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ABSTRACT

This work considers residual analysis and predictive techniques in the identifi-
cation of individual and multiple outliers in geostatistical data. The standardized
Bayesian spatial residual is proposed and computed for three competing models:
the Gaussian, Student-t and Gaussian-log-Gaussian spatial processes. In this con-
text, the spatial models are investigated regarding their plausibility for datasets
contaminated with outliers. The posterior probability of an outlying observation is
computed based on the standardized residuals and different thresholds for outlier
discrimination are tested. From a predictive point of view, methods such as the
conditional predictive ordinate, the predictive concordance and the Savage-Dickey
density ratio for hypothesis testing are investigated in the identification of outliers in
the spatial setting. For illustration, contaminated datasets are considered to access
the performance of the three spatial models in the identification of outliers in spatial
data.

KEYWORDS
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1. Introduction

From a theoretical point of view, statistical inference goes beyond parameter estima-
tion and prediction [see 20, page 343]. Often, tests are performed regarding model
parameters which are based on models that are not adequate to the data under study.
That is, model adequacy checking should not be based on model parameter testing.
Some verification of model goodness of fit is then called for. From a Bayesian perspec-
tive, the issue is the same, statements are done regarding the posterior distribution
which is also based on the chosen sampling distribution for the data. The usual model
criticism is done throught model comparison and prediction for few out of sample ob-
servations. Often, these model checkings are not able to access whether the assumed
model is plausible for the data. This work is motivated by the idea that model de-
termination or checking should be based on residual analysis, predictive performance
and outlier detection. [14] suggest a general framework based on goodness of fitting
checking from a Bayesian point of view. This is the kind of approach this paper aims
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to pursue for spatially correlated data modelling.

An stylized fact of statistical applications in general is that if the data contain
aberrant observations, the estimated model might not be a good representation of the
phenomenon under study, leading to poor predictions for out of sample observations.
An important tool in the identification of atypical observations is the residual analysis.
In the classical linear regression model, the residuals are usually defined as the differ-
ence between observed and fitted values. In the Bayesian context, [4] defines an outlier
as an observation with large random error generated by the sampling distribution of
the data. In this case, the discrepant observation might be detected through the pos-
terior distribution of these random errors. On the other hand, [11] considers an outlier
any observation which was not generated by the mechanism generating the majority
of the data. In the independent data setting several papers discussed the detection
of outliers such as [23] which considers heavy tailed distributions defined throught a
Gaussian mixture model to accommodate and detect outliers in a regression setup.

The focus of this work is the analysis and detection of regional outliers which might
be neightboors in space. Indeed, in the spatial statistics context the issue of outlier
detection or modeling is even more important than in the independent case. Predic-
tion at new locations is usually based on krigging ideas and krigging predictors are
well known to be affected by outliers as they are obtained as linear combination of
observations. In geostatistics, an outlier may have a strong effect in the prediction of
its neighboors when the observed value for the process at this location is much higher
or lower than expected for that region in space. [5] comment that, in applied settings,
even small changes in some regions in space might cause large differences between the
predicted and observed process. Observations in these regions should not be discarted
as this might cause bias in the estimation of parameters and predictions [5, page 221].

Several papers have proposed robust alternatives or modifications of usual kriging
predictor. [9] proposed a model to robustify the kriging predictor by defining the
model for geostatistical data as a mixture of a spatial process and a contamination
process. In this proposal each site has a corresponding contamination variable which
indicates whether the site is contaminated or not. The optimal predictor in this case
depends on weights which will be affected by the contamination variables. However, the
predictor is unfiasible in practice and an approximation is considered. [18] proposed the
Gaussian-Log-Gaussian process which is able to capture heterogeneity in space through
a mixing process used to increase the Gaussian process variability. This proposal is
an alternative to the usual Gaussian process which is very sensitive to outliers. The
mixture approach is able to both accommodate and detect outliers. The detection
step is done throught hypothesis testing. In particular, [18] considered Bayes factors
for that purpose. Notice however that hypothesis testing based on Bayes Factors will
depend on the loss function considered to reach a conclusion regarding the outlying
observation. Thus, it might be useful to consider other identification techniques jointly
with the hypothesis testing.

A potentially robust alternative model for spatial processes is the Student-t process
discussed in [21]. However, the Student-t process inflates the variance of the whole
process in the presence of outliers in the data and does not allow for individual or
regional outlier detection as it does not allow for different kurtosis behaviours across
space.

