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Abstract

In this work we present full Bayesian inference for a new flexible nonseparable class
of cross-covariance functions for multivariate spatially referenced data. A Bayesian test is
proposed for separability which is much more interpretable than parameters related to sepa-
rability. Inference is based on an approximation for the likelihood function making inference
scalable for several multivariate components. Spatial models have been increasingly applied
in several areas, such as environmental science, climate science and agriculture. These data
are usually available in space, time and possibly for several processes. In this context the
modeling of dependence is crucial for correct uncertainty quantification and reliable predic-
tions. In particular, for multivariate spatial data we need to specify a valid cross-covariance
function, which defines the dependence between the components of a response vector for all
locations in the spatial domain. However, cross-covariance functions are not easily specified
and the computational burden is a limitation for model complexity. In this work, we propose
a nonseparable covariance function that is based on the convex combination of separable co-
variance functions and on latent dimensions representation of the vector components. The
covariance structure proposed is valid and flexible. To treat the computational limitation
we approximate the full covariance matrices using a decomposition based on the Kronecker
product of two separable matrices of minor dimensions. These approximations have been
applied to the likelihood function in order to obtain fast estimation of parameters but we still
keep the interpretation and flexibility of the multivariate nonseparable model. The effects
of using the approximation are evaluated for simulated datasets in terms of prediction error.
The usefulness of our proposal is illustrated with simulated datasets.
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1 Introduction

Realistic modeling of multivariate data observed over space and time is of great interest in

several areas of application such as environmental science, climate science and agriculture.

Often in geostatistical modeling, the data is considered a partial realization of a random

function Y (s), s ∈ D ⊆ <d. Furthermore, in many applications several quantities are

measured for each location s resulting in random vector Y(s), Y(s) ∈ <p. The main goal of

this work is to contribute with realistic modeling of multivariate spatial data while keeping

computational feasibility and predictive power. In that context, the proposed covariance

model is valid, flexible and inference is scalable to large datasets with several components

measured across space.

Although complexity in spatial models is a computational problem some features have

to be taken care in the realistic analysis of spatial data. Firstly, the spatial multivariate

modeling of data depends on the idea that data which are closer in space is more correlated

than data further apart. Also, vector components are usually better predicted considering the

component dependence of this vector. These general ideas are directly related to the cross-

covariance function of spatial multivariate data, that is, Cov(Yj(s), Yj′(s
′)), s, s′ ∈ D ⊆ <d

which models the spatial dependence of Yj(.) and Yj′(.). The covariance functions considered

need to be valid. Thus, construction of new realistic covariance functions usually rely on

mathematical simplifications which are not necessarily led by good fitting to data.

An usual simplifying assumption in spatial data modeling is that the cross-covariance

functions are separable. Separability assumes that the covariance function for different

processes and spatial locations can be computed as the product of a purely spatial and

a component covariance functions. This is not a realistic assumption for different processes

across space. For two fixed locations s and s′ the respective component covariance should be

proportional. That is, when the spatial location varies, the covariance pattern for different

components remains the same. Cressie and Huang (1999) discusses some shortcomings of

separable models in the context of spatiotemporal processes and point out that separable
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models are often chosen for convenience rather than for fitting the data well. Stein (2005)

present results about the limited kind of behaviours which these classes represent in practice.

A consequence of the separability assumption is that the different p processes will have the

same spatial range. This is a very restrictive assumption.

Another restrictive assumption that is a consequence of separability is the symmetry of

covariance functions. Separability implies full symmetry, thus a covariance function which

is not symmetric is also nonseparable. In applied setting, symmetry is not realistic. For

instance, processes which are influenced by air flows might have asymmetric covariance

functions.

Several authors have proposed models to relax the separability assumption of cross-

covariance functions. The linear model of coregionalization (Wackernagel, 1998) defines

the spatial process as a linear combination of independent spatial processes, thus, Yj(s) =∑K
u=1W

(j)
u ; W

(j)
u (s), u = 1, . . . , K, are uncorrelated spatial processes. In this approach, if

each process W
(j)
u has spatial correlation ρu(s) then the resulting cross-covariance function

is Cij(h) =
∑K

u=1 b
u
ijρu(h), with h the spatial separation vector.

