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Abstract. We prove exponential convergence to equilibrium for
the Fredrikson-Andersen one spin facilitated model on bounded
degree graphs. This was a classical conjecture related to non-
attractive spin systems. Our proof rely on coupling techniques
based on Harris graphical construction for interacting particle sys-
tems.

1. Introduction
intro

Let G = (V,E) be a countable connected graph of bounded degree
κ ≥ 1 and let d : V ×V → Z+ be the usual graph distance with respect
to G. We also denote x ∼ y, if x, y ∈ V are nearest neighbor sites
(d(x, y) = 1). We also require that G contains a copy of Z+, i.e., there
exists Z = {zi}i∈Z+ ⊂ V such that d(zi, zi+1) = 1 for every i ∈ Z+.
We denote by G the subgraph (Z, E) ⊂ G, where E is the collection of
edges {zi, zi+1}, i ∈ Z+.

We consider here the Fredrikson-Andersen one spin facilitated model
(FA1f) on G which is a continuous time spin system η = (ηt)t≥0 with
state space Ω = {0, 1}V − {0̄}, where 0̄ is the identically zero configu-
ration, and transition rates c(η, η̃) equal to zero except for

c(η, ηx) =

{
λ , if η(x) = 1 and

∑
y∼x η(y) > 0,

µ , if η(x) = 0 and
∑

y∼x η(y) > 0,

for some λ, µ > 0, where ηx is the configuration obtained from η by
flipping the spin at site x. We will suppose λ + µ = 1, which can
be obtained in a standard way by a time rescaling. Then we can fix
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q = λ = 1 − µ ∈ (0, 1) as the unique parameter of the process whose
evolution can be informaly described as follows: Each site waits an
exponential time of parameter one, independently of any other site,
and by this time, if at least one of its neighbors have value one, it takes
the value 1 with probability q and the value 0 with probability 1 − q.
From now on q ∈ (0, 1) is to be considered fixed.

As usual, regarging configurations in interacting particle system, if
ηt(x) = 1 we will say that site x is occupied by a particle (or simply,
that x is an occupied site at time t). Otherwise, we say that site x is
empty.

The Bernoulli product measure of parameter q, denoted here by νq,
is invariant, in fact reversible, for the FA1f process (ηt)t≥0. Other
important feature of the FA1f process is that it is not attractive.

In [1] it is discussed the speed of convergence to equilibrium when
G is equal to Zd with nearest neighbor connections for d ≥ 1. It is
shown (Theorem 2.1 in [1]) that for q > 1/2 and initial configurations
with sufficiently large and spatially well distributed number of par-
ticles, then convergence of the finite dimensional distributions occurs

exponentially fast in time with exponent of order
(
t/ log(t)

)1/d
. Our

aim is to improve their result for q sufficiently close to one by showing
an exponential decay to equilibrium with an exponent of order t for a
countable connected graph of bounded degree containing a copy of Z+.
So our main result is the following:

theorem:main Theorem 1.1. For q sufficiently close to one, any given site y ∈ V
and every finite dimensional set Γ ⊂ Ω, there exist constants c > 0 and
C > 0 depending on q and Γ such that∣∣Pδy

(
ηt ∈ Γ)− νq(Γ)

∣∣ ≤ Ce−ct ,

where δy is the configuration with a single particle on site y ∈ V .

Let us start by describing the main steps in the proof of Theorem 1.1
and how they lead to the verification of the statement. Fix y ∈ V and
Γ a finite dimensional subset of Ω, we will also identify it to a subset
of B = BΓ ⊂ V such that Γ only depends on the configuration on
sites of B. The main ideia of the proof is to show that we can couple
FA1f processes starting at δy and νq such that, outside an event with
probability of order e−ct, the FA1f process starting at δy restricted to
sites in B has the same configuration at time t as the process starting
with distribution νq.