In the literature few proposals deal with model checking or validation for correlated
data. In particular, few papers discuss model checking for random functions. [15] de-
scribes a deletion scheme for models based on correlated observations. [10] and [16]
proposed graphical diagnostics for time series models. [16] propose a rotated residual



for independent and time series data which has good asymptotic properties. And [2]
propose Bayesian diagnostics for computer models through Cholesky decompositions
of the covariance matrix. The proposal results in numerical and graphical tools for
model checking in the context of Gaussian processes.

This work proposes to extend the Bayesian residual approach of [4] to accomodate
spatially correlated observations. In particular, the data is assumed to vary continu-
ously in a spatial domain of interest D and residual analysis and predictive tecniques
are investigated aiming to identify potential outliers or regions of larger variability in
the data. The chosen model is crucial in the definition of residuals, thus this paper
considers a flexible mixture model for geostatistical data.

The paper is organized as follows. Section 2 describes three competing models
for geostatistical data analysis: the Gaussian process, the Student-t process and the
Gaussian-Log-Gaussian process. Section 3 presents the proposed spatial residual for
outlier identification, discusses the predictive approach and defines a new measure for
outlier detection which is based on cross-validation ideas. In addition, the hypothesis
test for outlying observations in the context of Gaussian-Log-Gaussian processes is
presented for comparison with the other proposed techniques. Section 4 illustrates the
methods for outlier detection with contaminated datasets and section 5 concludes.

2. Mixture modelling for outlier detection

As follows we consider a mixture model which mimics a mechanism for outlier gener-
ation in a geostatistical context. Consider the spatial process defined in s € D such
that

Z(s) =xT(s)8 + J)\i(;)ﬂ + e(s), (1)

where Z(s) is a Gaussian process defined in s € D with zero mean and correlation
function p(s, '), s,s’ € D. The process Z(s) is independent of e(s) ~ N(0,72) which
models the measurement error parametrized by 72, the nugget effect. The mean func-
tion depend on covariates x? (s) = (x1(s),...,zx(s)) and B, a vector of regression
coefficcients. The process A(s) is the mixing process allowing for spatial heterogeneity.
If A(s) # 1 the process Z(s) is non-Gaussian. In the absence of nugget effect, the
process A(s) must be correlated to induce mean squared continuity of Z(s) [see 18,
for details]. Consider si,..., s, spatial locations in D and Z = (Z(s1),...,Z(sy)) the
observed data at these locations. The models investigated in this work are detailed as
follows.

(A) Gaussian model: we set A\(s) = 1, Vs € D as a benchmark. The distribution
of Z is

Z ’ 5702,7—279NNn(X/670229+TQIn)7 (2)
ZG(i,j) = p(siv 8]) = p(sia 553 9)7 l,le, -1l

(B) Student-t model: define A\(s) = A, Vs € D such that A | v ~ Ga(v/2,v/2).



Then, by marginalization, the distribution of Z is
Z | B,v,0% 72,60 ~ Student-t(v, X8, 0°%y + 72I,,). (3)

Similar to the Gaussian process, the Student-t process has the advantage
of depending on the mean and covariance functions only for its definition.
Details about the Student-t process in a non-Bayesian context may be seen in
[21]. Appendix A presents the likelihood function resulting from this model.
Appendix B.1 presents the posterior inference considered which is based on
Jeffreys independent prior distribution for the unknown degree of freedom
parameter as proposed by [7].

(C) Gaussian-Log-Gaussian model: consider In(X) | v,0 ~ N,, (—51,,v5¢) with
A= (A(s1),---,A(8n)). Then, the distribution of Z is

Z ‘ 67027 7_27 A0~ Nn(Xﬂa UQ(A_l/QEQA_l/Q) + TQITL)? (4)

with A = diag(\). Properties, estimation and predition for the GLG model are
introduced in [18] and extendend to the space-time case in [8]. Appendix B.2
presents the posterior inference for the model parameters.

Although the Student-t model allows for variance inflation, it increases the kurtosis for
the process in every location and does not allow for individual changes in variability.
For the GLG model, if A\(s) is close to one then the observation is not considered
an outlier. However values of A(sy) close to zero indicate outlying observation. The
marginal kurtosis for the process Z(s) is given by x = 3exp{r} implying that v — 0
results in the Gaussian case with kurtosis 3 and large values of v indicate fatter tails
than the Gaussian model.

In this paper, we investigate the three models in the detection of outliers in spatial
data. For that purpose, we compare the performance of methods for outlier detection
in the context of correlated data. Furthermore, we propose a new measure based on
cross validation ideas and extend the Bayesian residual proposed by [4] to the spatial
context.

