearest open point is
unique. If it is not unique then the a choice is made uniformly to decide where the path has to jump to (see
the Figure 1). Note that two paths cannot cross each other and after one step it is possible to know something
about the future, that is to say, maybe we know if some points above the current position of the path are
open or closed. That is why we get a system of non-Markovian random paths. R. Roy, K. Saha and A.
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u

v

Figure 1. Open points in Z
2 are marked by black dots. Note that the closest open points

above u in the L1 distance are those connected by the dashed line. Hence the path starting at
u moves to one of these points connected by the dashed line chosen uniformly among them;
for instance it could be v.

Sarkar in [RSS16] proved that under diffusive scaling, the closure of linearly interpolation trajectory induced
by each discrete random path, in some space where the Brownian web is defined, converges in distribution
to the Brownian web. Our initial aim was to to consider a generalization of the random directed forest that
allows crossings before coalescence analogous to the generalized drainage models studied in [CV14]. This
could be made if we do not impose the necessity that the jump should be made to the nearest open above
position. Although we get a well defined system, we were not able to prove convergence to the Brownian web
in this case. That problem here was to build a regeneration structure similar to that presented in [RSS16]
which is the way around the non-Markovianity.

We will define a model which is slightly different from the Random Directed Forest and consider a gen-
eralization of it that allows crossing before coalescence. Suppose now that in each point u in Z

2 we have
a random variable Wu such that {Wu;u ∈ Z

2} is an i.i.d. family of random variables in the set of positive
integers. We will call the k-th level of some u = (u(1), u(2)) in Z

2 the following set

L(u, k) :=
{
v = (v(1), v(2)) ∈ Z

2; v(2) > u(2) and ||v − u||1 = k
}
,

where for any u ∈ Z
2, ||u||1 := |u(1)|+ |u(2)|. A level L(u, k) is called open if it has at least one open point.

Now consider that the path not necessarily move to the nearest open point above him but the highest open
point in the Wu-th open level. If the path has two options to jump to it makes an uniform choice to decide.
See the Figure 2 for some example.

As the Directed Random Forest we now have a system of non-Markovian walks but in this case the paths
can cross each other. Our goal is to prove convergence in distribution to the Brownian web under diffusive
scaling for the closure of the system of linearly interpolated paths, see Theorem 2.3.

In the next section, Section 2, we are going to define formally the variation of the Random Directed Forest
and state the convergence to the Brownian web. By the end of the same Section 2 we shall explain how
the rest of the paper is divided in accordance with the steps that should be taken to prove the convergence
result.
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u

v

Figure 2. Note that points connected by the dashed lines are the first and the second open
levels of u. If Wu = 2, for instance, the path starting in u jumps to v.

2. The process and the Brownian web.

Let us define formally the process described in the previous section. First let us fix some notation that
will be used in the paper. We will denote by Z+ := {0, 1, 2, 3, . . . },Z− := {0,−1,−2,−3, . . . } and N :=
{1, 2, 3, . . . }. Consider the following random variables:

(i) Let (Wu)u∈Z2 be a family of i.i.d. random variables with finite support on N such that P[Wu = 1] > 0.

Denote by PW the induced probability on N
Z
2
.

(ii) Let {Uv; v ∈ Z
2} be a family of i.i.d. Uniform random variables in (0, 1). Denote by PU the induced

probability on (0, 1)Z
2
.

We suppose that the two families above are independent of each other and thus have a joint distribution

given by the product probability P := PW × PU on the space N
Z
2 × (0, 1)Z

2
.

Now fix some p ∈ (0, 1). We write u = (u(1), u(2)) for u ∈ Z
2 and call open the points in V := {u ∈

Z
2;Uu < p} and closed the points in Z

2 \ V . For u ∈ Z
2 and k ∈ N let us define its k-th level as

L(u, k) := {v ∈ Z
2; v(2) > u(2) and ||v − u||1 = k}.

We will denote the index of the r-th open level of u by h(u, r), i.e.

h(u, r) := inf
{
k ≥ 1;

k∑

j=1

{L(u,j)∩V 6=∅} = r
}
.

For u ∈ Z
2 denote by X(u) the unique (almost surely) point in L(u, h(u,Wu)) ∩ V such that for every

w ∈ L(u, h(u,Wu)) ∩ V either X(u) is above w or UX(u) > Uw. Let us define the sequence {Xn(u)}n≥0 as,

X0(u) := u and Xn(u) := X(Xn−1(u)) for n ≥ 1.

Now define πu : [v(2),∞] → [−∞,∞] as πu(Xn(u)(2)) := Xn(u)(1), linearly interpolated in [Xn(u)(2), Xn+1(u)(2)]
and πu(∞) = ∞. Let us denote the set of paths by

X :=
{
(πv, v(2)); v ∈ Z

2
}
. (2.1)

The system X is the modified Random Directed Forest which is the main object of study in this paper.
From now on we call it the Generalized Random Directed Forest (GRDF).

We are interested in the diffusive rescaled GRDF. So let γ > 0 and σ > 0 be some fixed normalizing

constants to be determined latter, u ∈ Z
2 and n ∈ N. Let us define πu

n(t) :=
πu(n2γt)

nσ for t ∈ [0,∞), πu
n(∞) =
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∞ and

Xn :=
{
(πv

n, v(2)); v ∈ Z
2
}
. (2.2)

The system of coalescing paths Xn is the rescaled GRDF and our aim is to prove that its closure converges
to the Brownian web as n → ∞.

So now let us introduce the Brownian web. As in [FINR04] take (R̄2, ρ) a completion of R2 under the
metric ρ defined as

ρ
(
(x1, t1), (x2, t2)

)
:=

∣∣∣tanh(x1)
1 + |t1|

− tanh(x2)

1 + |t2|
∣∣∣ ∨

∣∣ tanh(t1)− tanh(t2)
∣∣.

We may think R̄
2 as the image of [−∞,∞]× [−∞,∞] under the mapping

(x, t) →
(
Φ(x, t),Ψ(t)

)
:=

(tanh(x)
1 + t

, tanh(t)
)
.

For t0 ∈ [−∞,∞], let C[t0] be the set of functions from [t0,∞] to [−∞,∞] such that Φ
(
f(t), t

)
is continuous.

Then define

Π =
⋃

t0∈[−∞,∞]

C[t0]× {t0}.

For (f, t0) in Π, let us denote f̂ the function that extends f to all [−∞,∞] by setting it equal to f(t0) for
t ≤0. Take

d
(
(f1, t1), (f2, t2)

)
=

(
sup
t

|Φ(f̂1(t), t)− Φ(f̂2(t), t)|
)
∨ |Ψ(t1)−Ψ(t2)|.

Let now H denote the set of compact subset of (Π, d) with the Hausdorff metric dH,

dH(K1,K2) := sup
g1∈K1

inf
g2∈K2

d(g1, g2) ∨ sup
g2∈K2

inf
g1∈K1

d(g1, g2),

for K1,K2 non-empty sets in H. FH is the Borel σ-field induced by (H, dH).
The existence of a (H,FH)- valued random variable, called as the Brownian web, with the convergence

properties that we had mentioned, was proved in the Theorem 2.1 in [FINR04].

Theorem 2.1. There exists a (H,FH)− valued random variable W whose distribution is uniquely determined
by the following three properties:

(i) For any deterministic point (x, t) in R
2 there exists almost surely an unique path Wx,t starting from

(x, t).
(ii) For any deterministic n, (x1, t1), . . . , (xn, tn) the joint distribution of W(x1,t1), . . . ,W(xn,tn) is that of

coalescing Brownian motions.
(iii) For any deterministic, dense countable subset D of R2, almost surely, W is the closure in (H,FH)

of {Wx,t : (x, t) ∈ D}.
The next Theorem 2.2 is a criteria of convergence to the Brownian web. This theorem is a variation of

the Theorem 2.2 proved in [FINR04] which can be found as the Theorem 1.4 in [NRS05]. These theorems
(Theorem 2.2 in [FINR04] and Theorem 1.4 in [NRS05]) has been the principal tools to prove the convergence
to the Brownian web for many different kind of coalescing system.

Theorem 2.2. Let {Yn}n≥1 be a sequence of (H,FH)-valued r.v. We have that {Yn}n≥1 converges to the
Brownian web if the following conditions are satisfied:

(I) There exist some deterministic countable dense subset of R2, let us called D, and θyn ∈ Yn for any
y ∈ D satisfying: for any deterministic y1, . . . , ym ∈ D, θy1n , . . . , θymm converge in distribution as
n → ∞ to coalescing Brownian motions starting in y1, . . . , ym.
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(B) ∀β > 0, lim supn supt>β supt0,a∈R P
[
|ηYn(t0, t, a− ǫ, a+ ǫ)| > 1

]
→ 0, as ǫ → 0+, where

ηYn(t0, t, a, b) =
{
y ∈ R× {t0 + t}; are touched by paths which also touch some point in [a, b]× {t0}

}
.

(E) For some (H,FH)-valued r.v. Y and t > 0 take Y t− as the subset of paths in Y which start before or

at time t. If Zt0 is the subsequential limit of {Yt−0
n }n≥1 for any t0 in R, then for all t, a, b in R with

t > 0 and a < b we get

E
[
|ηZt0

(t0, t, a, b)|
]
≤ 1 +

b− a√
πt

.

(T ) Let ΛL,T := [−L,L] × [−T, T ] ⊂ R
2 and for (x0, t0) ∈ R

2 and ρ, t > 0, R(x0, t0; ρ, t) := [x0 − ρ, x0 +
ρ]× [t0, t0+t] ⊂ R

2. For K ∈ H define AK(x0, t0; ρ, t) to be the event that K contains a path touching
both R(x0, t0; ρ, t) and the right or the left boundary of the rectangle R(x0, t0; 20ρ, 4t). Then for every
ρ, L, T ∈ (0,∞)

1

t
lim sup
n→∞

sup
(x0,t0)∈ΛL,T

P

[
AYn(x0, t0; ρ, t)

]
→ 0 as t → 0+.

The main result in this paper is the convergence of the GRFD to the Brownian web under diffusive scaling
stated below.

Theorem 2.3. There exist positive constants γ and σ such that X n, the closure of Xn in (Π, d), converges
in distribution to the Brownian web as n goes to infinity.

The rest of the paper is devoted to the proof of Theorem 2.3 and we end this section explaining how
it divided. In Section 3 we introduce regeneration times where the random paths in the GRDF have no
information about the future, this yields a Markovian structure we can rely on. In Section 4 we prove a
central estimate related to the tail probability of the coalescing time of two random paths of the GRDF. The
results from both Sections 3 and 4 will be essential for the rest of the paper. In sections 5, 6, 7 and 8 we
prove respectively conditions I, B, E and T . Finally we end the paper with and appendix where we show
that X n is a well defined random elements of (H, dH). In the appendix we also prove that every path in X n

from any time t ∈ R coincide with some path in Xn and this result allows us to prove conditions B, E and
T in Theorem 2.2 working with Xn instead of X n.

3. Renewal times

In this section we prove the existence of regeneration times where the random paths in the GRDF have no
information about the future. The idea of using regeneration times came from [RSS16] and is fundamental
since the paths seen at these times have the Markov property. However we are not able to get the existence
as they did it, because in our case the paths get into regions which has been observed before, something that
the Random Directed Forest do not do and is used in the proof given in [RSS16]. So we follow a different
approach here. The hypothesis impose to the r.v {Wu;u ∈ Z2} will be needed in the proof.

As in [RSS16] let us denote by ∆k(u), for k ∈ Z+ and u ∈ Z
2, the set of points above Xk(u) whose

configuration is already known; i.e. ∆0(u) = ∅ and for k ≥ 1,

∆k(u) :=
[
∆k−1(u) ∪

{
v ∈ Z

2; ||v −Xk−1(u)||1 ≤ ||Xk(u)−Xk−1(u)||1
}]

∩
{
v ∈ Z

2; v(2) > Xk(u)(2)
}
.

(3.1)

See Figure 3 as an example.
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u

X1(u)

X2(u)

∆1(u)

Figure 3. Example for the dependence region ∆1(u) = ∅. Note that in this example ∆2(u) = ∅.

For any random variable τ(u) which satisfies ∆τ(u)(u) = ∅ we call Xτ(u)(u)(2) a renewal time for the
random path {Xk(u); k ≥ 1}. Note that τ(u) is not necessarily the first k such that ∆k(u) = ∅. The fact
that the paths do not jump necessarily to first open level above it do not allow us to use the approach in
[RSS16] to verify existence and moment conditions of renewal times. The main result of this section is the
following:

Proposition 3.1. Let u1, . . . , um be points in Z
2 at the same time level, i.e with equal second component.

Then there exist random variables T , Z and τ(ui) for i = 1 . . . ,m such that T ≤ Z and

(i) ∆τ(ui)(ui) = ∅ and Xτ(u1)(u1)(2) = Xτ(ui)(ui)(2) for all i = 1, . . . ,m.
(ii) Taking T := Xτ(u1)(u1)(2) we have that its distribution depends on m but not on u1, . . . , um. For all

k ≥ 1 we get E[T k] < ∞. Note that πui(T ) = Xτ(ui)(ui)(1).
(iii) For all i = 1, . . . ,m we have sup0≤t≤T |πui(t)− ui(1)| ≤ Z and its distribution depends on m but not

on u1, . . . , um. Also for all k ≥ 1 we get E[Zk] < ∞.

Proof. Without lost of generality we can assume that u1(2) = · · · = um(2) = 0. Let K be a constant such

that
∑K

i=1 P[W(0,0) = i] = 1. This constant exists because the finite support hypothesis. For u ∈ Z
2 let us

define the following event

E(u) :=
{
(u(1), u(2) + j) is open ; j = 1, . . . ,K

}
∩
{
W(u(1),u(2)+j) = 1; j = 1, . . . ,K − 1

}
.

Note that on E(u) the path that start in u after some steps arrive in (u(1), u(2) + K) and then he knows

nothing about the point above. Now take {Ê1,j ; 1 ≤ j ≤ m} independent events such that P[Ê1,j ] =
P[E((0, 0))] for j = 1, . . . ,m and independents of the process too. Let us define

D1 := {j ∈ {1, . . . ,m};uj(1) = ui(1) for some 1 ≤ i < j} and E1 :=
[

∩
j∈{1,...,m}\D2

E(uj) ∩
[

∩
j∈D1

Ê1,j

]
.