A different proposal considers multidimensional scaling ideas (Cox and Cox, 2000). Fol-

lowing this idea, Apanasovich and Genton (2010) proposed a multivariate spatiotemporal

model based on latent dimensions which represent distances between components. The

authors represent the vector of components as coordinates in a k−dimensional space. Any

valid covariance function can be used considering the latent component distances and spatial

distances to define cross-covariances. Moreover, the authors present results of a simulated

study where the model compares favorably to the coregionalization set-up which seems to

lack flexibility for some scenarios. The approach of Apanasovich and Genton (2010) depends

on the specification of nonseparable covariance functions. In the paper they considered the

function proposed in Gneiting (2002). The functions presented in Gneiting (2002) are not

interpretable or intuitive. In this paper, we follow the multidimensional scaling approach

and consider an interpretable class of nonseparable covariance functions.
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In a recent paper, Cressie and Zammit-Mangion (2015) proposed the conditional ap-

proach to derive multivariate models. The construction is based on partitioning the vector

of spatial processes so that the joint distribution is specified through univariate conditional

distributions. This is convenient as the modeler just needs to specify univariate covariance

functions and an integrable function of p arguments. Obviously, the results will depend on

the chosen conditioning and this is not always an easy modeling decision.

In that context, this work extends the class of nonseparable covariance functions proposed

in Fonseca and Steel (2011) to the modeling of component and spatial dependence and

considers the multidimensional scaling ideas to define latent distances for components as in

Apanasovich and Genton (2010). The general class proposed is able to model different ranges

in space and asymmetry of covariances. Furthermore, the proposed class allows for different

degrees of smoothness across space for different components of the multivariate random

vector. Also, the proposed class has subclasses which can possess a covariance function with

the same differentiability properties as the Matérn Class. Similar to the conditional approach

of Cressie and Zammit-Mangion (2015), the proposed covariance depends on the definition

of univariate covariances and a bivariate joint density function. It is advantageous compared

to the conditional approach as it depends on a bivariate density function even if p is large.

The remainder of the paper is organized as follows. Section 2 presents definitions and

characteristics about multivariate process modeling. A new class of multivariate spatial

covariances is presented in Section 3. In Section 4, a new covariance function is defined.

Inference on these models will be conducted from a Bayesian perspective through Markov

chain Monte Carlo (MCMC) methods, that will be described in Section 5. To allow for fast

estimation of parameters even for a large vector of components, a fast algorithm is proposed

to compute the likelihood function to allow for scalable modeling of large spatial data with

several components in Section 6. In Section 7, a Bayesian test of separability is presented to

measure the level of separability between space and components. Finally, Section 8 presents

the conclusions.
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2 Multivariate process modeling

In the context of multivariate spatial processes, the main goal is usually to model the de-

pendence among several variables measured across a spatial domain of interest, in order

to obtain realistic predictions. Denote Y(s) the p−dimensional vector of variables at loca-

tion s ∈ D. Thus, the direct covariance function measures the spatial dependence for each

component individually, while the cross-covariance function between two random functions

measures the component dependence at the same location and the component dependence

within two different locations.

Assuming that Y(s) is a spatially stationary process, that is

E[Yi(s)] = mi, Cov[Yi(s), Yj(s + h)] = Cij(h), ∀s, s + h ∈ D; i, j = 1, 2, ..., p,

the cross-covariance function of Y(s) is defined as

E[(Yi(s)−mi)(Yj(s + h)−mj)] = Cij(h), s, s + h ∈ D; i, j = 1, 2, ..., p. (1)

The requirement of positive definiteness of Cij(·) is a limitation in the definition of realistic

covariance functions for multivariate spatial processes. As a result, several simplifications

are called for in practice such as stationarity and separability. Separability states that

Cij(s, s
′) = aijρ(s, s′), (2)

with A = {aij} a positive definite p × p matrix and ρ(·, ·) a valid correlation function. Let

Y be a vectorized version of Yik = Yi(sk), k = 1, · · · , n; i = 1, · · · , p. Then the covariance

matrix is Σ = R ⊗ A, with Rkl = ρ(sk, sl), k, l = 1, · · · , n. The condition of positive

definiteness is respected if R and A are positive definite. This specification is computation-

ally advantageous as inverses and determinants are obtained from smaller matrices, that is,

Σ−1 = R−1 ⊗A−1 and |Σ| = |R|p|A|n.

However, this model has theoretical limitations (Banerjee et al., 2004). Firstly, it is an

intrinsic model implying that the correlation between two components Yi(sk) and Yj(sl) is aij,
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that is, it does not depend on the locations sk and sl. Secondly, note that as the covariance

is defined by one spatial correlation function ρ(·, ·), the spatial range will be the same for all

components. This last feature can be perceived through the following argument: consider

the univariate spatial processes {Y (s) : s ∈ D} and {X(s) : s ∈ D}, D ⊂ <2, therefore

Y = [Y (s1), Y (s2), ..., Y (sn)]T and X = [X(s1), X(s2), ..., X(sn)]T .