The coupling mentioned above is based on the Harris graphical con-
struction of the FA1f process and an associated percolation structure
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in dual time that allows us to identify activated sites. Let us start
by describing the Harris graphical construction: Let

(
Px
)
x∈V be a

family of rate one Poisson point processes on the half-line (0,∞) and
(γx,n)x∈V, n≥1 be family of iid Bernoulli random variables of parame-
ter q which is independent of the Poisson point processes. Then there
exists a version of the FA1f process on the same probability space of(
Px, (γx,n)n≥1

)
x∈V which is defined by

ηt(x) =

{
γx,n ,

∑
y∼x ηt−(y) ≥ 1 and t ∈

[
Tx,n, Tx,n+1

)
, n ≥ 1 ;

ηt−(x) , otherwise .

where the (Tx,n)n≥1 are the time marks in the Poisson point process
Px, which will also be called decision times. For each x ∈ V , we can
decompose Px in two independent Poisson point processes, one with
parameter q associated to points with marks γx,n = 1, say P ′x, and its
complement P ′′x . Points in P ′x will be called type-1 decision times and
points in P ′′x type-0 decision times. We also call((

Px
)
x∈V , (γx,n)x∈V, n≥1

)
the Harris scheme for the FA1f model.

Using this definition we obtain a pair of FA1f processes (ηt, η̃t)t≥0

starting from any bivariate initial distribution on Ω2 where both marginals
evolve using the same Harris scheme. We are particularly interested in
the case where the first marginal starts at δy, for some y ∈ V , and the
second one starts from the equilibrium measure νq. In this case, we
represent the probability associated to the process (ηt, η̃t)t≥0 by P δy ,νq .

We call a site x ∈ V an t-activated if ηt(x) = η̃t(x). Our aim is to
show that given x ∈ V , then outside an event of exponentially small
probability with respect to t, x is t-activated.

Therefore Theorem 1.1 follows from:

prop:main Proposition 1.2. For q sufficiently close to one and every x, y ∈ V ,
there exist constants c > 0 and C > 0 depending on q, x and y such
that

Pδy ,νq
(
x is not t-activated

)
≤ Ce−ct ,

for every t > 0.

To prove Proposition 1.2 we need a proper condition to guarantee
that a give site x is t-activated. The main ideia is that x is t-activated
if it had the opportunity to choose its spin configuration before time t
(at the last possible allowed time) simultaneously for both processes.
To use this ideia we need to introduce some definitions and notation.
We can define the concept of dual path associated to a given pair
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(x, t) ∈ V × [0,+∞) on a given time interval [0, τ ] for some τ ∈ (0, t],
which we call here a τ -dual path. A τ -dual path of (x, t) is built on
a realization of the FA1f process as reversed time piecewise constant
rightcontinuous path starting at x such that changes are only possible
at decision times. Formally we have (X(s))0<s≤t−τ that starts at time
0 at position x. It can be constant equal to x or follow the realization
of the process backwards in time until a certain decision time t1 ∈
Px∩ (τ, t) (if no such point exists then the only possible path is the one
that is constant equal to x), then at time s1 = t− t1 the step function
jumps from x to position x1 chosen among one of its neighbors. By a
finite induction procedure, if we have already had k jumps and X is at
site xk at time s = sk ≤ t− τ then, or X(s) = xk for s ∈ (sk, t− τ ], or,
if Pxk ∩ (τ, t − sk) 6= ∅, we can take tk+1 ∈ Pxk ∩ (τ, t − sk) such that
the step function jumps at time sk+1 = t − tk+1 to a site xk+1 chosen
among the neighbors of xk. We denote the random set of all τ -dual
paths of (x, t) by D(x, t, τ).

For τ ∈ (0, t), a path in X ∈ D(x, t, τ) is called an activated path,
if for some time s ∈ (0, t − τ ], we have ηt−s

(
X(s)

)
= η̃t−s

(
X(s)

)
= 1.

We denote by A(x, t, τ) the random collection of all activated paths in
D(x, t, τ).

lem:ativo Lemma 1.3. If D(x, t, τ) = A(x, t, τ) for some τ ∈ (0, t), then x is
t-activated.

Proof. The proof follows from a contradiction argument. Suppose that
x is not t-activated, we show that there exists a path X ∈ D(x, t, τ)
which is not activated. We construct X by a finite number of steps as
follows:
Step 1: Since ηt(x) 6= η̃t(x), then two cases may occur:

(i) ηt−s(x) 6= η̃t−s(x) for all s ∈ (0, t− τ). In this case the constant
path X ≡ x is not t-activated and we stop at step 1.

(ii) ηt−s(x) = η̃t−s(x) for some s ∈ (0, t − τ). Thus Px ∩ (τ, t) 6= ∅
and we can take t1 = max

{
r ∈ Px ∩ (τ, t) : ηr(x) 6= η̃r(x)

}
.