Then on E1 the paths that start in u1, . . . , um after some τ(u1), . . . , τ(um) steps, respectively, they will
arrive in the points (u1(1), u1(2) +K), . . . , (um(1), um(2) +K) and ∆τ(uj) = ∅ for j = 1, . . . ,m. We will find

a sequence of independent events {En}n≥1 with the same probability of success of E1 such that if En occurs
for some n, we have a joint renewal time for the paths that start in u1, . . . , um. To do this let us make some
definitions. Define the following upper bound to high of ∆1(u),

H(u) := inf
{
n ≥ 1;

n∑

j=1

{(u(1),u(2)+j) is open } = K
}
. (3.2)
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u1 (Wu1 = 1) u2 (Wu2 = 2)

Xt1(u1)(u1) Xt1(u2)(u2)

ξ1 = 6

∆1(u1)

∆1(u2)

Figure 4. In the picture above we consider a realization of the random paths in the GRDF
starting at u1 and u2. In this case ξ1 = 6 and one can see that the dependence region
generated by the first for both paths are below u1(2) + ξ1. Moreover note that Xt1(u1)(u1)
and Xt1(u2)(u2) are the last points visited by the paths starting respectively at u1 and u2
before time u1(2) + ξ1.

Take {Ĥ1,j ; 1 ≤ j ≤ m} i.i.d. random variable independent of the model and with the same distribution of
H((0, 0)). Now define

ξ1 :=
[

max
j∈{1,...,m}\D1

H(uj)
]
∨
[
max
j∈D1

Ĥ1,j

]
.

Now we will move each path until the first time that they need to observe over ξ1 to decide where to jump.
These times could be defined as

t1(uj) := inf
{
n ≥ 1;Xn(u)(2) = ξ1 or

ξ1−Xn(u)(2)∑

i=1

{L(u,i) is open } < WXn(u)

}
,

for all 1 ≤ j ≤ m. Note that to define t1(uj) we do not need to see the points above ξ1. To help the
understanding of the notation see Figure 4.

Now take {Ên,j ; 1 ≤ j ≤ m,n ≥ 2} a family of independent event and independent of the model too, such

that P[Ên,j ] = P[E((0, 0))] for all 1 ≤ j ≤ m and n ≥ 2. Also take {Ĥn,j ; 1 ≤ j ≤ m,n ≥ 2} an i.i.d. family
of random variable independent of the model and with the same distribution of H((0, 0)). Getting defined
E1, . . . , Em and ξ1, . . . , ξn we can define En+1 and ξn+1 as follows. First take

tn(uj) := inf
{
k ≥ 1;Xk(u)(2) = ξ1 + . . . ξn or WXk(u) >

ξ1+...ξk−Xk(u)(2)∑

i=1

{L(u,i) is open }
}
,

for all 1 ≤ j ≤ m. Define

Dn+1 :=
{
j ∈ {1, . . . ,m};Xtn(uj)(uj)(1) = Xtn(ui)(ui)(1) for some 1 ≤ i < j

}
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and

En+1 :=
[

∩
i∈{1,...,m}\Dn+1

E
(
(Xtn(ui)(ui)(1), ξ1 + · · ·+ ξn)

)]
∩
[
∩Ên,j
j∈Dn+1

]

ξn+1 :=
[

max
j∈{1,...,m}\Dn+1

H
(
(Xtn(uj)(uj)(1), ξ1 + · · ·+ ξn)

)]
∨
[

max
j∈Dn+1

Ĥn,j

]
.

Note that {ξn}n≥1 is an i.d.d. sequence and the distribution of ξn does not depend on u1(1), . . . , um(1). Also
the probability of success of the event En does not depend on u1(1), . . . , um(1) and it is equal to P [E1]. See
that if En happens fore some n then we get the renewals for the paths. Now defining the geometric random
variable M := inf{n ≥ 1; En = 1} and τ(uj) = tM (uj) we get ∆τ(uj)(uj) = ∅ for all 1 ≤ j ≤ m. Defining

T :=
∑M

i=1 ξi we get that T = Xτ(uj)(uj)(2) for all 1 ≤ j ≤ m and applying the Lemma A.1, E[T l] < ∞ for

all l ∈ N. Note that the distribution of T does not depend on u1(1), . . . , um(1). Now see that for j = 1 . . . ,m
by the construction of {ξk; k ≥ 1} and {tk(uj); k ≥ 1} we have

sup
0≤t≤T

|πuj (t)− uj(1)| ≤
M∑

k=1

(ξ1 + · · ·+ ξk)
2 ≤ M(ξ1 + . . . ξM )2 ≤ (ξ1 + . . . ξM )3 := Z.

Using the Lemma A.1 we get E[Z l] < ∞ for all l ≥ 1 and by construction the distribution of Z does not
depends on u1, . . . , um.

�

We can replicate recursively Proposition 3.1 to get:

Corollary 3.1. Let m ≥ 1 and u1, . . . , um be points in Z
2 at the same level. Then there exist sequences of

random variables {Tj}j≥1, {Zj}j≥1 and {τj(ui)}j≥1 for i = 1, . . .m such that,

(i) ∆τj(ui)(ui) = ∅ and Xτj(u1)(u1)(2) = Xτj(ui)(ui)(2) for all i = 1, . . . ,m and j ≥ 1. Moreover for

every i = 1, . . .m we have that τj(ui)− τj−1(ui), j ≥ 1, are i.i.d random variables.
(ii) Xτj(u1)(u1)(2) = Tj for j ≥ 1 and its distribution depends on m but not on u1, . . . , um. For all

k, j ≥ 1 we get that E[T k
j ] < ∞ and for all j ≥ 1, i = 1 . . .m we have that πui(Tj) = Xτj(ui)(ui)(1).

Moreover Tj − Tj−1, j ≥ 1, are i.i.d random variables .
(iii) supTj−1≤t≤Tj

|πui(t) − πui(Tj−1)| ≤ Zj for all i = 1, . . . ,m and j ≥ 1. The random variables Zj,
j ≥ 1, are i.i.d and their common distribution depends on m but not on u1, . . . , um. For all k, j ≥ 1
we get that E[Zk

j ] < ∞.

Fix points u1, . . . , um in Z
2. To simplify suppose that u1 is at the same time level or above ui for every

i = 2, . . .m. Then we can move each paths πu2 , . . . , πum up to the first time they need to see above u1(2) to
move and after that use the same idea of Proposition 3.1 to obtain a similar renewal structure for paths in
X that do not start necessarily at the same time level:

Corollary 3.2. Let m ≥ 1 and u1, . . . , um be points in Z
2 such that u1 is at the same time level or above ui

for every i = 2, . . .m. Then there exist sequences of random variables {Tj}j≥1, {Zj}j≥1 and {τj(ui)}j≥1 for
i = 1, . . .m such that,

(i) ∆τj(u1)(u1) = ∆τj(ui)(ui) = ∅ and Xτj(u1)(u1)(2) = Xτj(ui)(ui)(2) for all i = 1, . . . ,m and j ≥ 1.

Moreover we have that τj(u1)− τj−1(u1), j ≥ 1, are i.i.d random variables, and for every i = 2, . . .m
we have τj(ui)− τj−1(ui), j ≥ 2, are i.i.d random variables.

(ii) Xτj(ui)(ui)(2) = Tj for all i = 1, . . .m and j ≥ 1. Also for all j ≥ 1, i = 1 . . .m we have that

πui(Tj) = Xτj(ui)(ui)(1). The distribution of Tj depends on m but not on u1, . . . , um and for all

k, j ≥ 1 we get that E[T k
j ] < ∞. Moreover Tj − Tj−1, j ≥ 1, are i.i.d random variables.
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(iii) supTj−1≤t≤Tj
|πu1(t) − πu1(Tj−1)| ≤ Zj for all j ≥ 1, and for every i = 2, . . .m we have that

supTj−1≤t≤Tj
|πui(t) − πui(Tj−1)| ≤ Zj for all j ≥ 2. The random variables Zj, j ≥ 1, are i.i.d

and their common distribution depends on m but not on u1, . . . , um. For all k, j ≥ 1 we get that
E[Zk

j ] < ∞.

4. coalescing times

In this section we obtain an upper bound on the tail probability of the coalescence time of two paths in
X . This is a central estimate related to convergence to the Brownian web. Related to other processes see
[CFD09],[CV14] and [RSS16] for instance. The main ideas used here to get the bound come from these three
works, although it is not a straighforward application of the techniques used before. Here we have another
important difference with the Random Directed Forest studied in [RSS16] because of the possibility of the
paths to cross each other before coalescence. This property does not allow us to follow the proof in [CFD09]
as done in [RSS16]. We will need the ideas used in [CV14] where the authors work with a system allowing
crossing to obtain this upper bound. Here the hypothesis about the finite support of the r.v {Wu;u ∈ Z2}
will be used to prove item i) of Lemma 4.2 and Lemma 4.3 below. Although we believe that the bound on
the coalescing time tail holds without the finite support hypothesis.

So the aim of this section is to prove the following result.

Proposition 4.1. Let us define ν := inf{t ≥ 0;π(0,0)(s) = π(0,1)(s) for all s ≥ t}. Then there exist a positive
constant C > 0 such that

P[ν > t] ≤ C√
t
.

As an immediate consequence of Proposition 4.1 we have:

Corollary 4.1. Let u = (0, 0), v = (0, l) and ν(u, v) := inf{t ≥ 0;πu(s) = πv(s) for all s ≥ t}. Then there
exist positive constant C such that

P[ν(u, v) > t] ≤ Cl√
t
.

Proof. Put e1 := (0, 1). Since {ν(u, v) > t} ⊂ ∪l
i=1{ν

(
(i− 1)e1, ie1

)
> t} we have that

P[ν(u, v) > t] ≤
l∑

i=1

P

[
ν
(
(i− 1)e1, ie1

)
> t

]
≤ Cl√

t
. (4.1)

�

Define

Y m
0 := m and Y m

n := Xτn(um)(um)(1)−Xτn(u0)(u0)(1) for n ≥ 1.

and put νY := inf{n ≥ 1;Y 1
n = 0}. The process Y m represents the distance between the paths π(0,0) and

π(0,m) on the renewal times for the pair (π(0,0), π(0,m)). Now the proof of Proposition 4.1 follows directly
from the next Lemma.

Lemma 4.1. There exists positive constants C1 and C2 such that

P[νY > k] ≤ C1√
k

(4.2)
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and

P[TνY > k] ≤ C2√
k

for all k ≥ 1. (4.3)

for every k ≥ 1, where (Tn)n≥1 are the renewall times defined in the statement of Corollary 3.1 for the points
(0, 0) and (0, 1).

To prove Lemma 4.1, we use a Skorohood’s Representation of Y m following ideas presented in [CFD09]
and [CV14]. By the Skorohood’s Representation theorem ( see the Theorem 8.7.1 in [Dur13] ) there exist a
Brownian motion (B(s))s≥0 starting in m and stopping times (Si)i≥0 such that

B(Si)
d
= Yi, for i ≥ 0

and (Si)i≥0 has the following representation:

S0 := 0, Si := inf
{
s ≥ Si−1;B(s)−B(Si−1) /∈

(
Ui(B(Si−1)), Vi(B(Si−1))

)}

where
{
(Ui(m), Vi(m));m ∈ Z, i ≥ 1

}
is a family of independent random vectors taking values in

(
(Z− −

{0})× N
)
∪
{
(0, 0)

}
.

Before we go to the proof Lemma 4.1, we still need the next two technical lemmas whose proofs will be
postponed to Appendix B.

Lemma 4.2. Let be u0 := (0, 0) and for m ∈ N take um := (m, 0). Consider the sequences {τn(u0)}n≥1 and
{τn(um)}n≥1 as the renewals times introduced in Corollary 3.1 for the pair (u0,um). Let us take νm(−∞,0] as

the first time that {Y m
n }n≥1 is non-positive; i.e νm(−∞,0] := inf{n ≥ 1;Y m

n ≤ 0}. Then

(i) For all m ∈ N we have P
[
νm(−∞,0] < ∞

]
= 1.

(ii) infm≥1 P
[
Y m
νm
(−∞,0]

= 0
]
> 0.

(iii) Let us define the sequence (al)l≥1 as

a1 := inf{n ≥ 1;Y 1
n ≤ 0} and for l ≥ 2,

and

al :=

{
inf{n ≥ al−1;Y

1
n ≥ 0}; if l is even

inf{n ≥ al−1;Y
1
n ≤ 0}; if l is odd

.

Then there exists a constant c5 < 1 such that P[Y 1
aj 6= 0, for j = 1, . . . , k] ≤ ck5 for all k ≥ 1.

Lemma 4.3. Consider the sequence (al)l≥1 as in the previous lemma and (Sn)n≥1 obtained from the Skoro-
hood’s Representation of Y 1. Then there exist a standard Brownian motion (B(s))s≥0 and random variables

(Ri)i≥1 and R̃0 independent of (B(s))s≥0 such that

(i) Ri|{Ri 6= 0} d
= R̃0 for all i ≥ 1.

(ii) Sal is stochastically dominated by Jl which is defined as J0 = 0,

J1 := inf{s ≥ 0;B(s)− B(0) = −(R1 + R̃0)},
and

Jl := inf{s ≥ Jl−1;B(s)− B(Jl−1) = (−1)l(Rl +Rl−1)}, l ≥ 2.

(iii) Given that B(0) = R̃0, Yal 6= 0 implies B(Jl) 6= 0.
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Proof of Lemma 4.1. Let us suppose that (4.2) is true and use it to prove (4.3) with the same idea used in
[RSS16]. Recall from Corollary 3.1 that T1 has finite moments and define the constant L := 1/2E[T1] and
take k ∈ N then

P[TνY > k] ≤ P[TνY > k, νY ≤ Lk] + P[νY > Lk] ≤ P[T⌊Lk⌋ > k] + P[νY > Lk].

By (4.2), it is enough to proof that P[T⌊Lk⌋ > k] ≤ C3√
k
for some constant C3. Then

P
[
T⌊Lk⌋ > k

]
= P

[ ⌊Lk⌋∑

i=1

[Ti − Ti−1] > k
]
= P

[ ⌊Lk⌋∑

i=1

[Ti − Ti−1]− ⌊Lk⌋E[T1] > k − ⌊Lk⌋E[T1]
]

≤
Var

[∑⌊Lk⌋
i=1 (Ti − Ti−1)

]

(
k − ⌊Lk⌋E[T1]

)2 =
⌊Lk⌋Var[T1](

k − ⌊Lk⌋E[T1]
)2 .