It is possible to express the following linear relationship for any point in D:

E[Y|X] = β0 + β1X. (3)

Consider the stacked 2n×1 vector (X,Y)T , following a multivariate Normal distribution

and a separable covariance structure as in (2), that is, X

Y

 ∼ N2n(µ,Σ), Σ = A⊗R,

implying that X ∼ Nn(µx, a11R) and Y ∼ Nn(µy, a22R). It follows directly that Y|X ∼

Nn(µ∗,Σ∗), with µ∗ = µy − a12
a11
µx + a12

a11
X and Σ∗ =

(
a22 − a212

a11

)
R, which is equivalent to

Y|X ∼ Nn(β0 + β1X, σ
2R), with β0 = µy − a12

a11
µx, β1 = a12

a11
and σ2 = a22 − a212

a11
.

If we assume, reversely, X ∼ Nn(µx, a11R) and Y|X ∼ Nn(β0 + β1X, σ
2S), with S any

spatial correlation matrix, the covariance structure for Y is

Cov[Yi, Yj] = σ2Sij + β2
1a11Rij

= a22Sij −
a212
a11

Sij +
a212
a11

Rij. (4)

Then (4) equals a22R, reducing to the separable specification if and only if S = R, that is

Y|X has the same spatial structure as X.

More flexible structures are obtained via the coregionalization approach, which in its

simplest form is Y(s) = Aw(s), with A a p×p matrix and the components of w(s), wj(s),

j = 1, 2, ..., p, independent and identically distributed spatial processes. If the processes

wj(s) are stationary with zero mean and unit variances and Cov(wj(s), wj(s
′)) = ρ(s − s′),

then E(Y(s)) = 0 and the cross-covariance function of Y(s) is ΣY(s),Y(s′) ≡ C(s − s′) =
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ρ(s − s′)AAT which is separable. A more general form for the coregionalization model

considers independent processes wj(s) however they are not identically distributed. The

covariance matrix is given by

ΣY(s),Y(s′) ≡ C(s− s′) =

p∑
j=1

ρj(s− s′)Tj

with Tj = aja
T
j , aj the j − th column of A. The resulting covariance is nonseparable but is

stationary.

In this work we follow the multidimensional scaling framework and the latent dimensions

proposed in Apanasovich and Genton (2010). The vector of components are represented as

coordinates in a k−dimensional space, for an integer 1 ≤ k ≤ p, that is, the i−th component

is represented as ξi = {ξi1, ..., ξik}T .

This approach can be used for any valid covariance function Σij = C{(s, ξi), (s′, ξj)}. For

any s, s′ there is Cs,s′(.) such that Cij(s, s
′) = Cs,s′(ξi, ξj) for some ξi, ξj ∈ <k.

The latent coordinates may be treated as parameters and estimated from data. Moreover,

it is possible to consider the simplification δij = ‖ξi − ξj‖. This approach is similar to the

multidimensional scaling (Cox and Cox, 2000) with latent distances δij’s, where for fixed

locations s and s′, small δij’s are converted into strong positive cross-correlation. Notice

that large values of δij’s might mean small correlation or negative correlation. A further

discussion about this issue is presented in the conclusions. A review of the main approaches

to building a valid multivariate cross-covariance function is presented in Genton and Kleiber

(2015).

In this work we consider an intuitive proposal which is based on mixing separable func-

tions as in Fonseca and Steel (2011). Furthermore we consider an approximation of the

likelihood which allows estimation for large datasets. In Section 6 we present a sensitivity

study to investigate the errors obtained with the likelihood approximation.
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3 Multivariate spatial modeling based on mixtures

In this section we present a new class of multivariate spatial covariances which are flexible and

intuitive depending only on the specification of univariate functions in space. We consider the

latent dimension approach of Apanasovich and Genton (2010) to model cross-dependencies

between components of a spatial vector. Furthermore we define the nonseparable function

based on the spatiotemporal mixture approach of Fonseca and Steel (2011). Thus, only

univariate valid spatial functions need to be specified.

Fonseca and Steel (2011) consider (s, t) ∈ D × T , D ⊆ <d, T ⊆ <, as space-time

coordinates varying continuously on D×T and Z1(s), Z2(t) uncorrelated processes, {Z1(s) :

s ∈ D} denoting a purely spatial process with covariance C1(s) and {Z2(t) : t ∈ T} a

purely temporal process with covariance C2(t). The mixture representation of the covariance

structure of Z(s, t) is defined as follows: assume that (U, V ) is a nonnegative bivariate

random vector following a joint distribution G(u, v), independent of {Z1(s) : s ∈ D} and

{Z2(t) : t ∈ T}. Define the process Z(s, t) = Z1(s, U)Z2(t, V ), where {Z1(s, u)} remains

a purely spatial process for every u ∈ <+ with a stationary covariance function C1(s, u)

for s ∈ D and every u ∈ <+, which is a measurable function of u ∈ <+ for every s ∈ D.