At time t1, or ηt1(y) = 0 for all y ∼ x and η̃t1(y) = 1 for some
y ∼ x, or the same happens exchanging the roles of η and η̃.
Thus there exists a neighbor x1 of x such that ηt1(x) 6= η̃t1(x).
In this case, we consider that X jumps to x1 at time s1 = t− t1.

Now by finite induction, we suppose that after Step k, for some
k ≥ 1, we have built our path X up to time sk ≤ t − τ such that
ηs
(
X(s)

)
6= η̃s

(
X(s)

)
for all s ∈ (0, sk). Suppose that X(sk) = xk then

we perform step k + 1.

Step k+1: Two cases may occur:
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(i) ηt−s(xk) 6= η̃t−s(xk) for all s ∈ (sk, t− τ) and we put X(s) = xk
for s ∈ (sk, t− τ ]. Then X is not activated and we stop at step
k + 1.

(ii) ηt−s(xk) = η̃t−s(x) for some s ∈ (sk, t−τ). Thus Px∩(τ, t−sk) 6=
∅ and we can take tk+1 = max

{
r ∈ Pxk ∩ (τ, t − sk) : ηr(x) 6=

η̃r(x)
}

. At time tk+1, there exists a neighbor xk+1 of x such that
ηtk+1

(x) 6= η̃tk+1
(x). In this case, we consider that X jumps to

xk+1 at time sk+1 = t− tk+1.

The number of steps is clearly stochastically dominated by a Poisson
distribution of parameter one and then it is finite almost surely. �

From Lemma 1.3, we have that Proposition 1.2 follows from the next
result.

prop:main2 Proposition 1.4. For q sufficiently close to one and every x, y ∈ V ,
there exist constants c > 0 and C > 0 depending on q, x and y such
that

Pδy ,νq
(
D(x, t, τ) 6= A(x, t, τ)

)
≤ Ce−ct ,

for every t > 0.

2. Proof of Proposition 1.4

The proof of Proposition 1.4 is made of three major stages. The
first stage is a warming up argument for the process which allows us
to guarantee that, outside an event of exponentially small probability,
we have an appropriately concentrated and sufficiently large number of
occupied sites at time t on Z. The second stage is based on the con-
struction of a percolation struture that will be used in the third stage
to show that, also outside an event of exponentially small probability,
all dual paths in D(x, t, 3t/4) touchs another path that is capable of
transporting ones from time t/4. Finally we use the results obtained
in the three stages to prove that if the conditions described above for
the first and third stages are met then all paths in D(x, t, 3t/4) are t-
activated. The idea is to show that all paths in D(x, t, 3t/4) touch some
space time point in V × (3t/4, t) where η and η̃ are equal to one and
then we need a warming up argument to populate the graph structure
for both processes with a sufficiently large number of occupied sites at
time t/4 (first stage), a suitable percolation structure do define paths
that are capable of transporting ones from time t/4 to time interval
[3t/4, t] (second stage) and a final step to show that we can connect all
dual paths in D(x, t, 3t/4) to these tranporting paths. After we have
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established the three stages described above, we finish the section with
the proof of Proposition 1.4.

firststage
2.1. First Stage.
We now describe the first stage in the proof of Proposition 1.4. Fix

0 ≤ τ < τ̃ , We say that a path Y : [τ, τ̃ ] → Ω is a (τ, τ̃)-navigated
paths, or simply a navigated path, for a FA1f process if

(i) Y is a c.a.d.l.a.g step function;
(ii) d(Ys, Ys−) ≤ 1, s ∈ [τ, τ̃ ];
(iii) (ηt)t≥1 if ηs

(
Y (s)

)
= 1 for all τ ≤ s ≤ τ̃ .

We are interested in the events N ((x0, x1, ..., xn), s, t) which, for x0, x1,
..., xn ∈ V , s ≥ 0 and t > s, is defined as the event that there exists a
(τ, τ̃)-navigated path for some s ≤ τ < τ̃ ≤ t that starts at site x0 and
visits all sites x1,...xn.