Note that
√
k

⌊Lk⌋Var[T1](
k − ⌊Lk⌋E[T1]

)2 → 0 as k → 0.

Then there exist M such that

⌊Lk⌋Var[T1](
k − ⌊Lk⌋E[T1]

)2 ≤ 1√
k

for all k ≥ M. Then we can find a sufficiently large constant C3 > 0 such that

⌊Lk⌋Var[T1](
k − ⌊Lk⌋E[T1]

)2 ≤ C3√
k

for all k ≥ 1.

Now we prove (4.3). Here we simply write Y = Y 1. Recall the definition of (B(s))s≥0 and (Si)i≥0 above
for the case m = 1. For δ > 0 to be fixed later and every k ∈ N we have that,

P[νY > k] = P[Sk ≤ δk, νY > k] + P[Sk > δk, νY > k]. (4.4)

Let us get an upper bound to P[Sk ≤ δk, νY > k]. From the Skorohod representation

Sk =
k∑

i=1

(
Si − Si−1

)
=

k∑

i=1

Qi(Yi−1),

where
{
Qi(m); i ≥ 1,m ∈ Z

}
are independent random variables and Qi(m) is independent of (Y1, ..., Yi−1)

for all i ∈ N,m ∈ Z. Note that on {νY > k} we have that Yi 6= 0 for i ∈ {1, . . . , k}.
Let us start considering the first term in (4.4). Fix λ > 0, then

P[Sk ≤ δk, νY > k] = P[e−λSk ≥ e−λδk, νY > k] ≤ eλδkE[e−λSk {νY >k}]

Claim 4.1.

E[e−λSk {νY >k}] ≤
(

sup
m∈Z\{0}

E[e−λQ(m)]
)k

,

where, for each m, Q(m) is a random variable with the same distribution of Q1(m).
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Proof of Claim 4.1. The proof is essentially the same given in the Theorem 4 in [CFD09]. We include it here
for the sake of completeness, taking Fk := σ(Y1, . . . , Yk) we have that

E[e−λSk {νY >k}] = E

[
E[e−λSk {νY >k}|Fk−1]

]

≤ E

[
e−λSk−1E[e−λQk(Yk−1) {νY >k−1} {Yk−1 6=0}|Fk−1]

]

= E

[
e−λSk−1 {νY >k−1}E[e

−λQk(Yk−1) {Yk−1 6=0}|Fk−1]
]

and

E[e−λQk(Yk−1) {Yk−1 6=0}|Fk−1] =
∑

m∈Z\{0}
E[e−λQk(m)

{Yk−1=m}|Fk−1]

=
∑

m∈Z\{0}
{Yk−1=m}E[e

−λQk(m)|Fk−1]

=
∑

m∈Z\{0}
{Yk−1=m}E[e

−λQ(m)]

≤ sup
m∈Z\{0}

E[e−λQ(m)].

So, applying the above argument recursively we obtain

E[e−λSk {νY >k}] ≤ E[e−λSk−1 {νY >k−1}]
(

sup
m∈Z\{0}

E[e−λQ(m)]
)
≤

(
sup

m∈Z\{0}
E[e−λQ(m)]

)k
.

�

Using Claim 4.1 we get that

P[Sk ≤ δk, νY > k] ≤
(
eλδ sup

m∈Z\{0}
E[e−λQ(m)]

)k
.

Let Q−1,1 be the exit time of interval (−1, 1) by a Standard Brownian motion. Using Claim 4.2 we have
that

E
[
e−λQ(m)

]
= E

[
e−λQ(m)|(U(m), V (m)) 6= (0, 0))

]
P[(U(m), V (m)) 6= (0, 0)]

+ P
[
(U(m), V (m)) = (0, 0)

]

≤ E
[
e−λQ−1,1

](
1− P

[
(U(m), V (m)) = (0, 0)

])
+ P

[
(U(m), V (m)) = (0, 0)

]

= P
[
(U(m), V (m)) = (0, 0)

]
(1− c2) + c2 , (4.5)

where c2 = E
[
e−λQ−1,1

]
< 1. Here we need the following:

Claim 4.2. 0 < c1 := supm∈Z\{0} P
[
(U(m), V (m)) = (0, 0)

]
< 1.

Using Claim 4.2 and (4.5), we obtain that

E
[
e−λQ(m)

]
≤ c1(1− c2) + c2 .

Now chose δ such that c3 := eδλ
[
c1(1− c2) + c2

]
< 1. Then

P[Sk ≤ δk, νY > k] ≤ ck3 ≤ c4√
k
, (4.6)

for some suitable c4 > 0. This gives the bound we need on the first term of (4.4). Let just prove the previous
claim before dealing with the second term in (4.4).
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Proof of Claim 4.2. The proof uses the hypothesis that P (W = 1) > 0. However by a straightforward
adaptation, one can see that this is not required for the Claim to remain valid.

We follow the idea used in [RSS16]. For all m ∈ Z \ {0} we have

P[
(
U(m), V (m)

)
= (0, 0)] ≥ (pP[W = 1])2,

see Figure 5.

u v

Figure 5. If Wu = Wv = 1 and u + e2 and v + e2 are open, which occurs with probability
(pP[W = 1])2, then

(
U(m), V (m)

)
= (0, 0).

So c1 := supm≥1

{
P[
(
U(m), V (m)

)
= (0, 0)]

}
≥ (pP[W = 1])2 > 0.

For the upper bound in the statement we have that

P[
(
U(m), V (m)

)
6= (0, 0)] ≥ (1− p

2
)p3(1− p)3(P[W = 1])3,

see Figure 6.

u v

Figure 6. If Wu = Wv = Wv+e1+e2 = 1 and u+ 2e2, v + e1 + e2 and v + e1 + 2e2 are open
and u + e2, v + e2 and v + 2e2 are closed, then with p3(1 − p)4(P[W = 1])3 if |m| = 1 and
(1 − p

2)p
3(1 − p)3(P[W = 1])3 in case |m| 6= 1 we have the trajectory as represented in the

picture where
(
U(m), V (m)

)
= (0, 0).

Hence infm∈Z\{0} P[
(
U(m), V (m)

)
6= (0, 0)] ≥ (1− p

2)p
3(1− p)3(P[W = 1])3. So,

c1 ≤ 1− (1− p

2
)p3(1− p)3(P[W = 1])3 < 1.

�

Now we consider the second term in (4.4). To deal with it we consider an approach similar to [CV14].
Take the sequence (al)l≥0 as in the statement of Lemma 4.2. Note that

P[νY > k, Sk > δk] ≤
k∑

l=1

P[νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ δk] . (4.7)
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For now fix l = 1, . . . k, using Lemma 4.3 we get,

{νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ kδ} ⊆ {Yaj 6= 0, for j = 1, . . . , l − 1, Sal ≥ kδ},

hence

P[νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ kδ] ≤ P[Yaj 6= 0, for j = 1, . . . , l − 1, Sal ≥ kδ]

≤ P[Yaj 6= 0, for j = 1, . . . l − 1, Jl ≥ kδ]

= P[Jl ≥ kδ|Yaj 6= 0, for j = 1, . . . l − 1]P[Yaj 6= 0, for j = 1, . . . l − 1]

By the item iii) in the Lemma 4.2 we get

P[νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ kδ] ≤ cl−1

5 P[Jl ≥ kδ|Yaj 6= 0, for j = 1, . . . l − 1].

Now take (R̃j)j≥1 i.i.d. random variables independent of (B(s))s≥0 such that R̃1 =
d R0 and define J̃0 = 0,

J̃j := inf{s ≥ J̃j−1;B(s)−B(J̃j−1) = (−1)l(R̃l + R̃l−1)}, j ≥ 1.

We have that

P[Jj ≥ kδ|Yaj 6= 0, for j = 1, . . . l − 1] = P[J̃j ≥ kδ].

Taking Di := J̃i − J̃i−1 for i ≥ 1 and observing that (Di)i≥1 is an i.d. sequence we have that

P[νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ kδ] ≤ cl−1

5 P[J̃l ≥ kδ] ≤ cl−1
5 lP[D1 ≥

kδ

l
].

Claim 4.3. There exists constant c7 > 0 such that for every x > 0 we have that

P[D1 ≥ x] ≤ c7√
x
.

Proof of Claim 4.3. As in [CV14] take µ := E[R̃0] and Jm := inf{t ≥ 0;B(t) = m}. Then,

P[D1 ≥ x] =
∞∑

k=1

∞∑

j=1

P[D1 ≥ x|R̃0 = k, R̃1 = j]P[R̃0 = k, R̃1 = j]

=
∞∑

k=1

∞∑

j=1

P[D1 ≥ x|R̃0 = k, R̃1 = j]P[R̃0 = k]P[R̃1 = j]

=
∞∑

k=1

∞∑

j=1

P[Jk+j ≥ x]P[R̃0 = k]P[R̃1 = j]

=
∞∑

k=1

∞∑

j=1

∫ ∞

x

j + k√
2πy3

e
− j+k

2y dyP[R̃0 = k]P[R̃1 = j]

≤ 2µ2

∫ ∞

x

1√
2πy3

e
− 1

2y dy

≤ c7√
x
.

For some suitable constant c7. �

Using Claim 4.3 we have some constant c8 such that

P[νY > k, Sk ≥ δk, Sal−1
< δk, Sal ≥ kδ] ≤ c8c

l
5l

3
2√

k
,
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then

P[νY > k, Sk > δk] ≤
k∑

l=1

c8c
l
5l

3
2√

k
≤ c8√

k

∞∑

l=1

cl5l
3
2 =

c9√
k
. (4.8)

Then we get that

P[νY > k] ≤ c4 + c9√
k

.

�

5. The condition I.

In this section we will prove the condition I of the Theorem 2.2. First we need to obtain the constants γ
and σ such that πu

n as defined in (2.2) converges in distribution to a Brownian motion. If we have Corollary
3.1 which gave us the existence of the renewals times and a uniform bound on a moment of order higher
than two for the displacement of paths on these renewal times, then the proof of the convergence of πu

n is
analogous to the one made in [RSS16]. Finally to get the condition I we will follow the ideas used in [CV14],
the difference here is the need to work with the renewals times to make the coupling.

Proposition 5.1. There exist positive constants γ and σ such that for any u ∈ Z
2 the rescaled path πu

n, as
defined in (2), converges in distribution to a Brownian motion starting in u as n goes to infinity.

Proof. Without lost of generality we can assume that u = (0, 0). To make easier the notation we will
omit u from the notation, i.e. we will write Xn instead of Xn(u), π(t) instead of πu(t) and so on. Taking
T0 := 0, τ0 := 0 and (Tn)n≥1, (τn)n≥1 as defined in Corollary 3.1 for one point. Let π̃ be the linear
interpolation of the values of (π(t))t≥0 on the renewals times,

π̃(t) := π(Tn) +
t− Tn

Tn+1 − Tn

[
π(Tn+1)− π(Tn)

]
, for Tn ≤ t ≤ Tn+1.

Let us define the following random variables

Yi := π(Ti)− π(Ti−1) for i ≥ 1.

S0 := 0, Sn :=
n∑

i=1

Yi for n ≥ 1.

Let σ2 = Var(Y1), then by Donsker’s invariance principle we have that (π̂n(t))t≥0, defined as

π̂n(0) := 0, π̂n(t) :=
1

nσ

[
(n2t− ⌊n2t⌋)Y⌊n2t⌋+1 + S⌊n2t⌋

]
for t > 0 ,

converges in distribution as n → ∞ to a Standard Brownian motion (B(t))t≥0.
Put

A(t) := j +
t− Tj

Tj+1 − Tj
for Tj ≤ t < Tj+1, and N(t) := sup{n ≥ 1;Tn ≤ t} for t > 0.

Note that N(t) ≤ A(t) ≤ N(t) + 1 for all t > 0. Since Tn =
∑n

j=1(Tj − Tj−1), by Corollary 3.1, (N(t))t≥0 is

a renewal process. By the Renewal Theorem N(t)
t → 1

E[T1]
as t → ∞ almost surely, hence for γ = E[T1] we

have that A(n2γt)
n2 → t almost surely. For n ≥ 1 let us rescale π̃ as

π̃n(t) :=
π̃(γn2t)

nσ
for t ≥ 0.
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Note that

π̃n(t) = π̂n

(A(n2γt)

n2

)
for t ≥ 0.

We have that (π̃n(t))t≥0 converges in distribution to a (B(t))t≥0, we leave the details to the reader. To
prove the convergence of (πn(t))t≥0 to (B(t))t≥0 it is enough to show that for any ǫ > 0 and s > 0,
P
[
sup0≤t≤s |πn(t)− π̃n(t)| > ǫ

]
→ 0 as n → ∞. Note that

P

[
sup
0≤t≤s

|πn(t)− π̃n(t)| > ǫ
]
= P

[
sup

0≤t≤sn2γ

|π(t)− π̃(t)| > ǫnσ
]
.

Moreover

{
sup

0≤t≤sn2γ

|π(t)− π̃(t)| > ǫnσ
}
⊆

N(sn2γ)⋃

j=0

{
sup

Tj≤t≤Tj+1

|π(t)− π̃(t)| > ǫnσ
}

and N(sn2γ) ≤ ⌊sn2γ⌋ so,

{
sup

0≤t≤sn2γ

|π(t)− π̃(t)| > ǫnσ
}
⊆

⌊sn2γ⌋⋃

j=0

{
sup

Tj≤t≤Tj+1

|π(t)− π̃(t)| > ǫnσ
}
.

Since π and π̃ coincide at the renewal times and their increments are stationary then

P

[
sup
0≤t≤s

|πn(t)− π̃n(t)| > ǫ
]
≤ (⌊sn2γ⌋+ 1)P

[
sup

0≤t≤T1

{|π(t)− π̃(t)|} > ǫnσ
]
.