Analogously, let {Z2(t, v)} be a purely temporal process with covariance C2(t, v), which is

a stationary covariance function for t ∈ T and every v ∈ <+ and a measurable function of

v ∈ <+ for every t ∈ T . Thus the corresponding covariance of Z(s, t) is a convex combination

of separable covariance functions. This is a valid and generally nonseparable function

C(s, t) =

∫ ∫
C(s;u)C(t; v)g(u, v)dudv. (5)

The proposed idea in the present work is to modify (5) to deal with the spatial multivari-

ate specification. Thus, consider (U, V ) independent of the process Y(s). Similar to Fonseca

and Steel (2011), the covariance of Y(s) is a convex combination of separable covariance

functions, given by

Cij(s, ξ) =

∫ ∫
C(s;u)Cij(ξ; v)g(u, v)dudv (6)
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with ξ representing a latent dimension as in Apanasovich and Genton (2010) and s an

arbitrary spatial location.

According to Fonseca and Steel (2011), the fundamental step in the definition of this

class of functions lies on the representation of the dependence between U and V . Define

variograms γ1(s) ≡ γ1 and γ2(ξ) ≡ γ2 as continuous functions on s ∈ <d and ξ ∈ <k,

respectively. Then, it is possible to analytically solve (6), still assuring that the generated

covariance is positive definite, defining C(s;u) = exp{−γ1u} and C(ξ; v) = exp{−γ2v}.

Proposition 3.1 Consider a bivariate nonnegative vector (U, V ) with joint moment gener-

ator function M(., .). If the variograms γ1(s) ≡ γ1 and γ2(ξ) ≡ γ2 are continuous functions

of s ∈ <d and ξ ∈ <k, respectively, and C(s;u) = exp{−γ1u}, C(ξ; v) = exp{−γ2v}, then

(6) implies that

Cij(s, ξ) = M(−γ1,−γ2), (7)

which is a valid covariance function.

Majumdar and Gelfand (2007) use Monte Carlo integration to solve an integral similar

to (6). Apanasovich et al. (2012) consider a multivariate version of Matérn, presenting a

flexible model, allowing for different behaviour for each component. The proposed approach

(6) also presents that flexibility.

Following Proposition 3.1, it is possible to build nonseparable structures, based only on

the joint distribution of (U, V ). Thus, consider the following proposition.

Proposition 3.2 Consider the independent nonnegative random variables X0, X1 and X2,

with moment generator functions M0, M1 and M2. Define U and V as: U = X0 + X1 and

V = X0 +X2. If C(s;u) = exp{−γ1u} and C(ξ; v) = exp{−γ2v}, as in proposition 3.1, then

the covariance function resulting from (6) is

Cij(s, ξ) = M0(−γ1 − γ2)M1(−γ1)M2(−γ2). (8)
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Observe that if U and V are uncorrelated, that is, U = X1 and V = X2, the separable

specification is obtained, since Cij(s, ξ) = M1(−γ1)M2(−γ2).

The class generated by proposition 3.2 allows for different parametric representations,

as we vary the specifications for X0, X1 and X2. By construction, any non-null correlation

between U and V will be positive.

Proposition 3.2 indeed generates a valid correlation structure, since Cij(0) = 1, thus,

following Majumdar and Gelfand (2007), in order to obtain a valid covariance structure,

define

ρij(s, ξ) =
Cij(s, ξ)

[Cii(0)Cjj(0)]1/2
. (9)

Note that ρii(0) = 1. Consider a diagonal matrix Dcov with elements [Dcov]ii = Cii(0).

If Rij(s, ξ) = D
−1/2
cov Cij(s, ξ)D

−1/2
cov , then Rij(s, ξ) is a valid cross-correlation. If we define

D
1/2
σ = diag(σ1, ..., σp), σi > 0, a valid covariance structure is obtained, given by the matrix

Cσ = D
1/2
σ Rij(s, ξ)D

1/2
σ .

Proposition 3.3 Consider the nonnegative independent variables X0, X1 and X2, with mo-

ment generator functions M0, M1 and M2. Define U and V as: U = X0 +X1, V = X0 +X2.

If C(s;u) = σiexp{−γ1u} and C(ξ; v) = σjexp{−γ2v}, then (6) implies that

Cij(s, ξ) = σiσjM0(−γ1 − γ2)M1(−γ1)M2(−γ2), (10)

which is a valid covariance function.

4 Flexible classes

In this section we present a new covariance function from proposition 3.3. Consider X0, X1

and X2 following gamma distributions as Fonseca and Steel (2011).