3. Outlier detection in spatial modelling

In this section we describe three approaches to outlier detection in spatial modelling:
the posterior probability computation of a large residual, predictive techniques such as
the predictive concordance and the hypothesis testing for the latent mixing variables.

3.1. Bayesian residual analysis

Definition 3.1. Consider Z = (Z(s1),...,Z(sn)) observations at n spatial locations
of the the spatial process {Z(s),s € D} as defined in (1) such that Z | 8,02, A ~
N,(XB, UZ(A_I/QZQA_I/Q)), with A = diag(X). Then the standardized Bayesian spa-
tial residual for the mixture model without nugget effect is

r=o'AYV2x, %7 - XB) (5)



If the errors are Gaussian distributed then approximately 95% of the individual
residuals are expected to be in the interval [—2,2]. If an observation is out of this
interval there is some evidence that this observation could be an outlier. In order to
detect outlying observations, [4] define the posterior probability that an observation
is an outlier as p; = P(|r;|] > t | z). According to [4] the value of ¢ can be chosen so
that the prior probability of no outliers is large, say 0.95. The constant ¢ is chosen
to be ®~1(0.5 4 0.5(0.95'/™)). Any observation with posterior probability of being an
outlier larger than the prior probability 2®(—¢) would be suspect. In a context of
binary regression [1] and [22] consider ¢ = 0.75.

In the geostatistical setting, we will set the value of ¢ to different constants and
verify by simulation for several scenarios how the mixture process is sensitive to this
choice. It is expected that not all values used for regression model will have good
performance in the correlated data context.

Furthermore, we investigate the joint posterior probability of two observations being
outliers. This is a phenomena which is expected in spatial applications. In particular,
due to spatial correlation of observations and smoothness of the spatial process, two
observations which are close together are expected to have large errors if there is a
mechanism causing outliers in the spatial region where these two observations are
located. Thus, the joint posterior probability that the pair (r;,r;) is a regional or
multiple outlier is

pij = P(lril > t,|rj| > 1| 2). (6)

In particular, the variance process 1/A(s) in the GLG model is considered to be
correlated with In(A) | v ~ N, (—%171, VE@). Thus, if an individual outlier is detected
then this indicates that observations in the close neighborhood are potential outliers.
This could be verified computing p;;. [8] extends this proposal by allowing for in-
dependent outlying observations through individual nugget effects for each location.
This approach is not discussed in this work as replicates in time would be required for
parameter estimation.

3.2. Predictive approach

An alternative definition of an outlier was given by [13]. An observation is said aberrant
or discrepant if it is in the tails of the predictive posterior distribution. The author
define the Predictive Concordance for observed value z; as

pe; = P(2"P > z;) = / p(2"P)dz"P, (7)

i

with 2" an imaginary observation and p(z"P) the predictive distribution of z"P. This
measure is similar to the Bayesian p-value. [13] says that any observation which is in
the 2.5% tail of p(2"“P) should be considered an outlier. The percentage of outliers in
the data should be smaller than (100 — C)% where C% is the Predictive Concordance.
[13] suggests the achievement of 95% predictive concordance for model adequacy.
Notice that the pc; is computed based on the full predictive distribution, however, to
check whether z; is an outlier it actually uses z; to obatin the predictive distribution.
Thus, the model might predict this observation better than it should if z; was not
in the data. The leave-one-out predictive distribution obtained by removing z; from
the data might give better information about model performance to predict z;. [13]



proposed the Conditional Predictive Ordinate or CPO

CPO; = plailag) = / p(:10)p(O]z)d0 (8)

where z; represents a observed value from z and z;) represents the vector z without
z;. Notice that p(2"P|z;)) represents the predictive density of a new observation given
the dataset which does not include z;. Values of CPO; close to zero suggest that
observation i is a potential outlier. [19] comments that althought the C'PO; could be
used as a surprise index it might return similar values for all observations failling in
identifying outlying observations. In these situations [19] suggest a new measure called
Ratio ordinate measure (ROM) which is the CPO standardized by maz{p(z"|(;))}.
This measure aims at given more realistic indications of outliers in a dataset.
Following the ideas based on predictive distributions and Predictive Concordance
this work proposes a measure for spatial data which is based on cross-validation ideas.

Definition 3.2. The p-value from CPO is defined as
CPOpi = P(ZTep >z |Z(1)) (9)

The proposed measure is similar to the predictive concordance however it leaves z;
out of the dataset used for parameter estimation. This proposal checks if the observed
value z; is in accordance with the predictive distribution which was obtained excluding
z; from the dataset. [12] argues that z; should not be used to determine the predictive
distribution for model checking. For this measure, values of z; in either tails of the
predictive distribution will indicate that z; is an outlier.