So we show first how to construct a navigated path Y from a site
x ∈ V , occupied at time τ , to a site x̃ ∈ V . So the process starts at
Y (τ) = x. Given Yt, for some t > τ , the process remains at its current
site until the first decision time t

′
> t in Py where y is Yt or one of its

neighbors that are closer to x̃ in graph distance. In the first case, if
the spin at site Yt remains 1 at time t

′
there is no change of position,

otherwise Y jumps to an occupied neighbor that is closest to x̃. In the
second case, Y jumps to the neighboring site if it takes value 1. When
the process arrives at site x̃ it remains there and do not jump anymore.

To each navigated path Y to a site x̃ starting at site x by time τ we
can define the process St = d(Yt, x̃), t > τ , which is a continuous time
nearest-neighbor random walk on Z+ having 0 as an absorbing state
that decreases by one at rate greater or equal to q and increases by one
at rate smaller or equal to 1 − q. Thus, by standard large deviations
estimates, for q > 1/2 the navigated path will quickly arrive at y0.
Indeed there exists a constants c and C depending only on q such that,
uniformly over τ ,

P
(
T ≥ d(x, x̃)

2q − 1
+ v

∣∣∣ (ηt)0≤t≤τ

)
≤ Ce−ct (2.1) fastnavigated

for every v > 0, where T = inf{s > 0 : Yτ+s = x̃}.

lem:navigated Lemma 2.1. Let q > 1/2 and ν be a initial distribution for the FA1f
process satisfying that the distribution of min{d(x, z0) : η0(x) = 1} has
exponentially decaying tail. Therefore for every L > 0 sufficiently large,
there exists c > 0, C > 0 depending on q, L and ν such that

Pν
(
N ((z0, z1, ..., zLt), 0, t)

)
≥ 1− Ce−ct ,
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for every t > 0.

Remark 2.1. We can take ν ∈ {νq, δy, y ∈ V } is the statement of
Lemma 2.1. Clearly δy, for a fixed y ∈ V satisfies the condition in
the statment. For νq, the random variable min{d(x, z0) : η0(x) = 1} is
stochastically dominated by a geometric distribution with parameter q,
which also implies the condition in the statement.

Proof. Let (ηt)t≥0 be a FA1f process starting at ν. Take y a random
site in V satisfying that d(y, z0) = W = min{d(x, z0) : η0(x) = 1}. It
is clear that

Pν
(
N ((z0, z1, ..., zLt), 0, t)

c
)

is bounded above by

Ce−ct +

bθtc∑
j=0

Pν
(
N ((z0, z1, ..., zLt), 0, t)

c
∣∣W = j

)
P(W = j) ,

for any constant θ such that can be fixed latter. Therefore, we need
to show that Pν

(
N ((z0, z1, ..., zLt), 0, t)

c
∣∣W = j

)
decays exponentially

fast as t goes to infinity uniformly for j ∈ {0, 1, 2, ..., bθtc}.
Now fix j as above and an occupied site at time 0, y ∈ V , such that

d(y, z0) = j. We have that N ((z0, z1, ..., zLt), 0, t) happens if we build
a concatenation of Lt + 1 navigation paths between the pairs (y, z0),
(Z0, z1), ... , (zLt−1, zLt) such that the time length of the concatenated
path is smaller than t. so we build these paths using the construction
described above and denote their time length by T1, ... , TLt+1. By
the Strong Markov property, these are independent random variables
whose distribution is stochasticaly dominated by the absorbing time
of a homogeneous positive recurrent nearest neighbor continuous time
random walk on N (see above). Moreover the large deviations estimates
2.1 implies that these times have some exponential moments and by
Crámer Theorem for L sufficiently large

P
( Lt+1∑

j=1

Tj ≥ t
)
≤ Ce−ct .

�

We finish the first stage by using Lemma 2.1 and a comparison with
a discrete time contact process to control the number of occupied sites
among {z0, z1, , ..., zLt} at time t.

We will use the Harris scheme to couple (ηt)t≥0 to a discrete time
contact process (ξn)n≥0 which is a discrete Markov Process with state
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space {0, 1}Z
+ such that given ξn we have that (ξn+1(j))j∈Z+ are condi-

cionally independent and, for some p, p̂ ∈ (0, 1),

P
(
ξn+1(j) = 1

∣∣ξn) =
p , if ξn(j) = 1 ,

1− (1− p̂)ηn(1) , if j = 0, ξn(j) = 0 ,
1− (1− p̂)ηn(j+1)+ηn(j−1) , if j > 0, ξn(j) = 0 .