Note that π(T1) = π̃(T1) and sup0≤t≤T1
|π(t)− π(T1)| ≤ Z, sup0≤t≤T1

|π̃(t)− π(T1)| ≤ Z, where Z is defined
in Proposition 3.1. Then

P

[
sup

0≤t≤s
|πn(t)− π̃n(t)| > ǫ

]
≤ (⌊sn2γ⌋+ 1)P[2Z > ǫnσ] ≤ 23(⌊sn2γ⌋+ 1)E[Z3]

ǫ3σ3n3
→ 0 as n → ∞.

�

Proposition 5.2. Let Xn be defined as in (2.2) where the constants γ and σ are taken as in Proposition
5.1. Then for any y1, . . . , ym ∈ R

2 there exist paths θy1n , . . . , θymn in Xn, such that (θy1n , . . . , θymn ) converges in
distribution as n → ∞ to coalescing Brownian motions starting in y1, . . . , ym.

To prove Proposition 5.2 we will use a coupling argument. To build the coupling, we will need Proposition
5.3 below, which is a version of Proposition 3.1 that will be presented without proof because its proof follows
the same lines as those of Proposition 3.1.

Proposition 5.3. Let {U1
v ; v ∈ Z

2}, {U2
v ; v ∈ Z

2}, {W 1
v ; v ∈ Z

2} and {W 2
v ; v ∈ Z

2} be i.i.d. families

independent of each other such that the U j
v , j = 1, 2, are Uniform random variables in [0, 1] and of W j

v ,
j = 1, 2, are identically distributed positives random variables on N with finite support. Consider the GRDF
systems

X 1 := {π1,v, v ∈ Z
2} and X 2 := {π2,v; v ∈ Z

2}

built respectively using the random variables
{
{U1

v ; v ∈ Z
2}, {W 1

v ; v ∈ Z
2}
}

and
{
{U2

v ; v ∈ Z
2}, {W 2

v ; v ∈
Z
2}
}
. Then for points u11, . . . , u

1
m1

and u21, . . . , u
2
m2

in Z
2 at the same time level, i.e. with equal second

component, there exist random variables T , Z and τ(uji ) for j = 1, 2, 1 ≤ i ≤ mj, such that T ≤ Z and
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(i) ∆j

τ(uj
i )
(ui) = ∅ and X1

τ(u1
1)
(u11)(2) = Xj

τ(uj
i )
(uji )(2) for j = 1, 2 and i = 1, . . . ,mj. Where for j = 1, 2

and v ∈ Z
2 the sequence {Xj

k(v)}k≥0 is as defined in (2) using the r.v. {U j
v ; v ∈ Z

2}, {W j
v ; v ∈ Z

2}
and {∆j

k(v)}k≥0 as defined in (3.1) for the sequence {Xj
k(v)}k≥0.

(ii) Taking T := X1
τ(u1

1)
(u11)(2) we have that its distribution depends on m1 +m2 but not on uj1, . . . , u

j
mj ,

j = 1, 2. For all k ≥ 1 we get E
[
T k

]
< ∞. Note that πj,uj

i (T ) = Xj

τ(uj
i )
(uji )(1) for j = 1, 2,

1 ≤ i ≤ mj.

(iii) For all j = 1, 2 and 1 ≤ i ≤ mj i = 1, . . . ,m we have that sup0≤t≤T |πj,uj
i (t) − uji (1)| ≤ Z and its

distribution depends on m1 + m2 but not on uj1, . . . , u
j
mj for j = 1, 2. Also for all k ≥ 1 we get

E
[
Zk

]
< ∞.

Proof of the Proposition 5.2. Here we use a non-straightforward adaptation of the idea applied in [CV14] to
proof the condition I for the Drainage Network model. We will prove that for any m ∈ N,

(π(0,0)
n , π(nσ,0)

n , . . . , π(mnσ,0)
n )

converges in distribution to a vector of coalescing Brownian motions starting in (0, 0), . . . , (m, 0) denoted here

by (B(0,0), . . . , B(m,0)). The general case, where the paths do not start necessarily at the same time, could

be proved using the same technique, so we will omit it. To simplify the notation we will write πk := π(k,0),
k ∈ Z, and Bx := B(x,0) for x ∈ R. Here for the rescaled paths we use the notation:

πk
n =

πk⌊nσ⌋(tn2γ)

nσ
.

It is enough to fix an arbitrary M > 0, suppose that (B0, . . . , Bm) and (π0
n, π

1
n, . . . , π

m
n ) are restricted to

time interval [0,M ] and prove the convergence, i.e.,

lim
n→∞

(π0
n(t), π

1
n(t), . . . , π

m
n (t))0≤t≤M

d
=

(
B0(t), . . . , Bm(t)

)
0≤t≤M

(5.1)

By Proposition 5.1 we have that

lim
n→∞

(π0(t))0≤t≤M
d
=

(
B0(t)

)
0≤t≤M

.

Now we are going to make an induction in m. Let us suppose that

lim
n→∞

(π0
n(t), π

1
n(t), . . . , π

(m−1)
n (t))0≤t≤M

d
=

(
B0(t), . . . , B(m−1)(t)

)
0≤t≤M

.

Now the proof of (5.1) from the induction hypothesis will be based on coupling techniques. We will build

a path πm
n which is independent of (π0

n, π
1
n, . . . , π

(m−1)
n ) until coalescence with one of them, has the same

distribution of πm and such that, in a proper way, πn and πn are close to each other.
We start constructing paths π̃0, ... , π̃(m−1)⌊nσ⌋ and π̂m⌊nσ⌋ that coincide with (π̃0, . . . , π̃(m−1)⌊nσ⌋, π̂m⌊nσ⌋)

until one of these paths moves a distance n
3
4 from its last position on the renewal times, we suggest the

reader to see Figure 7 although some definitions are still missing. The construction follows by induction:

Step 1: Let {Ũv; v ∈ Z
2} and {Ûv; v ∈ Z

2} be i.i.d. families of Uniform r.v. in [0, 1]; {W̃v; v ∈ Z
2} and

{Ŵv; v ∈ Z
2} be i.i.d families of r.v. with the same distribution of W(0,0); independent of each other and of

{Uv; v ∈ Z
2} and {Wv; v ∈ Z

2}. Using them let us define the r.v. {Ũ1
v ; v ∈ Z

2}, {Û1
v ; v ∈ Z

2}, {W̃ 1
v ; v ∈ Z

2}
and {Ŵ 1

v ; v ∈ Z
2} as follows:

Û1
v :=

{
Uv; if |v(1)−mnσ| ≤ n

3
4 and 0 < v(2) ≤ n

3
4 ;

Ûv; otherwise,
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Ŵ 1
v :=

{
Wv; if |v(1)−mnσ| ≤ n

3
4 and 0 < v(2) ≤ n

3
4 ;

Ŵv; otherwise,

W̃ 1
v :=

{
Wv; if v(1) ≤ (m− 1)nσ + n

3
4 and 0 < v(2) ≤ n

3
4 ;

W̃v; otherwise,

and

Ũ1
v :=

{
Uv; if v(1) ≤ (m− 1)nσ + n

3
4 and 0 < v(2) ≤ n

3
4 ;

Ũv; otherwise.

Use the families {Ũ1
v ; v ∈ Z

2}, {W̃ 1
v ; v ∈ Z

2} to construct a path π̂m⌊nσ⌋ of the GRDF (not rescaled) starting

in m⌊nσ⌋ at time zero. Also use {Ũ1
v ; v ∈ Z

2}, {W̃ 1
v ; v ∈ Z

2} to construct paths {π̃0, . . . , π̃(m−1)⌊nσ⌋} of
the GRDF (not rescaled) starting respectively in 0, ⌊nσ⌋, . . . , (m − 1)⌊nσ⌋ at time zero. Let T1 and Z1 be

the random variables associated to {π̃0, . . . , π̃(m−1)⌊nσ⌋, π̂m⌊nσ⌋} by Proposition 5.3. Note that on the event

{Z1 ≤ n
3
4 } the vector paths (π̃0, . . . , π̃(m−1)⌊nσ⌋, π̂m⌊nσ⌋) coincide with (π0, . . . , πm⌊nσ⌋) up to time T1 ≤ Z1.

This ends Step 1.

Step 2: See that nothing above T1 is known, so we can use other random variables to define the paths after

this time. So from time T1, we define new independent iid families {Ũ2
v ; v ∈ Z

2}, {Û2
v ; v ∈ Z

2}, {W̃ 2
v ; v ∈ Z

2}
and {Ŵ 2

v ; v ∈ Z
2} as follows:

Û2
v :=

{
Uv; if |v(1)− π̂1,m⌊nσ⌋(T1)| ≤ n

3
4 and T1 < v(2) ≤ T1 + n

3
4 ;

Ûv; otherwise,

Ŵ 2
v :=

{
Wv; if |v(1)− π̂1,m⌊nσ⌋(T1)| ≤ n

3
4 and T1 < v(2) ≤ T1 + n

3
4 ;

Ŵv; otherwise,

W̃ 2
v :=

{
Wv; if v(1) ≤ max0≤j≤m−1 π̃

1,j⌊nσ⌋(T1) + n
3
4 and T1 < v(2) ≤ T1 + n

3
4 ;

W̃v; otherwise,

and

Ũ2
v :=

{
Uv; if v(1) ≤ max0≤j≤m−1 π̃

1,j⌊nσ⌋(T1) + n
3
4 and T1 < v(2) ≤ T1 + n

3
4 ;

Ũv; otherwise.

Now consider π̂2,m⌊nσ⌋ as the GRDF path starting in π̂m⌊nσ⌋(T1) at time T1 using the environment {Û2
v ; v ∈

Z
2}, {Ŵ 2

v ; v ∈ Z
2}, and π̃2,0, π̃2,⌊nσ⌋, . . . , π̃(m−1)⌊nσ⌋ starting respectively in π̃0(T1), π̃

⌊nσ⌋(T1), . . . , π̃
(m−1)⌊nσ⌋(T1)

and using the environment {Ũ2
v , v ∈ Z

2} ,{W̃ 2
v ; v ∈ Z

2}. Again we have random variables T2 and Z2 for these

paths as in Proposition 5.3 and on the event {max(Z1, Z2) ≤ n
3
4 } the vector (π̃0, . . . , π̃(m−1)⌊nσ⌋, π̂m⌊nσ⌋)

coincide with (π0, . . . , πm⌊nσ⌋) up to time T2 ≤ Z1+Z2. Redefine, if necessary, (π̃
0, π̃⌊nσ⌋, . . . , π̃(m−1)⌊nσ⌋) as

(π̃2,0, π̃2,⌊nσ⌋, . . . , π̃(m−1)⌊nσ⌋) on time interval T1 < t ≤ T2. This ends Step 2.

We continue step by step replicating recursively Step k from Step k-1. We get (Tk)k≥1, (Zk)k≥1 and

{π̃k,0, π̃k,⌊nσ⌋, . . . , π̃k,(m−1)⌊nσ⌋, π̂k,m⌊nσ⌋} for k ≥ 1 such that on the event {max(Z1, ..., Zk) ≤ n
3
4 } the vector

(π̃0, . . . , π̃(m−1)⌊nσ⌋, π̂m⌊nσ⌋) coincide with (π0, . . . , πm⌊nσ⌋) up to time Tk ≤ ∑k
j=1 Zj .

Now let us define a version πm⌊nσ⌋ of π̂m⌊nσ⌋ such that it is independent of (π̃0, . . . , π̃(m−1)⌊nσ⌋) and coincide

with π̂m⌊nσ⌋ until this last path gets to distance 2n3/4 of (π̃0, . . . , π̃(m−1)⌊nσ⌋). Consider the following stopping
time

ν := inf
{
k ≥ 1; max

0≤j≤m−1
|π̂m⌊nσ⌋(Tk)− π̃j⌊nσ⌋(Tk)| ≤ 2n

3
4

}
.
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T1

T2

T3

Tν

0 ⌊nρσ⌋ 2⌊nρσ⌋ 3⌊nρσ⌋

Figure 7. Here m=4 and we consider the GRDF paths π0, π⌊nσ⌋, π2⌊nσ⌋. In the picture

π3⌊nσ⌋ remains at distance n
3
4 of its position on the previous renewal time. Moreover none of

π0, π⌊nσ⌋, π2⌊nσ⌋ go beyond n
3
4 to the right of their rightmost position at the previous renewal

time. In such scenario, ν = 4 and before time T4 we have that (π0, π⌊nσ⌋, π2⌊nσ⌋, π3⌊nσ⌋)
coincide with (π̃0, π̃⌊nσ⌋, π̃2⌊nσ⌋, π3⌊nσ⌋).

Define πm⌊nσ⌋(t) = π̂m⌊nσ⌋(t) for 0 ≤ t ≤ Tν , see Figure 7. From time Tν we have that πm⌊nσ⌋(t) evolves

only through the environment ({Ûv; v ∈ Z
2}, {Ŵv; v ∈ Z

2}) as the path starting in π̂m⌊nσ⌋(Tν) at time Tν

before coalescence with some π̃0, . . . , π̃(m−1)⌊nσ⌋. Let

π̃j
n(t) :=

π̃j⌊nσ⌋(tn2γ)

nσ
for j = 0, . . . ,m− 1

and

π̂m
n (t) :=

π̂m⌊nσ⌋(t)
nσ

, πm
n (t) :=

πm⌊nσ⌋(t)
nσ

the rescaled versions of the constructed paths.

Remark 5.1. We point out that as a direct consequence of the definitions the following properties are
satisfied:

(i) Before coalescence, the path πm
n is independent of π̃0

n, . . . , π̃
(m−1)
n .

(ii) For s ≤ M , on the event
An,s := {Tν > n2γs},

we have that π̂m
n (t) = πm

n (t) for every 0 ≤ t ≤ s.
(iii) From the induction hypothesis, item (i) and Proposition 5.1 we get

lim
n→∞

(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

) d
=

(
B0, . . . , Bm

)
.

(iv) On the event

Bn,M := ∩⌊Mn2γ⌋+1
k=1 {Zk ≤ n

3
4 }

the vector of paths (π̃0, . . . , π̃(m−1), π̂m) coincide with (π0, . . . , πm) up to a time greater than Mn2γ.