Theorem 4.1 Consider Xl ∼ Gamma(αl, λl), l = 0, 1 and 2, then from proposition 3.3, the

cross-covariance function is

Cij(s, ξ) = σiσj

(
1 +

γ1 + γ2
λ0

)−α0
(

1 +
γ1
λ1

)−α1
(

1 +
γ2
λ2

)−α2

(11)
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with σj > 0, j = 1, ..., p, αl > 0 and λl > 0, l = 0, 1, 2.

It is difficult to interpret some parameters in the proposed function (11). We expect to

work a function that allows different spatial ranges for each component. The dependence of

U and V is governed by the variable X0, it is important to define a parameter responsible

for the behaviour of the correlation between these variables. Remember that if U and V are

uncorrelated then the separable case is obtained.

For this, the initial idea was to determine λi = 1, for i = 0, 1 e 2, and to work with

component variogram γ2 = ‖ξi− ξj‖ = δij . Furthermore, we introduced an extra parameter

in spatial variogram. This parameter varies with the components i and j, i.e, γ1 = ‖s−s′‖
bij

=

h
bij

. Therefore, the general model is given by

Cij(s, ξ) = σiσj

(
1 + δij +

h

bij

)−α0
(

1 +
h

bij

)−α1

(1 + δij)
−α2 (12)

where δij is the latent distance between the components i and j, σi is the standard deviation

of component i, bij’s are spatial range parameters, αl are smoothness parameters, for l = 1

and 2, and α0 is a separability parameter.

Notice that if we work with the same spatial range parameters for all components, that it,

bij = φ, ∀i, j = 1, 2, ..., p, we provided a particular case of the general function. Furthermore,

if α0 = 0, the separable model is obtained and the resulting covariance function is in the

Cauchy Class.

5 Inference

Let (y(s1), . . . ,y(sn)) be a matrix of multivariate data observed at spatial locations s1, . . . , sn ∈

D, where y(si) = (y1(si), . . . , yp(si))
′ is a p−dimensional vector. If the Gaussian assumption

is made, the likelihood function for the unknown parameters based on n spatial locations is

given by

l(y;θ) = (2π)
−np
2 |Σ|−1/2exp

{
−1

2
(y− µ)TΣ−1(y− µ)

}
(13)
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with y the vectorized version of (y(s1), . . . ,y(sn)) with np observations, µ = Xβ the mean

vector, Σ the covariance matrix with dimension np× np, and θ the parameter vector. The

covariance matrix has components defined by equation (12). In particular for our model

specification θ = (σ, δ,α,b,β), with σ = (σ1, ..., σp), δ the vector of latent variables δij,

i 6= j, i, j = 1, ..., p, α = (α0, α1, α2), b the range parameter vector bij, i, j = 1, ..., p, e

β = (β10, ..., βp0, β11, ..., βp1, ..., β1q, ..., βpq), with q the number of covariates.

To complete the Bayesian model specification, the prior distributions must be defined for

all parameters in the proposed model (12). Prior independence is assumed for the parameters

in the model such that σi ∼ Ga(ci, di), i = 1, ..., p, δij ∼ Ga(fij, gij), i 6= j, i, j = 1, . . . , p,

αk ∼ Ga(rk, sk), k = 0, 1, 2, bij ∼ Ga(uij×med(ds), uij), i, j = 1, ..., p, med(ds) is the median

of the spatial distances, β ∼ Npq(λ,Λ).

Inference is based on simulations from the complete conditional distributions for sets

of parameters. For β the complete conditional distribution is Gaussian. For the other

parameters in the covariance function the distributions have no closed form and Metropolis-

Hastings steps are considered in the Gibbs sampler algorithm. Details on such algorithms

are presented in Gamerman and Lopes (2006).

5.1 Prediction

One of the main goals in spatial data analysis is to obtain prediction in new locations or

for missing data within the observed data. Let yu be the observation vector at unmeasured

locations su ∈ D. The prediction of yu is based on the predictive distribution p(yu|yo), with

yo denoting the vector of observed data. Thus,

p(yu|yo) =

∫
p(yu|yo,θ)p(θ|yo)dθ. (14)

From the Gaussian assumption, the distribution p(yu|yo,θ) is also Gaussian with param-

eters µ∗ = µu + ΣuoΣ
−1
oo (yo − µo) and Σ∗ = Σuu −ΣuoΣ

−1
oo Σou. Assume that θ(1), ...,θ(M)

are a sample from the posterior distribution (θ|yo) obtained by MCMC sampling. Thus, the
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predictive distribution in (14) may be obtained by the approximation:

p̂(yu|yo) =
1

M

M∑
i=1

p(yu|yo,θ(i)). (15)

6 Likelihood computation for large data

With the increase of high-resolution geocoded data the big problem became crucial in the

spatial and spatiotemporal setup. For instance, if Gaussianity is assumed, large covariance

matrices need to be inverted in the inference procedure and computational effort is of cubic

order on the number of locations. This limitation becomes even more important in the case of

spatiotemporal or multivariate data. Even low dimensional vectors observed over space may

lead to huge covariance matrices, making the inference for unknown parameters not feasible.