(2.2)

lem:coupling Lemma 2.2. For q sufficiently close to one and θ > 0 sufficiently
large, there exists p = p(q, θ) and p̂ = p̂(q, θ) in (0, 1) and a coupling
between the the FA1f process, (ηt)t≥0, and a discrete contact process
of parameters p and p̂, (ξn)n≥0, such that if η0(zm) = 1 and ξ0 is
the configuration on {0, 1}Z

+ with a single particle at m then almost
surely for all j ∈ Z+, ξn(j) = 1 implies that ηθn(zj) = 1. Futhermore,
p(q, θ)→ 1 and p̂(q, θ)→ 1 as q → 1 and θ →∞.

Remark 2.2. Although we lose information when we replace the FA1f
process by the discrete contact process, which should be clear by the
proof of Lemma 2.2, we need it due the lack of attractivity of the FA1f
and the need to have some proper estimates on the density of ones by
time t. Moreover, we can rely on the fact that the discrete contact
process is well known, see from instance Durrett [2, 3]. On Section
2.2 we discuss another discrete (but dual) time contact process and we
recall some properties of such processes.

Proof. We will consider a version of (ξn)n≥0 built using the Harris
scheme for the FA1f process. We consider a partition of the time in-
terval into disjoint consecutive intervals of length θ. So considering
the values of ηθn on Z and ξn and supposing that ηθn(zj) ≥ ξn(j) for
every j ≥ 1, we want to use the restriction of the Harris scheme to
the time interval (θn, θ(n + 1)] to specify ξn+1 such that we still have
ηθ(n+1)(zj) ≥ ξn+1(j) for every j ≥ 1. Once this specification is done
the proof follows from induction.

We have to obtain the parameters p and p̂ in the definition of the
transition probabilities in (2.2). Put ξ0 = η0 and fix j ≥ 1. To obtain
ξn+1(j) from ξn using the Harris scheme define W

′

k as the waiting time
from θn to the first occurence of a time in P ′zk , i.e.

W
′

k = min{P ′zk ∩ [θn,∞)} − θn ,

and W
′′

k is defined analogously using P ′′zk .
we only need to consider the three complementary cases below:

Case ηθn(zj) = ξn(j) = 1:
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Here if P ′′zj ∩ [θn, θ(n + 1)] 6= ∅ then ηθ(n+1)(zj) = 1. This happens
with probability

p′ = P
(
W
′′

j > θ
)

= e−θ(1−q) .

Thus we simply fix p = p
′
.

Case ξn(j) = 0 with ξn(j ∓ 1) = 0 and ηθn(zj±1) = ξn(j ± 1) = 1:
Suppose ξn(j − 1) = 0 and ηθn(zj+1) = ξn(j + 1) = 1, the other

case is analogous. If ξn+1(j) = 1 we should have ηθ(n+1)(zj) = 1 which
happens in the event

{W ′′

j > θ} ∩
{
W
′

j <
(
θ ∧W ′′

j+1

)}
.

By a standard computation, the probability of this previous event is
equal to

p
′′

= qe−θ(1−q)(1− e−θ) .
Then we should have p̂ ≥ p

′′
.

Case ξn(j) = 0 with ηθn(zj−1) = ξn(j−1) = ηθn(zj+1) = ξn(j+1) = 1:
In this case, to guarantee that ξn+1(j) = 1 implies ηθ(n+1)(zj) = 1 we
use the event

{W ′′

j > θ} ∩
{
W
′

j <
(
θ ∧ (W

′′

j−1 ∨W
′′

j+1)
)}
.

Its probability can be computed explicitly as

p′′′ = qe−2θ(1−q)
[
2(1− e−θ)− 1− e−θ(2−q)

(2− q)

]
.

We also should have p̂ ≥ 2p
′′′ − (p

′′′
)2.

From the second and third cases above, it is enough to take p̂ =
max{p′′ , 2p′′′ − (p

′′′
)2}. Finally it is clear from the definitions that

p(q, θ)→ 1 and p̂(q, θ)→ 1 as q → 1 and θ →∞. �

lemma:densidade Proposition 2.3. For each ρ ∈ (0, 1) and L sufficiently large, if q is
sufficiently close to one, there exists c > 0 and C > 0 depending on q,
ρ and L such that

P
(#
{
j ∈ {0, 1, ..., Lt} : ηt(zj) = 1

}
Lt

≤ ρ
)
≤ Ce−ct ,

for every t > 0.