3.3. Sawvage-Dickey ratio test

A different approach to outlier detection considers inference directly in the mixing
process A(s), s € D. Thus, A(sg) close to one indicates that observation at location
sk is not an outlier. Thus, the model that considers A(s;) = 1 could be compared to
the model which considers free A(sy). This model comparison could be done through
Bayes Factors after fitting both models to the data. An alternative to fitting both
models and then computing the Bayes Factor [17] is to consider only the model with
free \(sx) and the Savage-Dickey density ratio to approximate the Bayes Factor for
the hypothesis that A\(sg) = 1 versus A(si) # 1. The Savage-Dickey density ratio was
proposed by [6] and can be used when the restriction in the parameter being tested in
the null hypothesis is not in the boundary of the parameter domain.

According to [18] the hypothesis testing is useful to indicate outliers in the data or
regions with larger variability in space.

The resulting approximation for the Bayes Factor for each location si is given by

P(A(sk) | 2)

B 2
=000 e

(10)

with the ratio Ry being favorable to the model with A(sx) = 1 and all the other A
free against the model with free A(sy). Thus, small values of Ry (much smaller than
1) will indicate outliers. [17] give some guidelines for interpretation of Bayes Factors.
According to the authors, values of Rj smaller than 0.10 give strong evidence that



A(sk) # 1. Values between 0.1 and 0.3 give substancial evidence that A(s;) # 1, while
values between 0.3 and 1 give some evidence but are not very conclusive.

4. Application

4.1. Simulated dataset

In this subsection the three models presented in section 2, Gaussian model (GM),
Student-t model (STM) and Gaussian log Gaussian model (GLGM) are considered
in the identification of outliers in contaminated datasets. In the context of dynamical
models [23] comments that contaminated datasets, simulated originally from Gaus-
sian distribution and then contaminated to characterize aberrant observations, are
a useful tool to evaluate the performance of robust models. In this simulated study
we consider the ideia of Gaussian data contamination in the context of spatial data.
Three scenarios of contamination are presented: no contamination, weak contamina-
tion and moderate contamination as presented in table 1. Observations in the weak
scenario were contaminated summing a random increment uo such that o is the obser-
vational standard deviation and u ~ Uniform(1,3.5) for observations 1 and 20 and
u ~ Uniform(1,2.5) for observation 6. While in the moderate scenario the random
increment was generated from u ~ Uniform(1,3.5) for observations 1, 13, 15, 16, 20,
30, from u ~ Uniform(1,2.5) for observations 6 and from u ~ Uniform(1,6.5) for
observations 29. The locations considered for data simulation and contamination are
presented in figure 1. Notice that some of the contaminated locations are neighboors
in space.

Assume that Z(s) is a spatial process in D. Consider data observed in n = 30
spatial locations z = (z(s1),...,2(s,)). Then, z is simulated from f,(u,5%%), such
that u; = u(s;) = Po + Pilat; + Palong; and covariance matrix Yy with components
Yoaij) = exp{—||si —s;l|/¢}, with lat; and long; the latitude and longitude for location
1, respectively. The parameter values considered for simulation were 5y = 6,716, 51 =
2,7, 82 = —1,808 for the mean vector, and o = 1,¢ = 0,61 for the covariance matrix
parameters.

Samples from the posterior distribution for the parameters of interest are obtained
by Markov Chain Monte Carlo simulation. Some details about posterior simulation
are presented in the Appendix B. For more details of sampling from parameters from
these models see [18].

In this simulated example, it is expected that contaminated observations have large
posterior residual probabilities while non-contaminated observations should have small
residual probabilities. For the limiar ¢ three choices were considered: t; = 0.75,19 =
2,t3 = 3.1 with ¢; from [1] and [22], {2 an arbitrary intermediate constant and 3
based on [4]. Figure 2 presents the posterior distribution for the residuals for each
model and scenario of contamination. Note that in scenario 1 (first row), which has
no contamination, the three models have a desirable behavior and do not indicate
outlying observations in the data. In scenario 2, only the GLG model identifies the
observation 6 as an outlier and the three models identify observations 1 and 20. In
the scenario 3, with moderate outliers the GLG model is the only model which has
realistic posterior probabilities of large residuals for all the contaminated observations
while the Gaussian and Student-t models fails to identify most of these observations.