(v) Also on Bn,M , if |π̂m⌊nσ⌋(t) − π̃j⌊nσ⌋(t)| ≤ 2n
3
4 for some 0 ≤ j ≤ m − 1 and t > 0 then either there

exists some k such that Tk < t, |π̂m⌊nσ⌋(Tk) − π̃j⌊nσ⌋(Tk)| ≤ 2n
3
4 and ν ≤ k or π̂m⌊nσ⌋ and π̃j⌊nσ⌋

cannot coalesce or cross each other before min{Tk : Tk > t}.
Claim 5.1. For the event Bn,M as in Remark 5.1 we have that limn→∞ P

[
Bc
n,M

]
= 0.

Proof. Note that

P
[
Bc
n,M

]
≤ (Mn2γ + 1)P

[
Z1 > n

3
4
]
≤ (Mn2γ + 1)E[Z4

1 ]

n3

which goes to zero as n goes to infinity. �
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Now let H : Ck+1[0,M ] → R be an uniformly continuous function. We need to prove that

lim
n→∞

E
[
H
(
π0
n, . . . , π

m
n

)]
= E

[
H
(
B0, . . . , Bm

)]
.

By Remark 5.1 and Claim 5.1 we have that

E

[∣∣H
(
π0
n, . . . , π

m
n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)∣∣
]
≤ 2||H||∞P

[
Bc
n,M

]
→ 0 as n goes to infinity.

And also by Remark 5.1 and the induction hypothesis we have that

E

[
H
(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)]
→ E

[
H
(
B0, . . . , Bm

)]
.

By triangular inequality
∣∣∣E
[
H
(
π0
n, . . . , π

m
n

)]
− E

[
H
(
B0, . . . , Bm

)]∣∣∣

≤ E

[∣∣H
(
π0
n, . . . , π

m
n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)∣∣
]

+ E

[∣∣H
(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)∣∣
]

+
∣∣∣E
[
H
(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)
−H

(
B0, . . . , Bm

)]∣∣∣ ,

then it is enough to prove that

lim
n→∞

E

[∣∣H
(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)∣∣
]
= 0 .

Note that

E

[∣∣H
(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)∣∣
]

= E

[∣∣H
(
π̃0
n, . . . , π̃

(m−1)
n , π̂m

n

)
−H

(
π̃0
n, . . . , π̃

(m−1)
n , πm

n

)∣∣ Ac
n,M

]

≤ E

[∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣ Ac
n,M Bn,M

]
+ 2||H||∞P

[
Bc
n,M

]
.

Again, by Claim 5.1 we just have to prove that

lim
n→∞

E

[∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣ Ac
n,M Bn,M

]
= 0 .

Before we are able to obtain the above convergence, we need to define some stopping times. For j =
{0, . . . ,m− 1} consider

νj := inf{k ≥ 1 : |πj⌊nσ⌋(Tk)− πm⌊nσ⌋(Tk)| ≤ 2n
3
4 } ,

where the definition is based on (v) in Remark 5.1 from where we see that on Bn,M we only need to consider
approximation between paths on the renewal times. Then

E

[∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣ Ac
n,M Bn,M

]

≤
m−1∑

j=0

E

[∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣ Ac
n,M Bn,M {ν=νj}

]
.

Given ǫ > 0, since H is uniformly continuous, there exists δǫ > 0 such that: if ‖f − g‖∞ ≤ δǫ for f, g ∈
Ck=1[0,M ], then

∣∣H(f)−H(g)
∣∣ ≤ ǫ. So, if

sup
0≤t≤M

|πm
n (t)− πm

n (t)| ≤ δǫ
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we get ∣∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣∣ ≤ ǫ.

To simplify the notation let us denote Dn,j := Ac
n,M ∩ Bn,M ∩ {ν = νj}. For j = 0, . . . ,m− 1 we have that

E

[∣∣H
(
π0
n, . . . , π

(m−1)
n , πm

n

)
−H

(
π0
n, . . . , π

(m−1)
n , πm

n

)∣∣
Dn,j

]

≤ ǫ+ 2||H||∞P

[
Dn,j ∩ { sup

0≤t≤M
|πm

n (t)− πm
n (t)| > δǫ}

]

= ǫ+ 2||H||∞P

[
Dn,j ∩ { sup

0≤t≤Mn2γ

|πm⌊nσ⌋(t)− πm⌊nσ⌋(t)| > nσδǫ}
]
.

For j = 0, . . . ,m− 1 let us define

τ j := inf{t > 0 : πj⌊nσ⌋(s) = πm⌊nσ⌋(s), ∀s ≥ t}
and

τ j := inf{t > 0 : πj⌊nσ⌋(s) = πm⌊nσ⌋(s), ∀s ≥ t}.
Fix some β ∈ (32 , 2). Then for j = 0, . . . ,m− 1 and n large enough

P

[
Dn,j ∩ { sup

0≤t≤Mn2γ

|πm⌊nσ⌋(t)− πm⌊nσ⌋(t)| > nσδǫ}
]

is bounded above by

P

[
Dn,j ∩ { sup

0≤t≤Mn2γ

|πm⌊nσ⌋(t)− πm⌊nσ⌋(t)| > nσδǫ} ∩ {τ j , τ j ∈ [Tν , Tν + nβγ]}
]

+ P

[
Dn,j ∩ {τ j > Tν + nβγ]}

]
+ P

[
Dn,j ∩ {τ j > Tν + nβγ]}

]
. (5.2)

The first probability in (5.2) is equal to

P

[
Dn,j ∩ { sup

Tνj
≤t≤Mn2γ∧(Tνj

+nβγ)

|πm
n (t)− πm

n (t)| > nσδǫ} ∩ {τ j , τ j ∈ [Tνj , Tνj + nβγ]}
]

which is bounded above by

P

[
Dn,j ∩ { sup

Tνj
≤t≤Mn2γ∧(Tνj

+nβγ)

|πm
n (t)− πm

n (Tνj )| >
nσδǫ
2

} ∩ {τ j , τ j ∈ [Tνj , Tνj + nβγ]}
]

+ P

[
Dn,j ∩ { sup

Tνj
≤t≤Mn2γ∧(Tνj

+nβγ)

|πm
n (t)− πm

n (Tνj )| >
nσδǫ
2

} ∩ {τ j , τ j ∈ [Tνj , Tνj + nβγ]}
]

≤ P

[
sup

0≤t≤nβγ

|πm⌊nσ⌋(t)− πm⌊nσ⌋(0)| > nσδǫ
2

]
+ P

[
sup

0≤t≤nβγ

|πm⌊nσ⌋(t)− πm⌊nσ⌋(0)| > nσδǫ
2

]
,

where for the inequality we have used the Markov property on the renewal times. Both terms in the right
hand side of the previous inequality are bounded above by

P

[
sup

0≤t≤nβγ

|π0(t)− π0(0)|
σn

β
2

>
n1−β

2 δǫ
2

]
,

which, by the choice of β < 2 and the invariance principle proved in Proposition 5.1, converges to zero as
n → ∞. Thus the first probability in (5.2) converges to zero as n → ∞.

Now it remains to deal with the second and third terms in (5.2). Since

|πj⌊nσ⌋(Tvj )− πm⌊nσ⌋(Tvj )| ≤ 2n
3
4
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on Dn,j , then by Corollary 4.1 there is some constant C such that

P

[
Dn,j ∩ {τ j > Tνj + nβγ}

]
≤ 2Cn

3
4

n
β
2

which converges to zero as n → ∞ by the choice of β > 3/2. Even though πj⌊nσ⌋ and πj⌊nσ⌋ are independent
from time Tνj until coalescence, we can prove the result stated in Corollary 4.1 for these paths, following the

same lines of the proof of that corollary. Thus we get a constant C such that

P

[
Dn,j ∩ {τ j > Tνj + nβγ}

]
≤ 2Cn

3
4

n
β
2

,

which as before converges to zero as n → ∞.
Hence

lim
n→∞

P

[
Ac

n,M ∩ Bn,M ∩ {ν = νj} ∩ { sup
0≤t≤Mn2γ

|πm
n (t)− πm

n (t)| > nσδǫ}
]
= 0

which finishes the proof. �

6. The condition B

We prove condition B of Theorem 2.2 at the end of this section. Before we prove it we need to introduce
some definitions and stablish some preliminary results.

Take K ∈ N such that P[W(0,0) ≤ K] = 1, recall that we are supposing that the distribution of W(0,0) has

finite support. For u ∈ Z
2 define

CK(u) := {u(1), . . . , u(1) +K − 1} × {u(2)−K + 1, . . . , u(2)} .

We say that the box CK(u) is good if for all v ∈ CK(u), Wv = 1 and v is open.

Remark 6.1. We point out that when CK(u) is good then there are no paths crossing it and touching either
(−∞, u(1)]× {u(2)} or [u(1) +K,∞)× {u(2)}.

Now let us define the following random variables

g+K(u) := inf{n ≥ 1;CK(u+ (n− 1)Ke1) is good},
and

g−K(u) := inf{n ≥ 1;CK(u− (nK − 1)e1) is good}.

Therefore CK

(
u + Kg+K(u)e1

)
is the first translation of CK(u) to the right of u by multiples of K that is

good and CK

(
u−Kg−K(e1)

)
is the first translation of CK(u) to the left of u by multiples of K that is good.

The first Lemma below allow us to consider the counting variables ηXn(t0, t, a, b) only on integer starting
times t0.

Lemma 6.1. Take a < b ∈ R, Xn as defined in (2.2) with γ and σ as in Proposition 5.1 and ηXn(t0, t, a, b)
as in the Theorem 2.2. Then for all ǫ > 0 there exits a constant Mǫ, not depending on a, b, γ and σ, such
that

P
[
|ηXn(t0, t, a, b)| > 1

]
≤ P

[
|ηX (0, n2γt, nσa−Mǫ, nσb+Mǫ)| > 1

]
+ ǫ

for all t0 ∈ R, t > 0 and n ≥ 1.
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Proof. Note that any path that cross [nσa, nσb]× {n2γt0} also cross the interval
[
nσa−Kg−K

(
(⌊nσa⌋, ⌊n2γt0⌋+ 1)

)
, nσb+Kg+K

(
(⌊nσb⌋+ 1, ⌊n2γt0⌋+ 1)

)]
× {⌊n2γt0⌋+ 1}.

Then

P[|ηXn(t0, t, a, b)| > 1]

= P

[
|ηX (n2γt0, n

2γt, nσa, nγb)| > 1]

≤ P

[∣∣ηX (⌊n2γt0⌋), n2γt, nσa−Kg−
(
(⌊nσa⌋, ⌊n2γt0⌋+ 1)

)
, nσb+Kg+

(
(⌊nσb⌋+ 1, ⌊n2γt0⌋+ 1)

)∣∣ > 1
]
.

Take Mǫ large enough such that

P

[
Kg−

(
(⌊nσa⌋, ⌊n2γt0⌋+ 1)

)
> Mǫ] = P

[
Kg+

(
(⌊nσb⌋+ 1, ⌊n2γt0⌋+ 1)

)
> Mǫ

]
≤ ǫ

2
.

Then by the translation invariant we get

P[|ηXn(t0, t, a, b)| > 1] ≤ P
[
|ηX (⌊n2γt0⌋, n2γt, nσa−Mǫ, nσb+Mǫ)| > 1

]
+ ǫ

= P
[
|ηX (0, n2γt, nσa−Mǫ, nσb+Mǫ)| > 1

]
+ ǫ.

�

Our next result says that the number of paths in X starting before time t that cross a finite length interval
at time t have finite absolute moment of any order.

Lemma 6.2. Let us define X t− as the set of paths in X that start before or at time t and by Xt−(t) its
values on time t. Then we have that

E

[∣∣X t−(t) ∩ [a, b]
∣∣k
]
< ∞

for a < b ∈ R and k ≥ 1.

Proof. We will assume that t = a = 0 and b = 1. The general case is analogous. For j ∈ Z let us define
ζj := inf

{
n ≥ 0;

∑n
i=0 {(j,−i) is open } = K

}
and the random region D as

D :=
{
v ∈ Z

2;−Kg−K((0, 0)) ≤ v(1) ≤ 1 +Kg+K((0, 0)) and − ζv(1) ≤ v(2) ≤ 0
}
.

In next figure we show a possible face of D.

0 1

ζ0 = 7

ζ1 = 5

t = 0

Figure 8. In this picture we assume that K = 4. The blacks balls represent open points
and the white ones represent closed points. The region D is given by the set of sites inside
the contour in bold. Note that g+4 = 3 and g−4 = 2.
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Note that there is no paths crossing [0, 1]× {0} without landing in D, hence

∣∣X 0−(0) ∩ [0, 1]
∣∣ ≤

∣∣D
∣∣ =

Kg+((1,0))∑

j=1

ζj +

Kg−((0,0))∑

j=0

ζ−j

Now using the Lemma A.1 we have that E
[∣∣X 0−(0) ∩ [0, 1]

∣∣k
]
< ∞ for all k ≥ 1. �

We are going to need another result about renewal times. Here we need to define the renewal times for

a finite collection of paths in X t− such that all we know about them is that they cross an interval [a, b] at

time t. Therefore we are interested in {π ∈ X t− : π(t) ∈ [a, b]} which is almost surely finite by Lemma 6.2

since it is the set of paths in X t− whose projection at time t is in X t−(t) ∩ [a, b]. The proof is analogous to
the proof of Proposition 3.1 and it will be omitted.

Lemma 6.3. Fix a < b and consider the collection of paths Γ = {π ∈ X t− : π(t) ∈ [a, b]}. Then there exist
random variables T0 and Z0 such that

(i) t < T0 and T0 − t ≤ Z0.
(ii) T0 is a common renewal time for all paths in Γ.
(iii) supπ∈Γ supt≤s≤T0

|π(s)− π(t)| ≤ Z0.

(iv) For all k ∈ N we have that E
[
(Z0)

k
]
< ∞.

We need one more result before we prove condition B of Theorem 2.2.

Lemma 6.4. There exists a constant C1 > 0 such that

P
[
|ηX (0, k, 0,m)| > 1

]
≤ C1m√

k
,

for every m ≥ 1.

Proof. Note that

P
[
|ηX (0, k, 0,m)| > 1

]
≤

m∑

i=1

P
[
|ηX (0,k,i−1,i)| > 1

]
= mP

[
|ηX (0,k,0,1)| > 1

]
,

and

P
[
|ηX (0, k, 0, 1)| > 1

]
=

∞∑

j=2

P
[
|ηX (0, k, 0, 1)| > 1

∣∣|X 0−(0) ∩ [0, 1]| = j
]
P
[∣∣|X 0−(0) ∩ [0, 1]| = j

]
(6.1)

Given |X 0−(0) ∩ [0, 1]| = j, let π1, . . . , πj be the paths in X 0− such that πi(0) ∈ [0, 1] for i = 1, . . . , j and
define

νi,i+1 := inf{n ≥ 1 : πi(t) = πi+1(t), for all t ≥ n}.