Proof. Apply Lemma 2.1 considering navigated paths on time interval
[0, t/2] and we have that there exists L > 0 such that

Pν
(
N
(
(z0, z1, ..., zLt), 0, t/2

)c) ≤ Ce−ct .
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So we only need to show that given N
(
(z0, z1, ..., zLt), 0, t/2

)
, the prob-

ability of {#
{
j ∈ {0, 1, ..., Lt} : ηt(zj) = 1

}
Lt

≤ ρ
}

decays exponentially fast if q is sufficiently large.
Now we are going to use the coupling with the discrete time contact

processes and a small renormalization argument. Let us fix R > 0 that
should be taken large. We make a parttition of {0, 1, ..., Lt} into the
sets Γl = {(l − 1)R, ..., lR − 1}, 1 ≤ l ≤

⌈
(Lt + 1)/R

⌉
. For α ∈ (0, 1)

let Wα
l be Bernoulli random variables defined as follows: Wα

l = 1 if
the number of occupied sites in Γl by time t is bounded below by αR,
otherwise Wα

l = 0.
Recall that we are conditioning on N

(
(z0, z1, ..., zLt), 0, t/2

)
and each

set Γl has an occupied site during some time in the interval [0, t/2].
Put pα = P

(
Wα
l = 1

)
. From section 8 and 14 in [3], it follows that

pα can be as close to one as necessary by taking R sufficiently large,
as far as p and p̂ are both greater then the critical probability for the
dicrete time contact process and α is smaller than P(0 ∈ ξZ+

∞ ). Note
that limp,p̂→1 P(0 ∈ ξZ+

∞ ) = 1, see section 14 in [3] (We remark that
the percolation structure from [3] is not exactly the one associated to
the discrete contact processes, but the results remain valid with some
straightforward adaptation of the arguments there, see also [3, 4]).
Morever, from the FKG inequality, we have that P (Wα

l = 1|Wα
k =

1) ≥ P (Wα
l = 1) = pα, for every 1 ≤ l, k ≤

⌈
(Lt + 1)/R

⌉
. Therefore

from Theorem 0.0 in [5], if pα > 3/4 then we have that the W ′
l s are

stochastically dominated from below by iid Bernoulli random variables
of parameter p̃α = p̃α(q, θ, R) such that lim p̃α = 1 as q → 1, θ → ∞
and R→∞.

Now from the Large deviations for iid Bernoulli random variables,
for each ε > 0 fixed, outside an event of exponentially small probability⌈

(Lt+1)/R
⌉∑

l=1

Wα
l ≥ (p̃α − ε)

⌈Lt+ 1

R

⌉
,

ou ainda

#
{
j ∈ {0, 1, ..., Lt} : ηt(zj) = 1

}
Lt

≥ α(p̃α − ε) .

Now, simply choose α, R and ε such that α(p̃α − ε) > ρ to finish the
proof. �
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secondstage
2.2. Second Stage.
In this section we define a percolation structure based on the Harris

graphical construction of the FA1f and on discrete time contact pro-
cesses, similar to and related to processes considered in Section 2.1.
We will be motivated by trying to understand the dual process of our
FA1f model (ηt)t≥0.

From this time t > 0 will be considered fixed. Given p0 ∈ (0, 1)
(and for our purposes close to 1) let K = −2log((1 − p0)/2), so the
probability of having at least a decision point in an interval of length
K/2 is equal to (1 + p0)/2. Now we renormalize time and discretize
space time via (dual) intervals

I(y, i) = {y} × [iK/2, (i+ 1)K/2] ⊂ V × Z+ .

We say that (y, i) (or equivalently I(y, i)) is good if the following two
conditions hold:

(i) In the Harris scheme the interval {y}× [t−(i+1)K/2, t− iK/2]
contains no type-0 decision point.

(ii) In the Harris scheme the interval {y}× [t− (i+ 2)K/2, t− (i+
1)K/2] contains at least one type-1 decision point.

The importance being that if we are given sites y = y0, y1, · · · ym in
V with yi ∼ yi−1, for every i = 1, ...,m, then if (yi, i) is good for each i
and ηt−(mK)(ym) = 1, it follows that ηt(y) = 1.