For the actual identification of outlying observations the limiar ¢1, t5 and t3 are
considered. Table 2 presents the posterior probabilities of atypical observations for



ts, pi(|ril > t3 | z). In the scenario 1 (no contamination) it is expected that the
probabilities of outliers are small. However, if limiars ¢; and to are considered these
probabilities are unexpectedly high. Thus, this suggests that only limiar t3 should be
considered for outlier identification in the spatial data scenario simulated in this work.

Contaminated observations in scenarios 2 and 3 are presented in tables 3 and 4. The
GLG model give large probabilities of outliers for the contaminated observations while
gives small probabilities for observations which were not contaminated. The Gaussian
and Student-t models fail to identify the contaminated observation 6 as an outlier. In
scenario 2 with weak contamination, the GLG model gave a probability of 0.228 for
observation 6 being an outlier while the Gaussian and Student-t models had 0.000 and
0.001, respectively. For instance, in scenario 3, the models gave probabilities for the
contaminated observation 30 of being an outlier 0.000 (GM),0.042 (STM) and 0.795
(GLGM). Thus, the GLG was the only model to correctly identify all the outlying
observations in the data. Notice that in this simulated example no observation was
classified as an outlier when it was not contaminated.

In addition, scenarios 2 and 3 are investigated for multiple outliers. In the context of
geostatistical data, it is expected that outliers are not observed isolated but in a region
in space. In this direction, the joint probability of multiple outliers was computed p;;
as in equation (6). Table 5 presents the probabilities for a set of pairs in the sampled
locations and the corresponding posterior correlation.

Once again the GLG model is the only model which correctly give reasonably large
posterior probabilities for all pairs of outliers in scenario 2. The Gaussian and Student-
t models give reasonably large probabilities for the pair (1,20) however give close to
zero posterior probability for the pair (1,6) and (6,20). This is explained by the fact
that the Gaussian and Student-t model do not model heterogeneity in space.

Table 6 presents the results for scenario 3. Only the pair (1,15) have reasonably
large posterior probabilities of being multiple outliers in the Gaussian and Student-t
models althought all the other pairs in the table have very large spatial correlation.
The GLG model correctly indicates all the contaminated pairs as multiple outliers.

As follows, the predictive measures were computed for the contaminated scenarios.
In particular, tables 7 to 9 present the pc; as presented in (7) for the scenarios: no
outliers, weak outliers and moderate outliers, respectively. If the observation is not
in the 5% tail it is not classified as outlier. Observation in the tail are indicated as
potential outliers.

The CPO is misleading in scenario 1, resulting in cpo; of 0.006 (GM), 0.000 (STM)
and 0.137 (GLG) for observation 27 which would indicate an outlier, however, no
observation was contaminated in this scenario. The predictive concordance pc; and the
proposed p-value based on CPO behave as expect and do not indicate any observation
as an outlier in this scenario. For scenario 3, the advantages of the proposed p-value is
even more evident. In scenario 2, observation 27 was not contaminated however, cpo;
was 0.039 (GM), 0.000 (STM) and 0.000 (GLGM) indicating an outlier. While the
proposed CPO,, were 0.769 (GM), 0.898 (STM) and 0.385 (GLGM) which correctly
do not indicate outlying observation. The predictive concordance also give reasonable
results for observation 27: 0.742 (GM), 0.651 (STM) and 0.486 (GLGM). In scenario 3,
while the cpo; is smaller than 10~* for observation 27 (non-contaminated) indicating
an outlier, the CPO,, is 0.281 and the pc; is 0.402. An analogous behaviour is obtained
for observation 3 which was not contaminated.

Table 10 indicate strong evidence that A; # 1 for all contaminated observations in
the hypothesis testing for scenario 2. For instance, for observation 1, the Bayes Factor
in favour of free \; is 0.011 giving strong evidence of free A(s) in this location. The



results for scenario 3 with moderate contamination are presented in table 11. The ratio
R; correctly indicates all contaminated observation as outliers such as observation 6
which has R; = 0.05 indicating strong evidence of an outlying observation.

Table 1. Contamination scenarios.

Scenario 1  no outliers in the data
Scenario 2  weak outliers: 3 points were contaminated
Scenario 3 moderate outliers: 8 points were contaminated

Table 2. Standardized residuals and posterior probabilities of outliers, p;(|r;| > t|z) for scenario 1 (no outlier).