See that

P
[
|ηX (0, k, 0, 1)| > 1

∣∣|X 0−(0) ∩ [0, 1]| = j
]
≤

j−1∑

i=1

P
[
|νi,i+1 > k

∣∣|X 0−(0) ∩ [0, 1]| = j
]
. (6.2)
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Let T0 and Z0 be random variables as in Lemma 6.3. Then for i = 1, . . . , j we have that

P

[
νi,i+1 > k

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

= P

[
νi,i+1 > k, T0 >

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
+ P

[
νi,i+1 > k, T0 ≤

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤ P

[
T0 >

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
+ P

[
νi,i+1 > k, T0 ≤

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤
2E

[
T0

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

k
+ P

[
νi,i+1 > k, T0 ≤

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
. (6.3)

Now define νT0
i,i+1 := inf{t ≥ T0;πi(s) = πi+1(s) for all s ≥ t}. Then we have that

P

[
νi,i+1 > k, T0 ≤

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

=
∞∑

l=1

P

[
νi,i+1 > k, T0 ≤

k

2
,
∣∣πi(T0)− πi+1(T0)

∣∣ = l
∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤
∞∑

l=1

P

[
νT0
i,i+1 >

k

2
,
∣∣πi(T0)− πi+1(T0)

∣∣ = l
∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

=
∞∑

l=1

P

[
νT0
i,i+1 >

k

2

∣∣∣
∣∣πi(T0)− πi+1(T0)

∣∣ = l
]
P

[∣∣πi(T0)− πi+1(T0)
∣∣ = l

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
. (6.4)

By Collorary 4.1 we have that

P

[
νT0
i,i+1 >

k

2

∣∣∣
∣∣πi(T0)− πi+1(T0)

∣∣ = l
]
≤ 2lC√

k
. (6.5)

Replacing (6.5) in (6.4) we get

P

[
νi,i+1 > k, T0 ≤

k

2

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤
∑

l≥1

2lC√
k
P

[∣∣πi(T0)− πi+1(T0)
∣∣ = l

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

=
2C√
k
E

[∣∣πi(T0)− πi+1(T0)
∣∣
∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

(6.6)

(6.7)

Since

∣∣πi(T0)− πi+1(T0)
∣∣ ≤

∣∣πi(T0)− πi(0)
∣∣+

∣∣πi(0)− πi+1(0)
∣∣+

∣∣πi+1(0)− πi+1(T0)
∣∣ ≤ 2Z0 + 1 ,

we have that (6.6) is bounded above by

2C√
k
E

[
2Z0 + 1

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
. (6.8)
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Now replacing (6.8) in (6.3) we obtain,

P

[
νi,i+1 > k

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤
2E

[
Z0

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

k
+

2C√
k
E

[
2Z0 + 1

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

≤
2(1 + C)E

[
2Z0 + 1

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]

√
k

. (6.9)

Hence by (6.2) and (6.9),

P

[∣∣ηX (0, k, 0, 1)
∣∣ > 1

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣j
]

≤ 2(1 + C)√
k

j E
[
2Z0 + 1

∣∣∣
∣∣X 0−(0) ∩ [0, 1]

∣∣ = j
]
. (6.10)

Replacing (6.10) in (6.1) we get that P[|ηX (0, k, 0, 1)| > 1] is dominated by

2(1 + C)√
k

∞∑

j=2

jE
[
2Z0 + 1

∣∣|X 0−(0) ∩ [0, 1]| = j
]
P
[
|X 0−(0) ∩ [0, 1]| = j

]
(6.11)

Note that
∞∑

j=2

jE
[
2Z0 + 1

∣∣|X 0−(0) ∩ [0, 1]| = j
]
P
[
|X 0−(0) ∩ [0, 1]| = j

]

≤
( ∞∑

j=2

j2P
[∣∣|X 0−(0) ∩ [0, 1]| = j

]) 1
2
( ∞∑

j=2

E
[
2Z0 + 1

∣∣|X 0−(0) ∩ [0, 1]| = j
]2
P
[
|X 0−(0) ∩ [0, 1]| = j

]) 1
2

≤
( ∞∑

j=2

j2P
[∣∣|X 0−(0) ∩ [0, 1]| = j

]) 1
2
( ∞∑

j=2

E
[
(2Z0 + 1)2

∣∣|X 0−(0) ∩ [0, 1]| = j
]
P
[
|X 0−(0) ∩ [0, 1]|

]) 1
2

= E

[∣∣X 0−(0) ∩ [0, 1]
∣∣2
] 1

2
E
[
(2Z0 + 1)2

] 1
2 . (6.12)

Take C1 := 2(1 + C)E
[
|X 0−(0) ∩ [0, 1]|2] 12E

[
(2Z0 + 1)2

] 1
2 which is finite by Lemma 6.2 and Lemma 6.3.

Replacing (6.12) in (6.11) we have that

P[|ηX (0, k, 0, 1)| > 1] ≤ C1√
k
,

which finishes the proof. �

Proof of the condition B of the Theorem 2.2. Fix ǫ > 0 and take Mǫ as in the statement of Lemma 6.1, from
that result we get that

sup
t0,a∈R

P
[
|ηXn(t0, t, a− ǫ, a+ ǫ)| > 1

]

is bounded above by

P
[
|ηX (0, n2γt, nσ(a− ǫ)−Mǫ, nσ(a+ ǫ) +Mǫ)| > 1

]
+ ǫ .

Then by Lemma 6.4

sup
t>β

sup
t0,a∈R

P
[
|ηXn(t0, t, a− ǫ, a+ ǫ)| > 1

]
≤ C1

n
√
γβ

2(nσǫ+Mǫ) + ǫ.
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Hence

lim sup
n→∞

sup
t>β

sup
t0,a∈R

P
[
|ηXn(t0, t, a− ǫ, a+ ǫ)| > 1

]
≤

(2C1σ√
βγ

+ 1
)
ǫ → 0 as ǫ → 0+.

So we have condition B. �

7. The condition E

Following [NRS05], the verification of condition E is a consequence of Lemmas 7.1 and 7.2 which are
versions of respectively Lemmas 6.2 and 6.3 in that paper. Lemmas 7.1 follows from Lemma 7.4 below as
Lemma 6.2 follows from Lemma 6.4 in [NRS05]. The proof of the version of Lemma 7.2 made in [NRS05]
for the Nonsimple Random Walk could be adapted for our process.

We start making some definitions. For a set of paths Y ⊂ Π define

(i) Y s− := the subset of paths in Y such that start before or at time s;

(ii) For A ⊂ R define Y s−,A := {π ∈ Y s−;π(s) ∈ A};
(iii) For s ≤ t and A ⊂ R define Y s−(t) := {π(t);π ∈ Y s−} and Y s−,A(t) := {π(t);π ∈ Y s−,A}.

Lemma 7.1. Let Zt0 be any subsequential limit of {X t−0
n }. For any ǫ > 0, Zt0(t0 + ǫ) is almost surely locally

finite and

E

[∣∣Zt0(t0 + ǫ) ∩ (a, b)
∣∣
]
≤ (b− a)C4√

ǫ
.

Lemma 7.2. Let Zt0 be any subsequential limit of {X t−0
n } and ǫ > 0. Denote by Z(t0+ǫ)T

t0
the set of paths in

Zt0 that start before time t truncated before time t0 + ǫ. Then Z(t0+ǫ)T
t0

is distributed as coalescing Brownian

motions starting from the random set Zt0(t0 + ǫ) ⊂ R
2.

As pointed out above, for the proof of Proposition 7.2 see Lemma 6.3 in [NRS05]. The remain of the
section is devoted to state and prove Lemma 7.4 below, but we first need the following result:

Lemma 7.3. There exists a constant C2 such that

E

[∣∣∣X 0−(t) ∩ [0, 1)
∣∣∣
]
≤ C2√

t

for all t > 0.

Proof. Fix M ∈ Z+ arbitrarily and note that

ME

[∣∣∣X 0−(t) ∩ [0, 1)
∣∣∣
]
= E

[∣∣∣X 0−(t) ∩ [0,M)
∣∣∣
]

=
∑

i∈Z
E

[∣∣∣X 0−,[iM,(i+1)M)(t) ∩ [0,M)
∣∣∣
]

=
∑

i∈Z
E

[∣∣∣X 0−,[0,M)(t) ∩ [iM, (i+ 1)M)
)∣∣∣
]
= E

[∣∣∣X 0−,[0,M)(t)
∣∣∣
]
,
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where the third equality above follows from the symmetry of the GRDF paths. Since X 0−,[0,M)(0) has at
least M points which are 0,1,2,...,M-1, then

ME

[∣∣∣X 0−(t) ∩ [0, 1)
∣∣∣
]

=
∞∑

j=M

E

[∣∣X 0−,[0,M)(t)
∣∣
∣∣∣
∣∣X 0−,[0,M)(0)

∣∣ = j
]
P

[∣∣X 0−,[0,M)(0)
∣∣ = j

]
.

From here the proof is very close to that of Lemma 6.4, given |X 0−(0) ∩ [0,M)| = j, j ≥ M , let π1, . . . , πj
be the paths in X 0− such that 0 ≤ π1(0) < π2(0) < ... < πj(0) < M for i = 1, . . . , j and define

νi,i+1 := inf{n ≥ 1 : πi(t) = πi+1(t), for all t ≥ n}.
Then

E

[∣∣X 0−,[0,M)(t)
∣∣
∣∣∣
∣∣X 0−,[0,M)(0)

∣∣ = j
]
≤ E

[
1 +

j−1∑

i=1

1{νi,i+1>t}
∣∣∣|X 0−,[0,M)(0)

∣∣ = j
]
.

Note that |πi(0) = πi+1(0)| ≤ 1 because 0, 1, ...,M − 1 ∈ X 0−,[0,M)(0), then by Lemma 6.3 and (6.9) we have
that there exists a constant C > 0 and a integrable random variable Z0, both not depending on M , such
that

P
[
νi,i+1 > t

∣∣∣|X 0−,[0,M)(0)
∣∣ = j

]
≤ 2(1 + C)√

t
E

[
2Z0 + 1

∣∣|X 0−,[0,M)(0)
∣∣ = j

]

≤ 2(1 + C)√
t

E

[
3Z0

∣∣|X 0−,[0,M)(0)
∣∣ = j

]

=
C̃√
t
E

[
Z0

∣∣|X 0−,[0,M)(0)
∣∣ = j

]
.

Hence

ME

[∣∣∣X 0−(t) ∩ [0, 1)
∣∣∣
]
≤ 1 +

C̃√
t

∞∑

j=M

jE
[
Z0

∣∣X 0−,[0,M)(0)
∣∣ = j

]
P

[∣∣X 0−,[0,M)(0)
∣∣ = j

]

which as in (6.12) can be shown to be bounded above by

1 +
C̃√
t

(
E

[∣∣X 0−,[0,M)(0)
∣∣2
]) 1

2
(
E[(Z0)

2]
) 1

2

≤ 1 +
C̃√
t

(
ME

[ M∑

i=1

∣∣X 0−,[i−1,i](0)
∣∣2
]) 1

2
(
E[(Z0)

2]
) 1

2

= 1 +
C̃√
t
M

(
E

[∣∣X 0−,[0,1](0)
∣∣2
]) 1

2
(
E[(Z0)

2]
) 1

2
.

Thus

E

[∣∣∣X 0−(t) ∩ [0, 1)
∣∣∣
]
≤ 1

M
+

C2√
t
,

where C2 := C̃
(
E[(Z0)

2]
) 1

2
(
E

[∣∣X 0−,[0,1](0)
∣∣2
]) 1

2
which is finite by Lemma 6.2. Since M is arbitrary we

obtain the bound in the statement. �
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Lemma 7.4. There exists a constant C3, independent of M , such that

E

[∣∣X 0−

n (t) ∩ [0,M)
∣∣
]
≤ MC3√

t
,

for every n ≥ 1 and M ≥ 1.

Proof. Using Lemma 7.3 we have that for all n ≥ 1

E

[∣∣X 0−(n2γt) ∩ [0, nσM)
∣∣
]
= nσME

[∣∣X 0−(n2γt) ∩ [0, 1)
∣∣
]

≤ nσMC2√
n2γt

=
γ−1/2σMC2√

t
.

�

8. The condition T

In this section we will prove the condition T in Theorem 2.2 which follows from Proposition 8.1 in the end
of this section. The idea behind the proof comes from [NRS05]. Technical details related to the renewals
times impose an extra difficult - not much really - to the proof given in [NRS05]. Even though the proof is
very similar, we present it here for the sake of completeness.

Recall the definitions from the statement of condition T in Section 2. By homogeneity of the GRDF all
the estimates on AXn(x0, t0; ρ, t) are uniform on (x0, t0) ∈ R

2. Here we only consider (x0, t0) = (0, 0) leaving
the verification for other choices of t0 to the reader. The case nγt0 /∈ Z demands an extra care, but can be
dealt analogously as done the previous sections to deal with paths crossing some time level not necessarily
on the rescaled space/time lattice. With this in mind, condition T is a consequence of the next result.

Proposition 8.1. Denote by A+
Xn

(x0, t0; ρ, t) the event that Xn contains a path touching both R(x0, t0; ρ, t)
and the right boundary of the rectangle R(x0, t0; 20ρ, 4t). Then

lim
t→0+

1

t
lim sup
n→∞

P

[
A+

Xn
(0, 0; ρ, t)

]
= 0.

Before we prove Proposition 8.1 we need some lemmas whose proofs will be postponed to Appendix C.
The first Lemma gives an uniform bound on the overshoot distribution on the renewal times for paths in the
GRDF.

Lemma 8.1. For x ∈ Z− let (T x
i )i≥0 be a sequence of renewal times of the paths π(x,0) such that there exist

a sequence of i.i.d. random variables (Zx
i )i≥1 with the following property

∣∣∣πx(T x
i )(1)− πx(T x

i−1)(1)
∣∣∣ ≤ Zx

i for all i ≥ 1,

and E
[
(Zx

1 )
k+2

]
< ∞ for a fixed k ≥ 1. Define Y x

i , i ≥ 0, as the first component of the path π(x,0) on the
random time T x

i . Also define νx+ := inf{n ≥ 1;Y x
n ≥ 1}. Then we have that

sup
x∈Z−

E
[
(Y x

νx+
)k
]
< ∞.