We now define the one dimensional contact process mentioned above.
Recall the definition of Z = {z0, z1, z2, . . . } from section 1 and fix
y0 ∈ V . Let y0, y1, . . . , yr = zj be the shortest path from y0 to Z. We
let Zy0 be the copy of Z+

y0, y1, . . . , yr, zj+1, zj+2, . . .

Let us suppose for the moment that y0 and k ≥ 0 are fixed. For w
in Zy0 and l ≥ 0 consider Bernoulli random variables Jk(w, l) which
are equal to one if and only if I(w, k + l) is good. Then the random
variables Jk(w, l) are independent of all other Jk(u, l

′) random variables
except u = w and |l − l′| = 1. We derive our contact process” ξy0,k by

ξy0,k0 (x) = δy0(x) :=

{
1 , x = y0

0 , otherwise,

and

ξy0,kn (x) = 1 if and only if Jk(x, n) = 1 and ξy0,kn−1(w) = 1

for w equal to x or neighbouring it.
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To motivate this process note that if for some n ≥ 1 and w ∈ Zy0 we
have that ηt−(i+n+2)K/2(w) = 1 and ξy0,kn (w) = 1, then ηt−iK/2(y0) = 1.

Our process is very similar to previously discussed contact processes.
An annoying difference is that the Bernoulli random variables are not
independent. However we will be primarily concerned with increasing
events and by applying [5] (or using simple contour arguments) we can
(by lowering infection parameter p) assume that

(
ξy0,kn

)
n≥0

is the fully

independent model.
Our overall aim is to show that if the contact process dies out, the

die out time has exponential moments for small parameter and that if
the process survives it must give many occupied sites.

Here we simply record some simple properties for discrete time “con-
tact processes” having infection parameter p sufficiently close to 1. The
contact processes will be on half lines rather than on Z as in our graph,
since we are guaranteed half lines but not necessarily copies of Z.

We now list some elementary but useful properties of ξy0,k. In fact we
will drop y0, k from the notation y0k and consider (ξn)n≥0 discrete time
contact processes on Z+ with a variety of (non zero) initial conditions.
This is the same notation used in Section 2.1, although the contact
processes are not the same. There is no prejudice since the contact
process of Section 2.1 is not used outside that section, moreover the
results we state below hold in both cases. For the proofs and more on
contact processes we suggest [3] and [4].

We need some notation before continuing. Put ν = inf{n ≥ 0 : ξn ≡
0} and rn = sup{x ∈ Z+ : ξn(x) = 1}.

death Proposition 2.4. There exists c > 0 so that uniformly over ξ0

E(ec ν , ν <∞) ≤ 2.

Furthermore as the infection probability p tends to one, c can be allowed
to become arbitrarily large.

death2 Proposition 2.5. For each β < 1 there exists pβ < 1 so that for all
p ∈ [pβ, 1] and y0 ∈ Z+ if ξ0 = δy0 then for every n > 0

P
(
rn < βn+ y, ν > n

)
≤ (pβ)n .

The latter proposition can be pushed to the following result.
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Proposition 2.6. For every 0 < R < 1, there exists p̃ < 1 so that, for
every |y0| ≤ R t and p ∈ [p̃, 1], if ξ0 = δy0 then

P
(
{ν > 2R t}∩

{
∃m ≥ R t : rm <

R t

2
or ξs(0) = 0 ∀ s ∈ [R t, 2R t]

})
is bounded above by p̃ 2R t.

Corollary 2.7. For every 0 < R < 1, there exists p̃ < 1 so that, for
every |y0| ≤ R t/2 and p ∈ [p̃, 1], if ξ0 = δy0

P
(
∃n ∈ (2R t, t) with

∑
0≤x≤R t

2

ξn(x) <
9R t

20
, ν ≥ 2R t

)
is bounded above by

t P
( ∑

0≤x≤R t
2

ξ̂(x) <
9R t

20

)
+ p̃ 2R t

where ξ̂ is a configuration in non trivial equilibrium.

We now relate these results to our discrete time process
(
ξy0,kn

)
n≥0

.