Scenario 1 (no outlier)

Gaussian Student-t GLG
i i p(t1)i  p(ta)i  p(t3)i i p(t1)s  p(te)s  p(ts): i p(t1):  p(t2):  p(ts)
1 0.730 0.489 0.033 0.738 0.530 0.044 1.171 0.742 0.298 0.062
3 -0.575 0.403 0.020 -0.547 0.420 0.021 -0.467 0.519 0.084 0.011
6 -0.100 0.296 0.002 -0.033 0.269 0.006 -0.181 0.474 0.073 0.008
15 0.759 0.536 0.039 0.794 0.551 0.058 0.003 1.372 0.772 0.301 0.072
20 0.495 0.391 0.020 0.495 0.392 0.024 0.928 0.663 0.193 0.030
27  -0.724 0.517 0.082 0.003 -0.580 0.480 0.058 0.002 -0.691 0.645 0.208 0.038
30 0.074 0.309 0.007 0.143 0.317 0.007 0.443 0.519 0.111 0.009

aPosterior probabilities smaller than 10~3 are omitted from the table.

Table 3. Standardized residuals and posterior probabilities of outliers, p;(|r;| > t|z) for scenario 2 (weak outliers).
bold-faced observations represent contaminated observations.

Scenario 2 (weak outlier)
Gaussian Student-t GLG
i T p(t1):  p(t2)s  p(t3)s T p(t1):  p(t2)s  p(t3)s T p(t1):  p(ta)s  p(t3)s
1 3.711 1.000 0.998 0.797 3.731 1.000 0.995 0.839 5.426 1.000 1.000 0.997
3

-0.796  0.524  0.007 -0.639  0.455  0.016 0.222 0432  0.053 0.005
6 0.920 0.618 0.010 1.060 0.698 0.092 0.001 2.364 0965 0.664 0.228
15 0.680 0.473  0.004 0.756 0.522  0.044 1.883 0.877  0.436 0.112
20 2.622 0.999 0.848 0.114 2.668 0.999 0.863 0.299 4.300 0.999 0.995 0.904
27 -0.871 0.548  0.060 -0.592  0.505 0.053  0.001 0.137 0.578  0.143 0.033
30 -0.056  0.152 0.102 0.273  0.005 1.058 0.667  0.209 0.045

aPosterior probabilities smaller than 10~3 are omitted from the table.



Table 4. Standardized residuals and posterior probabilities of outliers, p;(|r;| > t|z) for scenario 3 (moderate
outliers). Bold-faced observations represent contaminated observations.

Scenario 3 (moderate outlier)
Gaussian Student-t GLG
i i p(t1);  p(ta)i  p(ta)s i p(t1)i  p(t2)i  p(ts) i p(t1):  p(t2)i  pts)
1 3.71 1.000 0.979 0.344 3.080 0.999 0.925 0.456 5.33 1.000 1.000 0.986
3 -0.796 0.756 0.008 -0.958 0.630 0.044 0.001 0.507  0.478 0.072 0.007
6 0.920 0.114 0.472 0.345 0.017 2.628 0.969 0.733 0.310
15 0.680 1.000 0.993 0.723 3.817 1.000 0.994 0.805 5.734 1.000 1.000 0.996
20 2.622 0.997 0.563 0.002 2.135 0.971 0.574 0.066 4.273 1.000 0.989 0.896
27  -0.871 0.959 0.335 0.023 -1.459 0.808 0.254 0.017 0.702 0.624 0.244 0.067
30 -0.056 0.965 0.192 1.937 0.957 0.443 0.042 3.988 1.000 0.975 0.795

aPosterior probabilities smaller than 103 are omitted from the table.

Table 5. Posterior probabilities of multiple outliers p;; =
p(|rs| > t3,|rj| > t3|z) and posterior correlation p;; for r; and
rj, for each model in scenario 2.

%] Gaussian Student-t GLG  Correlation p;;

1,6 0.001 0.228 0.869
1,20 0.114 0.299 0.904 0.950
6,20 0.001 0.227 0.854

aPosterior probabilities smaller than 10~ are omitted from the
table.

Table 6. Posterior probabilities of multiple outliers p;; = p(|r;| >
t3,|r;| > t3|z) and posterior correlation p;; for r; and r;, for each
model in scenario 3.

4,7 Gaussian Student-t GLG  Correlation p;;

1,15 0.307 0.433 0.982 0.834
1,20 0.002 0.066 0.896 0.958
1,29 0.006 0.603 0.850
1,30 0.042 0.794 0.847
6,20 0.307 0.875
15,20 0.002 0.066 0.893 0.933

aPosterior probabilities smaller than 103 are omitted from the
table.

Table 7. pc;,cpo;, CPOp; for some observations in the sample. Bold-faced observations
represent the contaminated observations.