A path in the GRDF is obtained from linear interpolation between open points in Z
2, we say that these

open points defining the path are the ones visited by the path. The next Lemma states that the probability
of having paths that cross a box R(0, 0;nρσ, n2tγ) but do not visit any point in R(0, 0; 2nρσ, 2n2tγ) goes to
zero as n → ∞.
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Lemma 8.2. Let D(nρσ, n2tγ) be the event that paths in X cross R(0, 0;nρσ, n2tγ) without visit any point
in R(0, 0; 2nρσ, 2n2tγ), then

lim
n→∞

P

[
D(nρσ, n2tγ)

]
= 0.

Lemma 8.3. Let x, y, x1, . . . , xm be points in Z with x < y. Define u = (x, 0) and v = (y, 0). Con-
sider the random times (Tn)n≥1, (τn(u))n≥1 and (τn(v))n≥1 as introduced in Corollary 3.1 for the points
(x1, 0),. . . ,(xm, 0),u and v. Put T0 = τ0(u) = τ0(v) = 0 and let π̃u and π̃v be the linear interpolations of
(Xτn(u)(u))n≥0 and (Xτn(v)(v))n≥0 respectively. Then for ρ > 0 and the stopping time

νx,y,ρ+ := inf{s ≥ 0; π̃x(s)− π̃y(s) ≥ nρσ},
there exists a constant C(t, ρ) depending only on t and ρ such that for all n large enough we have that

P
[
νx,y,ρ+ < νx,y ∧ (n2tγ)

]
<

C(t, ρ)

n

where νx,y is the first time that π̃x and π̃y coalesce.

Remark 8.1. The paths π̃u and π̃v in the statement of Lemma 8.3 are not paths of the GRDF. They are
obtained from linear interpolation only on the points visited by the GRDF paths on the renewal times.

Proof of Proposition 8.1. Let π1, π2, π3, π4 be the paths that start in 5⌊nρσ⌋, 9⌊nρσ⌋, 13⌊nρσ⌋ and 17⌊nρσ⌋
respectively at time zero. Let us denote the event that πi stay within a distance nρσ of πi(0) until time

2tn2γ by Bn,t
i for i = 1, . . . , 4, see Figure 9 below. From the invariance principle we have that

lim
n

P[(Bn,t
i )c] = P[ sup

s∈[0,t]
|Bs| > ρ] ≤ 4e−

ρ2

2t

for all i = 1, . . . , 4. Then

1

t
lim
n→∞

P

[
(Bn,t

i )c
]
→ 0 as t → 0+. (8.1)

See that

lim
t→0+

1

t
lim sup
n→∞

P

[
A+

Xn
(0, 0; ρ, t)

]
= lim

t→0+

1

t
lim sup
n→∞

P

[
A+

X (0, 0; ρnσ, tn
2γ)

]

≤ lim
t→0+

1

t
lim sup
n→∞

P

[
D(nρσ, tn2γ)

]
+ 4 lim

t→0+

1

t
lim
n→∞

P

[
(Bn,t

1 )c
]
+

+ lim
t→0+

1

t
lim sup
n→∞

P

[
A+

X (0, 0; ρnσ, tn
2γ),∩4

i=1B
n,t
i ,

(
D(nρσ, tn2γ)

)c]
.

By Lemma 8.2 we have that

lim sup
n→∞

P

[
D(nρσ, tn2γ)

]
= 0 , for every t > 0

and by (8.1)

lim
t→0+

1

t
lim
n→∞

P

[
(Bn,t

1 )c
]
= 0 .

So we only have to prove, see Figure 9, that for every t > 0

lim sup
n→∞

P

[
A+

X (0, 0; ρnσ, tn
2γ),∩4

i=1B
n,t
i , (D(nρσ, tn2γ))c

]
= 0 . (8.2)
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(x,m)

4n2γt

2n2γt

n2γt

3ρ̃ 4ρ̃ 5ρ̃ 6ρ̃ 7ρ̃ 8ρ̃ 9ρ̃ 10ρ̃ 11ρ̃ 12ρ̃ 13ρ̃ 14ρ̃ 15ρ̃ 16ρ̃ 17ρ̃ 18ρ̃ 19ρ̃ 20nρσ

Figure 9. Realization of A+
X (0, 0; ρnσ, tn

2γ) ∩ ∩4
i=1B

n,t
i where A+

X (0, 0; ρnσ, tn
2γ) occurs

because the path π(x,m), for some (x,m) ∈ R(0, 0; ρnσ, tn2γ), touchs the right boundary of
the rectangle R(0, 0; 20ρnσ, 4tn2γ). Notation: ρ̃ = ⌊nσρ⌋.

Fix some (x,m) ∈ R(0, 0; 2nρσ, 2n2tγ) and take (Ti)i≥1 renewal times introduced in the Corollary 3.2 for

the points (5⌊nρσ⌋, 0),(9⌊nρσ⌋, 0),(13⌊nρσ⌋, 0), (17⌊nρσ⌋, 0) and the (x,m). We will denote by
(
Y

(x,m)
i

)
i≥0

the random walks built as the first component of the path π(x,m) on the renewal times (Ti)i≥1. Take the

stopping times ν
(x,m)
j for j = 1, . . . , 5 as the first time that

(
Y

(x,m)
i

)
i≥0

exceeds (4j − 1)⌊nρσ⌋; and ν(x,m)

the first time that π(x,m) exceeds 20nρσ. Then

P
[
ν(x,m) < 4n2tγ,∩4

i=1B
n,t
i

]
≤ P

[
T
ν
(x,m)
5

< 4n2tγ,∩4
i=1B

n,t
i

]
+ P

[
ν(x,m) < 4n2tγ, T

ν
(x,m)
5

≥ 4n2tγ
]
. (8.3)

Note that on the event
{
ν(x,m) < 4n2γt, T

ν
(x,m)
5

≥ 4n2tγ
}
the path π(x,m) cross the interval

(
19⌊nρσ⌋, 20nρσ

)

without renewal before time n2tγ. Because the displacement between consecutive renewal times is bounded
by some random variable Z with finite moments, and up to time n2γt the number of renewals is bounded
by n2γt we have that

P
[
ν(x,m) < 4n2γt, T

ν
(x,m)
5

≥ 4n2tγ
]
≤ n2tγP

[
Z > nρσ

]
≤ n2tγE[Z6]

(nρσ)6
≤ C1

n4
. (8.4)

We also have

P

[
T
ν
(x,m)
5

< 4n2tγ,∩4
i=1B

n,t
i

]

≤ P

[
Y

(x,m)

ν
(x,m)
j

≤
(
4j − 1

2

)
⌊nρσ⌋, j = 1, ...5, T

ν
(x,m)
5

< 4n2tγ,∩4
i=1B

n,t
i

]
+

5∑

j=1

P

[
Y

(x,m)

ν
(x,m)
j

>
(
4j − 1

2

)
⌊nρσ⌋

]

≤ P

[
Y

(x,m)

ν
(x,m)
j

≤
(
4j − 1

2

)
⌊nρσ⌋, j = 1, ...5, T

ν
(x,m)
5

< 4n2tγ,∩4
i=1B

n,t
i

]
+ 5 sup

x∈Z−

P

[
Y

(x,m)
νx+

>
⌊nρσ⌋

2

]
. (8.5)

By the Lemma 8.1 and Corollary 3.2 there exists a constant C2 such that

sup
x∈Z−

P

[
Y

(x,m)
νx+

>
⌊nρσ⌋

2

]
≤ C2

n4
.
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Using the strong Markov property and Lemma 8.3 we get a constant C3 such that

P

[
Y

(x,m)

ν
(x,m)
j

≤
(
4j − 1

2

)
⌊nρσ⌋, j = 1, ...5, T

ν
(x,m)
5

< 4n2tγ,∩4
i=1B

n,t
i

]

≤ P

[
ν+x,y,ρ < νx,y ∧ (n2tγ)

]4
≤ C3

n4
.

Hence by (8.5)

P

[
T
ν
(x,m)
5

< 4n2tγ,∩4
iB

n,t
i

]
≤ C3

n4
+

5C2

n4
. (8.6)

Now we can go back to (8.3), use (8.4), (8.5) and (8.6) to conclude that

P
[
ν(x,m) < 4n2tγ,∩4

i=1B
n,t
i

]
≤ (5C1 + C2 + C3)

n4
.

Therefore we can estimate the probability in (8.2) as

P

[
A+

X (0, 0; ρnσ, tn
2γ),∩4

i=1B
n,t
i , {D(nρσ, n2tγ)}c

]

≤ P

[
∃(x,m) ∈ R(0, 0; 2nρσ, 2n2tγ); ν(x,m) < 4n2tγ,∩4

i=1B
n,t
i

]
.

Since R(0, 0; 2nρσ, 2n2tγ) has 8tρσγn3 points we have that

lim sup
n→∞

P

[
A+

X (0, 0; ρnσ, tn
2γ),∩4

i=1B
n,t
i , {D(nρσ, n2tγ)}c

]

≤ lim sup
n→∞

(8tρσγn3)P
[
ν(x,m) < 4n2tγ,∩4

i=1B
n,t
i

]

≤ lim sup
n→∞

(8tρσγn3)
(5C1 + C2 + C3)

n4
= 0.

�

Appendix A. Well posedness

In this section we will see that X n, the closure of Xn, is a compact set in (Π, d) for all n ≥ 1. Therefore
we are indeed working with random elements of (H, dH) where the Brownian web is defined. Other result
we present here is that any path in X n coincide locally with a path in Xn. This is useful when we verify the
conditions of the Theorem 2.2 because we can work with Xn instead of X n. We start stating and proving
some lemma.

Lemma A.1. Let N be some positive integer random variable and (ζn)n≥1 a non-negative sequence of

identically distributed random variables. If for some k ≥ 1, δ > 0 and l > (k+2)(1+δ)
δ we have E[ζ

k(1+δ)
1 ] and

E[N l] finite, then for S :=
∑N

n=1 ζn we get that E[Sk] is also finite.

Proof. We have that 0 ≤ S ≤ N max1≤j≤N ζj what implies that Sk ≤ Nk max1≤j≤N ζkj ≤ Nk
∑N

j=1 ζ
k
j .

Hence

E
[
Sk

]
≤ E

[
Nk

N∑

j=1

ζkj

]
=

∞∑

n=1

nk
n∑

j=1

E
[

{N=n}ζ
k
j

]
.
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Applying Cauchy-Schwartz inequality we get

E
[
Sk

]
≤

∞∑

n=1

nk
n∑

j=1

E
[
ζ
k(1+δ)
j

] 1
1+δP[N = n]

δ
1+δ = E

[
ζ
k(1+δ)
1

] 1
1+δ

∞∑

n=1

nk+1
P[N = n]

δ
1+δ .

Now applying Chebyshev inequality we get

E[Sk] ≤ E
[
ζ
k(1+δ)
1

] 1
1+δ

∞∑

n=1

nk+1E[N
l]

δ
1+δ

n
lδ

1+δ

= E
[
ζ
k(1+δ)
1

] 1
1+δE[N l]

δ
1+δ

∞∑

n=1

1

n
lδ

1+δ
−(k+1)

< ∞.

�

Proposition A.1. We have that X , the closure in (H, dH) of X , is a compact set of (Π, d).

Proof. Using Lemma 6.2 we have that the number of paths in X that cross [a, b] × {t} is finite. From this
fact we get Proposition A.1 following the proof given in [NRS05]. �

Proposition A.2. Let (π, t0) ∈ X then

(i) if t0, π(t0) ∈ R then (π, t0) ∈ X ,
(ii) if t0 = −∞ then for each s ∈ R there exists v = (v1, v2) such that v2 ≤ s and π(t) = πv(t) for all

t ≥ s.

Proof. Item (i) is an immediate consequence of the fact that if (π, t0) ∈ X then (t0, π(t0)) ∈ Z
2.

To proof of the item (ii) fix s ∈ R and let (πn, tn) be a sequence in X that d((πn, tn), (π, t0)) → 0 as n → ∞.
We can suppose that tn < s because we have that tn → t0 = −∞. Now for S > s there exists a < b ∈ R such
that πn(t) ∈ [a, b] for all t ∈ [s, S] and all n large enough because Φ(πn, tn) converges uniformly to Φ(π, t0).
Take a partition take {ri}ki=1 a partition of [s, S] such that 0 < ri+1 − ri < 1. Again, there exists a finite

number of paths in X that pass on
⋃k

i=1[a, b]× {ri}. Given that πn(ri) ∈ Z and converges to π(ri), we have
πn(ri) = π(ri) for all n large enough. Using that and the linearity of the paths in [ri, ri+1] we can get some
M such that πn(t) = πM (t) for all n ≥ M and t ∈ [s, S]; hence πM (t) = π(t) for all t ∈ [s1, s2]. Put

C :=
{
(πv, v(2)) ∈ X ; v2 ≤ s and πv(t) = π(t) for all t ∈ [s, S] for some S > s

}
.

For (πv, v(2)) ∈ C let us define sπv := sup{S > s;π(t) = πv(t) for all t ∈ [s, S]}. Note that there exists some
(πv, v(2)) ∈ C such that sπv = ∞ because there is only a finite number of paths in X that coincide with π
in s and for all S > s we get some (πu, u(2)) in C such that sπu ≥ S. �

Appendix B. Proof the technical estimates on coalescing times

This section is devoted to the proofs of Lemmas 4.2 and 4.3. The proofs rely on the use of a Skorohood’s
Representation of Y m as done in [CFD09] and [CV14] and already introduced in this paper on Section 4. So
recall from that section the definitions of (B(s))s≥0 and (Si)i≥0.

Proof of Lemma 4.2. Let us start proving item (i). Define

C :=
{
n ∈ [1, νm(−∞,0]] ∩ N; (B(s))s≥0 visits (−∞, 0] in the interval (Sn−1, Sn]

}
.