Thus, a compromise between complexity and parsimony is called for in this context.

We have presented a nonseparable covariance model which results in a full matrix Σ

which might have high dimension and the computation of likelihoods require the inversion

of this matrix. We investigate the use of separable approximations for the matrix Σ which

will lead to a fast computation of likelihood functions. The approximation will be based on

the proposal in Genton (2007).

Genton (2007) investigates the use of singular decompositions of a full matrix in the

context of nonseparable spatiotemporal covariance matrices. The work considers a decom-

position based on separable matrices which allow for fast inversions and determinant com-

putations. Thus, instead of np× np matrices, the approximation uses only n× n and p× p

matrices. We consider the same separable approximation in order to compute likelihoods for

the nonseparable multivariate spatial models presented in Section 4. The aim is to obtain

matrices R ∈ <n×n e A ∈ <p×p such that the Frobenius norm4 of ‖Σ−R⊗A‖F is minimized,

for a given full covariance matrix Σ. The author shows that the solution to this problem is

given by the singular value decomposition of a permuted version of Σ ∈ <np×np.

4The Frobenius norm of a matrix B (‖B‖F ) is given by ‖B‖F =
(∑n

i=1

∑n
j=1 b

2
ij

)1/2
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The idea is to rearrange Σ obtaining another matrix =(Σ) ∈ <n2×p2 , such that the

squared sum of ‖Σ − R ⊗ A‖F equals ‖=(Σ) − vec(R) ⊗ vec(A)T‖F . It is showed that

‖Σ−R⊗A‖F = ‖=(Σ)− vec(R)⊗ vec(A)T‖F and ‖Σ‖F = ‖=(Σ)‖F .

The problem then reduces to finding the rank of the rectangular matrix =(Σ) ∈ <n2×p2 ,

which solution can also be found in Golub and Van Loan (1996) and is given by:

vec(R) =
√
w1u1 vec(A) =

√
w1v1 (16)

with u1 denoting the first column of the matrix U ∈ <n2×n2
and v1, the first column of

V ∈ <p2×p2 .

In order to measure the quality of the approximation, Genton defines an approximation

error, denoted by κΣ(R,A), as follows:

κΣ(R,A) =
‖Σ−R⊗A‖F

‖Σ‖F
. (17)

κΣ(R,A) varies between zero (if Σ is separable) and
√

1− 1
r
, and is minimized by R

and A given above. A standardized error index, varying between zero and one is given by:

κ∗Σ(R,A) =
κΣ(R,A)√

1− 1
r

. (18)

From the covariance structure proposed in equation (12) with α1 = α2 = 1, we investigate

the sensitivity of the separability approximation error index as a function of α0. Note that

we use the idea previously applied to the context of nonseparable spatiotemporal covariance

matrices in the context of nonseparable multivariate spatial covariance matrices. In Figure

1 we can see that the separability approximation error index is not larger than 5% for equal

spatial ranges. From Figure 1(a) note that there is no error when α0 is zero, which reduces

to the separable case. If different spatial ranges are considered, it is possible to see in Figure

1(b) that the error index does not start at zero because if α0 = 0 the separable case is not

obtained.
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Figure 1: Separability approximation error index as a function of α0. Full line: p = 2; dashed

line: p = 3.

6.1 Sensitivity study

We present a sensitivity study of the approximation structure investigated by Genton (2007),

however, used for the multivariate spatial case. We consider different scenarios and measure

the errors obtained in the likelihood approximation. Moreover, we compare the inferential

and predictive results obtained as we apply the full proposed nonseparable model with and

without separable approximation for the covariance matrix in the likelihood computation,

as well as considering a separable model.

Consider a bivariate dataset of 200 spatial locations in the [0, 1] × [0, 1] square and the

following parameter specification Θ = (µ, δ12, φ, α0, σ1, σ2) with µ1 = µ2 = 0, δ12 = 2,

bij = bji = φ = 0.2, for all i, j = 1, ..., p, α0 = 1, σ1 = 1 and σ2 = 0.75. In this example, we

generate only one dataset in the region of interest. We plot the likelihood contour with both

structures, using the separable approximation for the covariance matrix and its full original

structure. From Figure 2 it can be seen that the approximate structure is very similar to

the full structure. Note that in some cases the approximate likelihood and the exact one are
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almost coincident. It seems that the approximations are satisfactory.
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Figure 2: Likelihood contour plots. Black line: full structure. Red line: approximate

structure. Dashed blue line: true value of parameters.