Scenario 1
Gaussian Student-T GLG

Obs. pc; cpo; CPOp; pc; cpo; CPOp; pCi cpo; CPOp;
1 0.271 0.145 0.257 0.297  0.039 0.201 0.252  0.001 0.261
3 0.685  0.200 0.712 0.680 0.016 0.769 0.611  0.259 0.261
15 0.278 0.112 0.262 0.267  0.011 0.197 0.226  0.101 0.235
20 0.337  0.227 0.341 0.361  0.017 0.286 0.307 0.174 0.291
27 0.678  0.006 0.700 0.647  0.000 0.873 0.643 0.137 0.627

aValues smaller than 10~ are omitted from the table.

Table 8. pc;,cpo;, C POp; for some observations in the sample. Bold-faced observations repre-
sent the contaminated observations.

Scenario 2
Gaussian Student-T GLG
Obs. pC; cpo; CPOp; pc; cpo; CPOp; pC; cpo; CPOp;
1 0.001 0.001 0.013 0.019
3 0.767  0.2395 0.780 0.700  0.0577 0.886 0.457  0.239 0.507
15 0.264 0.281 0.243 0.269 0.173 0.199 0.177  0.232 0.277
20 0.009 0.003 0.001 0.016 0.031 0.004 0.110
27 0.742 0.039 0.769 0.651 0.898 0.486 0.385

aValues smaller than 10~ are omitted from the table.
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Table 9. pc;,cpo;, CPOp; for some observations in the sample. Bold-faced observations
represent the contaminated observations.

Scenario 3

Gaussian Student-T GLG
Obs. pC; cpo; CPOp; pC; cpo; CPOp; pCi cpo; CPOp;
1 0.002 0.000 0.004 0.006 0.004 0.037 0.031 0.070
3 0.827  0.192 0.835 0.801 0.014 0.964 0.402 0.257
15 0.004 0.031 0.046 0.094 0.044
20 0.025 0.022 0.035 0.001  0.017 0.017 0.025 0.115
27 0.945  0.006 0.968 0.851 1 0.402 0.281
aValues smaller than 10~% are omitted from the table.
Table 10. Savage-Dickey density ratio
R; for hypotesis testing in favour of \; =
1 in scenario 2. Bold-faced observations
represent the contaminated observations.
obs. E(\|z) SD(\|z) R;
[1] 0.271 0.119 0.011
(3] 0.601 0.321 0.454
[6] 0.516 0.193 0.149
[20] 0.309 0.141 0.016
[27] 0.643 0.280 0.596
Table 11. Savage-Dickey density ratio
R; for hypotesis testing in favour of \; = 1
in scenario 3. Bold-faced observations rep-
resent the contaminated observations.
obs. E(\|z) SD(\|z) R;
[1] 0.199 0.097 0.0002
[3] 0.573 0.352 0.381
[6] 0.353 0.175 0.050
[15] 0.188 0.089 0.001
[20] 0.242 0.120 0.017
(27] 0.434 0.246 0.596
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Figure 1.

(a) Weak outliers.

and (b) represents scenario 3 with moderate outliers.
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(b) Moderate outliers.

Spatial location considered for data simulation for the contaminated data scenarios. Locations in
red represent the contaminated locations in each scenario. Plot (a) represents scenario 2 with weak outliers
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Figure 2. Posterior distribution for the residuals in each scenario: no contamination (first row), weak con-
tamination (second row) and moderate contamination (tird row).
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5. Conclusions

The idea that the Student-t process would result in robustness to outliers is misleading
as the degree of freedom is the same in all spatial locations leading to inflation in the
global variance. However, the model does not allow for actual detection of regions with
aberrant observation in spatial data. These ideas were discussed in [3] and [18]. This
work adds in this direction by presenting simulation for spatial contaminated datasets
and obtaining no outlier detection for most of outliers in the data using the Student-t
model. The Student-t process for spatial data is not able to detect outliers either by
marginal probabilities or multiple detection procedures. The GLG mixture process, on
the other hand, indicates the outliers in all simulated scenarios for all detection tools
presented in this work. The residual analyses presented here is purely spatial in the
sense that the mixture process is considered in space only. [8] considered a mixture
model in space-time which is not exploit in this work.