For n ∈ C two things may occur:

1. Un(B(Sn−1))+B(Sn−1) = 0. This implies that n = νm(−∞,0] because (B(s))s≥0 visits (−∞, 0] in time

interval (Sn−1, Sn].
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2. Un(B(Sn−1))+B(Sn−1) < 0. In this case with probability bigger than a positive constant β, (B(s))s≥0

will leave the interval [Un(B(Sn−1))+B(Sn−1), Vn(B(Sn−1))+B(Sn−1)] by the left side, what implies
that n = νm(−∞,0]. Note that using the Strong Markov property and the fact that in (Sn−1, Sn],

(B(s))s≥0 visits zero, β could be taken as the probability that a Standard Brownian motion leaves
then interval [−2Z, 1] by the left side; where Z is as defined in the Proposition 3.1 for two points.

Hence #C is stochastically bounded by a geometric random variable with parameter β. Since the Brownian
motion is recurrent and (−∞, 0] is visited infinitely many times, we have that νm(−∞,0] < ∞ almost surely.

Now we prove item (ii). For m > M ∈ N we get that νm(−∞,M ] ≤ νm(−∞,0] hence by the item i) we get

P[νm(−∞,0] < ∞] = P[νm(−∞,M ] < ∞] = 1.

Note that

P[Y m
νm
(−∞,0]

= 0] ≥ P[Y m
νm
(−∞,0]

= 0, νm(−∞,0] 6= νm(−∞,M ]] =
M∑

k=1

P[Y m
νm
(−∞,0]

= 0, Y m
νm
(−∞,M ]

= k]

=

M∑

k=1

P[Y m
νm
(−∞,0]

= 0|Y m
νm
(−∞,M ]

= k]P[Y m
νm
(−∞,M ]

= k].

For all 1 ≤ k ≤ M by Strong Markov property and the translation invariance of the model we have that

P[Y m
νm
(−∞,0]

= 0|Y m
νm
(−∞,M ]

= k] = P[Y k
νk
(−∞,0]

= 0].

Hence

P[Y m
νm
(−∞,0]

= 0] ≥
M∑

k=1

P[Y k
νk
(−∞,0]

= 0]P[Y m
νm
(−∞,M ]

= k] ≥
(

min
1≤k≤M

P[Y k
νk
(−∞,0]

= 0]
) M∑

k=1

P[Y m
νm
(−∞,M ]

= k]

=
(

min
1≤k≤M

P[Y k
νk
(−∞,0]

= 0]
)
P[νm(−∞,0] 6= νm(−∞,M ]]

≥
(

min
1≤k≤M

P[Y k
νk
(−∞,0]

= 0]
)(

inf
m̃>M

P[νm̃(−∞,0] 6= νm̃(−∞,M ]]
)
.

From the description of the GRDF it is straighforward to verify that P[Y k
νk
(−∞,0]

= 0] > 0 for all k ≥ 1 and

then min1≤k≤M P[Y k
νk
(−∞,0]

= 0] > 0. Now let us to prove that for an adequate M we have

inf
m>M

P[νm(−∞,0] 6= νm(−∞,M ]] > 0.

Note that

P[νm(−∞,0] = νm(−∞,M ]] = P[Y m
νm
(−∞,M ]

≤ 0] =
∞∑

k=M+1

P[Y m
νm
(−∞,M ]

≤ 0, Y m
νm
(−∞,M ]

−1 = k]

=

∞∑

k=M+1

P[Y m
νm
(−∞,M ]

≤ 0|Y m
νm
(−∞,M ]

−1 = k]P[Y m
νm
(−∞,M ]

−1 = k].

Again, using the Strong Markov property and the translation invariance we have

P[Y m
νm
(−∞,M ]

≤ 0|Y m
ν(−∞,M ]−1 = k] = P[Y k

1 ≤ 0].
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For Z as defined in the Proposition 3.1 we get that

P[Y k
1 ≤ 0] = P[Xτ1(uk)(uk)(1)−Xτ1(u0)(u0)(1) ≤ 0]

≤ P

[{
|Xτ1(u0)(u0)(1)| ≥

k

2

}
∪
{
|Xτ1(uk)(uk)(1)− k| ≥ k

2

}]

≤ P

[{
|Xτ1(u0)(u0)(1)| ≥

k

2

}]
+ P

[{
|Xτ1(uk)(uk)(1)− k| ≥ k

2

}]

≤ 2P
[
Z ≥ k

2

]
≤ 4

E[Z]

k
≤ 4

E[Z]

M
.

Then

P[νm(−∞,0] = νm(−∞,M ]] ≤ 4
E[Z]

M

∞∑

k=M+1

P[Y m
νm
(−∞,M ]

−1 = k] = 4
E[Z]

M
:= c6.

Taking M > 4E[Z] we have that P[νm(−∞,0] 6= νm(−∞,M ]] > 1− c6 > 0 for all m > M .

Then we have that

inf
m>M

P[Y m
νm
(−∞,0]

= 0] ≥
(

min
1≤k≤M

P[Y k
νk
(−∞,0]

= 0]
)
(1− c6) > 0.

which completes the proof of (ii).
Now we prove (iii). Define

c5 := sup
m≥1

P[Y m
a1 6= 0].

By the item (ii) we have c5 < 1. By definition P[Y 1
a1 6= 0] ≤ c5. The proof will follow by induction on k.

Suppose that P[Y 1
aj 6= 0, for j = 1, . . . , k] ≤ ck5. Here we are going to assume that k is even, the case k odd

is similar. Write

P[Y 1
aj 6= 0 for j = 1, . . . , k + 1]

=
∑

m≥1

P[Y 1
ak+1

6= 0, Y 1
ak

= m,Y 1
aj 6= 0 for j = 1, . . . , k − 1]

=
∑

m≥1

P[Y 1
ak+1

6= 0|Y 1
ak

= m,Y 1
aj 6= 0 for j = 1, . . . , k − 1]P[Y 1

ak
= m,Y 1

aj 6= 0 for j = 1, . . . , k − 1].

By Strong Markov property and the translation invariance of the model we have that

P[Y 1
ak+1

6= 0|Y 1
ak

= m,Y 1
aj 6= 0 for j = 1, . . . , k − 1] = P[Y m

a1 6= 0] ≤ c5.

Hence

P[Y 1
aj 6= 0 for j = 1, . . . , k + 1] ≤ c5

∑

m≥1

P[Y 1
ak

= m,Y 1
aj 6= 0 for j = 1, . . . , k − 1]

= c5P[Y
1
aj 6= 0 for j = 1, . . . , k] ≤ ck+1

5 .

�

Proof of Lemma 4.3. The proof is similar to the proof of Lemma 3.5 in [CV14]. By Skorohood Representation
Theorem we have a Brownian motion (B(s))s≥0 starting in 1 and stopping times (Sn)n≥0, which could be
both taken independent of (Y 1

n )n≥1, such that

Y 1
n − Y 1

n−1
d
= B(Sn)−B(Sn−1) , for all n ≥ 1.
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By Corollary 3.1 there exists a sequence of random variables (Zn)n≥1 such that |Y 1
n − Y 1

n−1| ≤ 2Zn . Then

|B(Sn)−B(Sn−1)|
st
≤ 2Zn , for all n ≥ 1. (B.1)

Recall that (Si)i≥0 has the following representation.

S0 := 0, Si := inf
{
s ≥ Si−1;B(s)−B(Si−1) /∈

(
Ui(B(Si−1)), Vi(B(Si−1))

)}
(B.2)

where
{
(Ui(m), Vi(m));m ∈ Z, i ≥ 1

}
is a family of independent random vectors taking values in

(
(Z− −

{0})× N
)
∪
{
(0, 0)

}
.

By (B.1) and (B.2) we have that

−2Zn

st
≤ inf

Sn−1≤s≤Sn

{B(s)−B(Sn−1)} ≤ sup
Sn−1≤s≤Sn

{B(s)−B(Sn−1)}
st
≤ 2Zn (B.3)

As in the proof of Lemma 4.2 consider the following random set

C :=
{
n ∈ [1, τ(−∞,0]] ∩ N; (B(s))s≥0 visits (−∞, 0] in the interval (Sn−1, Sn]

}
.

Note that

−
|C|∑

i=1

2Zi

st
≤ inf

0≤s≤τ(−∞,0]

B(s) .

There exists a geometric random variable G (see the proof of item (i) of Lemma 4.2) such that G is stochas-
tically above |C|. Then we have

−
G∑

i=1

2Zi

st
≤ inf

0≤s≤τ(−∞,0]

B(s).

Let us define the random variable R1 as

R1 :=

{
−∑G

i=1 2Zi; if |C| > 1
0; otherwise,

and R̃0 as an independent random variable such that R̃0
d
= R1|{R1 6= 0}. Define

J1 := inf{s ≥ 0 : B(s)−B(0) = −(R1 + R̃0)}

which is clearly stochastically above Sa1 . Let (B(s))s≥0 be (B(s))s≥0 translated to have B(0) = R̃0, then
Ya1 6= 0 is equivalent to B(J1) 6= 0, indeed

Ya1 6= 0 ⇔ R1 > 0 ⇔ B(J1) < 0 .

From this point, it is straightforward to use an induction argument to build the sequence {Rj}j≥1. At
step j in the induction argument, we consider initially an excursion of (B(s))s≥0 in a time interval of size
(Saj − Saj−1), and since |Y n

aj−1
| ≤ Rj−1 we can obtain Rj and define Jj using (B(s))s≥0 as before. By the

strong Markov property of (Y 1
n ), we obtain that the Rj ’s are independent and Yaj 6= 0 is equivalent to

B(Jj) 6= 0. �
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Appendix C. Proof of the lemmas used to obtain condition T

Proof of Lemma 8.1. The proof follows from Proposition 3.1 and Lemma C.1 below, which is the same as
Lemma 2.6 in [NRS05]. �

Lemma C.1. Let (Sx
n)n≥0 be a random walk with increments distributed as a random variable Z such that

it starts from x ∈ Z− at time 0. If E[|Z|k+2] < ∞ then {(Sx
νx+
)k}z∈Z−

, where νx+ = inf{n ≥ 1;Sx
n > 0}, is

uniformly integrable.

Proof of Lemma 8.2. Recall from (3.2) the definition of the random variable

H(v) := inf
{
n ≥ 1;

n∑

j=1

{(v(1),v(2)+j) is open } = K
}
,

where v ∈ Z
2 and K ∈ N is such that P[Wv ≤ K] = 1. Put H = H((0, 0)) and note that H has negative

binomial distribution of parameters p and K, thus it has finite absolute moments of any order. If some
path in D(nρσ, n2tγ) comes from Z × Z− before crossing R(0, 0; 2nρσ, 2n2tγ) then H(v) > nρσ for some
v ∈ {−nρσ, . . . , nρσ} × {0}, and

P
[
H(v) > nρσ for some v ∈ {−nρσ, . . . , nρσ} × {0}

]

≤ 2nρσP[H > nρσ]

≤ 2nρ
E[H2]

(nρσ)2
→ 0 as n goes to infinity.

The others paths in D(nρσ, n2tγ) come from points in with first component bigger than 2nρσ or smaller than
−2nρσ and second component between in {0, . . . , n2tγ}. If from some v = (v(1), v(2)) with v(1) > 2nρσ
and v(2) ∈ {0, . . . , n2tγ} the path cross R(0, 0; 2nρσ, 2n2tγ) then H(v) > v(1). In case that v(1) < −2nρσ
we have that H(v) > −v(1). Then the probability that of one of these paths cross R(0, 0; 2nρσ, 2n2tγ) is
bounded by

2

2n2tγ∑

j=1

∑

v∈{(2nρσ,∞)∩Z}×{j}
P[H(v) > v(1)] ≤ 2(2n2tγ)

∑

i≥1

P[H > i+ 2nργ]

≤ 2(2n2tγ)
∑

i≥1

E[H6]

(i+ 2nρσ)6

≤ 2(2n2tγ)
∑

i≥1

E[H6]

i3(2nρσ)3
=

C(t, ρ)

n
→ 0 as n → ∞.

This completes the proof. �

Proof of the Lemma 8.3. The proof is analogous to the proof of Lemma 3.2 in [CV14]. For l ∈ Z consider
u0 = (0, 0), ul = (l, 0) and the random times (τn(u0))n≥1, (τn(ul))n≥1 as introduced in Corollary 3.1 for the
points u0, ul. Now define the following random walk

Y l
0 := l, Y l

n := Xτn(u0)(u0)(1)−Xτn(ul)(ul)(1) for n ≥ 1.
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Let Bl(x, t) be the set of trajectories that remain in the interval [l − x, l + x] during the time [0, t]. By the
independence of the increments which implies the strong Markov property, we have that

P(νx,y > n2γt) ≥ P(νx,y,ρ+ < n2γt ∧ νx,y) inf
l∈Z

P(Y l ∈ Bl(nσρ, n2γt)).

Note that

inf
l∈Z

P
(
Y l ∈ Bl(nσρ, n2γt)

)
= 1− sup

l∈Z
P

(
sup

i≤n2γt

|Y l
i − l| ≥ nσρ

)
.

Now

lim sup
n→∞

sup
l∈Z

P

(
sup

i≤n2γt

|Y l
i − l| > nσρ

)
,

is bounded above by

lim sup
n→∞

sup
l∈Z

P

(
sup

i≤n2γt

|Xτi(u0)(u0)(1)|+ |Xτi(ul)(ul)(1)− l| > nσρ

2

)

≤ 2 lim sup
n→∞

sup
l∈Z

P

(
sup

i≤n2γt

|Xτi(u0)(u0)(1)| >
nσρ

4

)

≤ 4P
(
N >

ρ

4
√
t

)
= 4e−

ρ2

32 t ,

where N is a standard normal random variable and the last inequality is a consequence of Donsker’s Theorem,
see also Lemma 2.3 in [NRS05]. Hence

inf
l∈Z

P
(
Y l ∈ Bl(nσρ, n2γt)

)

is bounded from below by a constant that depends only on t and ρ. So using Proposition 4.1 we obtain a
constant C̃(t, ρ) such that

P(νx,y,ρ+ < n2γt ∧ νx,y) ≤
P(νx,y > n2γt)

inf l∈Z P
(
Y l ∈ Bl(nσρ, n2γt)

) ≤ C̃(t, ρ) |y − x|
n

.

From the previous inequality we should follow the same steps as in the proof of Proposition 2.4 in [NRS05]
to get an upper bound that do not depend on |y − x|. �
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