We analyzed the necessary time to calculate the likelihood function based on a full covari-

ance matrix and a covariance matrix with approximate structure. We generated p = 2, 3, 5

and 8 variables in a dataset with n = 100, 200, 500, 700 and 1000 spatial locations in the

[0, 1]× [0, 1] square. In this example, 200 replicates were generated in the region of interest.

Table 1 shows that the separable approach provides important gains in computational

efficiency. Note that the time to calculate the likelihood function is substantially lower when

we use the approximate structure.

We also analyzed the time reduction using the separable approximations. Figure 3 shows

that the time to calculate the likelihood function decreases as the size of the covariance

matrix increases. Indeed, if we increase the variable numbers or spatial locations or both,

the greater will be the computational gain with the approximate structure.

Finally, we compare the predictive results obtained by the separable model, the separable
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n
p = 2 p = 3 p = 5 p = 8

full approx. full approx. full approx. full approx.

100 2.3 0.8 3.6 0.6 8.9 0.9 28.0 2.1

200 12.3 3.1 13.9 1.6 44.8 4.2 187.1 11.1

500 74.0 13.4 143.1 12.1 618.6 30.5 2409.5 86.9

700 148.2 20.9 388.4 29.4 1649.7 65.8 6520.7 182.2

1000 374.6 52.6 1020.7 66.2 4673.9 133.5 19180.3 446.2

Table 1: Necessary time (in seconds) to calculate the likelihood function based on a full

covariance matrix and an approximate structure. (Intel(R) Core(TM) i7-3630QM, 2.40GHz,

6GB RAM)

approximation for the covariance matrix in the likelihood of the nonseparable model and the

results obtained with the nonseparable original covariance structure, without any approxima-

tions for the likelihood. For that purpose, we generated five datasets from the nonseparable

structure proposed in Section 4. We use a less general function than proposed in equa-

tion (12). For each dataset, we generated p = 2 variables in n = 110 spatial locations in the

[0, 1]×[0, 1] square considering the following parameter specification Θ = (µ, δ12, φ, α0, σ1, σ2)

with µ1 = µ2 = 0, δ12 = 0.8, φ = 0.1, α0 = 1, σ1 = 1.5 and σ2 = 0.9. The covariance func-

tions used for the separable and nonseparable models are respectively shown in equations

(19) and (20):

Cij(s) =



a11

(
1 +

(
h
φ

)2)−1
(i = j = 1)

a22

(
1 +

(
h
φ

)2)−1
(i = j = 2)

a12

(
1 +

(
h
φ

)2)−1
(i 6= j),

(19)
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Figure 3: Computational time reduction (in percent) in calculation likelihood function using

approximate structure.

Cij(s, ξ) =


σ2
1

(
1 + h

φ

)−(α0+1)

(i = j = 1)

σ2
2

(
1 + h

φ

)−(α0+1)

(i = j = 2)

σ1σ2

(
1 + δ12 + h

φ

)−α0
(

1 + h
φ

)−1
(1 + δ12)

−1 (i 6= j).

(20)

We adopted T = 30 independent replicates. The observations were generated from the model

Y = Xβ + ε. We consider a Gaussian process, so Yt ∼ Nnp(Xβ,Σ), t = 1, ..., T , where

Σ is np × np covariance matrix and X are independent variables (latitude, longitude and

altitude). Furthermore, the information about five spatial locations were removed for predic-

tion. Therefore, we estimate the model using information about n = 105 spatial locations.

After the estimation of the models for each dataset, we were able to calculate predictive

errors. Table 2 shows the results. We can see that in predictive terms the approximation
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leads to very similar results to the full case. Note that the separable model presents the

worst results, it is not able to accommodate the nonseparable structure.

Data
‖ytrue − ŷ‖ Average interval score

SEP NSEP APP. NSEP SEP NSEP APP. NSEP

1 9.557 8.613 8.709 148.334 133.756 133.687

2 11.939 11.580 11.694 145.473 131.614 130.796

3 12.091 10.741 11.091 142.832 131.218 131.098

4 11.602 10.761 10.652 146.319 133.528 132.883

5 11.076 9.830 9.693 142.703 130.902 130.290

Mean 11.253 10.305 10.368 145.132 132.204 131.751

Table 2: Predictive errors. SEP: separable model. NSEP APP: nonseparable approximate

model. NSEP: nonseparable model.

7 Bayesian Hypotheses testing for separability

Following Fonseca and Steel (2011), we choose the correlation between U and V as a measure

of separability. Indeed, if U and V are uncorrelated, the resulting model is separable, so

ρ = ρ(U, V ) =
Cov(U, V )√

V ar(U)V ar(V )

=
α0√

(α0 + α1)(α0 + α2)
.