The spatial Bayesian residuals, the proposed cross-validation p-value and the
Savage-Dickey density indicate correctly the outliers and multiple outliers under the
GLG model assumption. The CPO fail in identifying outliers for all models, giving
misleading indications for the contaminated scenarios. As an alternative, this work
proposed the p-value based on the CPO, which is able to correctly detect aberrant
observations in the spatial data.
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Appendix A. Student-t Process

The joint density function for the spatial data z = (2(s1),..., 2(s,)) in the Student-t
model is given by

vt —v+n/2
(*3")

(z—p)"Sy (2 - p)
P o’ 0) = oy 2 9

o2y

|72 |1+ (A1)
zeR, v,0%>0.
Appendix B. Markov Chain Monte Carlo Sampler

The prior distributions considered for the parameters, the complete conditional distri-
butions and proposal densities used in the MCMC algorithm are detailed as follows.
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B.1. Student-t Bayesian model

Consider the marginalized model (A1) obtained by integrating the mixing variable .
2|8, 0%, ¢, v ~ Student — t,(u, v, Xg), (B1)
with Yggij5) = o(1+ (I[si — s51/8)") .
(1) Prior distribution: 0 ~ GI(a,b), a,b > 0. Thus,

p(o?|z,B,6,v) x p(z|B,¢ 0% v)r(c?)

Metropolis-Hastings Step

The proposal density in the MCMC sampler is:
In(0?) ~ Normal(In(c?*=1), 0(202)).
(2) Prior distribution: 8 ~ Normaln(O,TBZIn), Tg > 0. Thus,

p(Blz,0% ¢,v) x pl(z|B,0% ¢ v)r(B)

Metropolis-Hastings Step

The proposal density in the MCMC sampler is:
B~ Normal(ﬁ(k_l), 0(26))'

(3) Prior distribution: ¢ ~ Gama(l,c/med(us)), with ¢ > 0 and med(us) the median
distance in the observed data. Thus,

Metropolis—ﬁrastings Step
The proposal density in the MCMC sampler is:
In(p) ~ Normal(ln(qb(k_l)),a(%b)).

(4) Jeffreys independent prior distribution [7]:

o (5) @) -v (5) - )

with ¢/ (a) = W the trigamma function. In the context of regression models,

this prior distribution garantees that the posterior distribution for v is proper.
Thus,

p(vlz,B,0% ¢) o p(z|B,0° ¢, v)n(v)

Metropolis-Hastings step
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The proposal density in the MCMC sampler is:

In(v) ~ Normal (in(v*=1), 0(2,/)).

B.2. GLG Bayesian model

We follow [18] in the simulation from the posterior distribution for parameters in the
GLG model. The vector z has conditional distribution given by

f(Z | Ba 0, 027 A) ~ Normaln(/l, 0'2A_120A_1)

with A = diag(\1,...,\,) and @ = ¢ the spatial range parameter. Define ¥} =
ATIE(0)A

(1) Prior distribution: 02 ~ GI(a,b), a,b > 0. Thus,

p(c? | 2,8,0,\v) < p(z|B,0,0% X\ v)r(c?)

1

x (0_2)—(a+n/2+1)6xp{_2 |:1
g

30w o)

Thus, 02 | ® ~ IGamma <a +2, 3z — ,u)’EZ,(_l)(z —p)+ b).

(2) Prior distribution: 8 ~ Normaln(O,TgIn), Tg > 0. Thus,

p(l6 ’ z, U, 027 ¢7 )‘) 0.8 p(Z ‘ ,6, 02, (ﬁ, )\, 1/)71-(5)
X {‘ % (2= o 25 V(2 = ) + 75208 }

As a result 5| ® ~ Normal, (m, M) with

-1
5, Xz 1 X
M=<g+92 e m=M x —2—1——:
g o

(3) Prior distribution: v ~ GIG((, 9, )

p(v|2,B,0,X,0%) o p(X|v)r(v)

—n/o— 1 N\T Lx(-1) v 1
o VST lexp{—QV [(Zn/\+2) Y (ln)\+§) —}—52} — 2L21/}

Thus, v | ® ~ GIG (C — 3 52 + L2) and n represents the dimension of 3.

(4) Prior distribution: ¢ ~ Gama(l, ¢/med(us)), with ¢ > 0 and med(us) the median
distance in the observed data. Thus,
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p(¢|2,8,v,X,0%) o plz]B,0% X\ v)m(9)

Metropolis-Hastings step

The proposal density in the MCMC sampler is:
In(¢) ~ Normal(In(¢®*=1), a(zd))).
(5) Prior distribution: A | v,¢ ~ Log — Normal (—%1,v%)

Metropolis-Hastings step

The spatial region is divided in subregions and a random walk proposal density
is used for each subregion. [18] propose a independent sampler which might be
more efficient than random walk proposals in the case of large datasets.
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