It is easy to see that if α0 = 0 implies ρ = 0. Note that 0 ≤ ρ ≤ 1, where 0 indicates

separability and 1 indicates strong nonseparability. From a frequentist point of view, many

authors present a formal method to test separability in the spatiotemporal models (Mitchell

et al., 2005, 2006; Fuentes, 2006). The test proposed in this work aims to measure the

degree of separability between space and components and we follow the Bayesian paradigm

for hypothesis testing.
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7.1 Bayesian model choice

The usual continuous prior for positive parameters, as the one considered for α0 in Section

5, assigns zero probability for the null hypothesis α0 = 0. As an alternative consider the

following mixture representation

π(α0) = p0D0 + (1− p0)p(α0),

with D0 the dirac function at α0 = 0 and p(α0) a continuous distribution for α0 > 0.

Thus, p0 is the prior probability of a separable covariance function. The resulting posterior

distribution in this specification is also a mixture

π(α0 | y) = p̃0D0 + (1− p̃0)p(α0 | y),

with p̃0 being the posterior probability of separable covariance functions given the data.

The posterior probabilities p̃0 might be used to select a model (Bayesian model choice)

or to predict new observations based on model averaging across both models.

We simulate four different scenarios from separable to very nonseparable structure. In

this context, we use the model in equation (20) and generate datasets with p = 2 compo-

nents, n = 105 spatial locations and T = 10 independent replicates in time. We consider

a different degree of separability ρ for each dataset and the same parameter specification

Θ = (µ, δ12, φ, σ1, σ2) with µ1 = µ2 = 0, δ12 = 1.5, φ = 0.05, σ1 = 1.5 and σ2 = 0.9. Figure

4 shows the likelihood function for α0 based on the degree of separability ρ. Note in Figure

4 that the data gives information regarding the estimation of separability. Furthermore,

we expect the probability of separability to be very small when we define a dataset with

ρ = 0.10. Indeed in the fourth scenario, Figure 4(d), the data indicates probability close to

zero for the null hypothesis of separability.
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(d) ρ = 0.10

Figure 4: Likelihood functions. Dashed line: true value of α0.

Table 3 presents the posterior probabilities p̃0 for each model. In estimation for each

scenario we consider the approximation of likelihood presented in Section 6. It is possible to

see that the difference between the values of the measure of separability is very subtle but the

difference between the posterior probabilities is substantial. Thus, the posterior probability

of separability is a much easier to interpret measure for inference regarding separability.

Note that ρ values greater than 0.10 indicate a strong nonseparability.

ρ 0 0.02 0.05 0.10

p̃0 0.738 0.692 0.230 0.046

Table 3: Posterior probabilities p̃0 for each measure of separability.
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8 Conclusion

We have proposed a new flexible class of covariance functions for multivariate spatial pro-

cesses based on the convex combination of separable covariance functions and on latent

dimensions.

The idea of latent distances is the same as the dissimilarity measures of multidimensional

scaling. Indeed, the latent distance between two components quantifies the degree of dissim-

ilarity between them. According to Kaufman and Rousseeuw (2005), dissimilarity between

two objects i and j, dij, is a nonnegative measure that is small (close to zero) when they are

“near” to each other and large when they are very different5. These measures of dissimilarity

can be calculated from the correlation between variables, that is, dij = 1− rij, with rij the

correlation between variables i and j. From this definition, variables with a strong positive

correlation present dissimilarity close to zero, whereas variables with a strong negative cor-

relation are considered very dissimilar (Kaufman and Rousseeuw, 2005). However, variables

with strong negative correlation also imply the similar behaviour or patterns, despite an

inverted scale of measurement (Khattree and Naik, 2000). The latent distances, δij, consid-

ered in the model proposed in this work, also assign high values for negatively correlated

variables. In this context, in future research we will work with distances that consider a

dependency between components, regardless of their direction.

We have described an approximation of the full covariance matrices using the decompo-

sition based on the Kronecker product of two separable matrices of minor dimensions. A

sensitivity study was performed showing that the approximate approach provides important

gains in computational efficiency. Although taking advantage of approximations to compute

the likelihood, our proposal keeps interpretation and flexibility.

In terms of prediction the proposed model presents better results than the separable

model, even when the approximation is considered. We conclude that it is better to consider

a separable approximation of our nonseparable proposed model than to consider the separable

5More details on dissimilarity measures are presented in Cox and Cox (2000).
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structure.

Finally, we have proposed a Bayesian test to measure the degree of separability between

space and components. From the posterior probabilities p̃0 we can choose the most suitable

model. Indeed, the proposed measure is a easier to interpret than the separability parameter

itself.
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