We will be interested in two contact processes. The original process on
Zy0 and a related “subordinate” process on Z itself.
Recall that y0 ∈ V and k ≥ 1 are fixed. We first note that if ν, the
death time for ξy0,kn , is greater than R t then outside of probability e−ct

we have (for |y0| < R t
2

) that ξy0,kn is not empty on Z ∩ Zy0 ∀n ≥ R t.
We now consider (following [2]) the stopping times ν0, ν1, . . . defined
as follows ν0 = R t at this time pick a site y = y1 in Z for which
ξν0(y) = 1. Let ν1 be the (possibly infinite) time when the contact
process beginning at ν0 with only y occupied on Z expires. Given νi−1

let y be replaced by a new site yi in Z so that ξνi−(yi) = 1 and let νi
be the (possibly infinite) time that the discrete time contact process
in Z starting at νi−1 dies. The following is a simple consequence of
Propositions 2.4 and 2.5.

Lemma 2.8. For every 0 < R < 1, there exists c > 0 and p̃ ∈ (0, 1)
so that for |y0| ≤ R t

2
and p > p̃

P
(
{ν ≥ R t} ∩ E

)
≤ e−ct ,

where

E = {For some choice of y1, y2, ... there is no i < 2R t with νi =∞} .

From this we immediately obtain
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prop:percolation Proposition 2.9. For every 0 < R < 1, there exists p̃ < 1 and c > 0
so that, for every |y0| ≤ R t/2, |k| ≤ R t/2 and p ∈ [p̃, 1]

P
( R t

2∑
j=0

ξy,kR t−k(j) <
9

20
R t, ν ≥ R t

)
≤ e−ct.

thirdstage
2.3. Third Stage.
Recall the definition of dual paths and D(x, t, τ) from Section 1. Here
x ∈ V is a fixed site which is at (graphical) distance R t from our
“origin” z0. We are interested in paths in D(x, t, 3t/4). We say a dual
path X ∈ D(x, t, 3t/4) encounters a good percolating interval I(y, i) if
for some s ∈ [t− iK/2, t− (i+ 1)K/2], X(t− s) = y.

The objective of this section is to show the following result:

hitperc Proposition 2.10. Let 0 < R < 1 and K > 0 be fixed as in the
previous section. There exists q0 < 1 so that for q > q0 and all t large
if |y| ≤ R t fixed, the probability that there exists a dual path starting at
(y, t) which does not encounter a K normalized ”dual” contact process
that survives until time t/4 is less than e−ct for some c > 0.

In analyzing dual paths we will use various codings (or discrete rep-
resentations for these objects. We begin with a basic coding. A dual
path can be coded (in 1-1 fashion) by a sequence y = y0, y1 · · · ym where
∀i, yi and yi−1 are either equal or nearest neighbours and so that if we
define times ti recursively by t0 = 0 and for i > 0,

ti = inf{s > ti−1 : (yi−1, t− s) is a decision point },

then X(s) = yi on [ti, ti+1) and tm+1 > t. The “value” of X, m, is
denoted by |X|.

lemcount1 Lemma 2.11. For every sufficiently large N , we have that

P (∃ X ∈ D(y0, t, 3t/4) with |X| > Nt) ≤ e−t .

Proof. The statement of the lemma is that we cannot find y0, y1 · · · yNt
such that for all i, yi and yi−1 are either equal or nearest neighbours
and (with the above definition)

∑Nt
i=1(ti − ti−1) ≤ t/4. Now there

are (at most) (κ + 1)Nt (recall that κ is the degree of the graph) such
sequences and the probability that for any such fixed sequence has∑Nt

i=1(ti − ti−1) ≤ t/4 is equal to the probability that
∑Nt

i=1 ei ≤ t/4
for i.i.d. standard exponential random variables ei. So by standard
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Tchebychev bounds the probability in the statement is bounded above
by (

(κ+ 1)E(e−(κ+1) e1)
)Nt

e−(κ+1) t/4
=
((k + 1

k + 2

)N
e(κ+1)/4

)t
≤ e−t

for N large and all t positive. �

We now consider a coding of a dual path X which is “compati-
ble” with the discretization imposed by the renormalization procedure
of Section 2.2. Given the coding y = y0, y1, · · · ym (given Lemma
2.11 we may and shall assume that m < Nt), we define a skele-
ton of it (v1, v2 · · · vt/(2K)) to be such that for all i in time interval
[(i − 1)K/2, iK/2], the path X begins at a site zia and ends at site zib
which are linked by a path of vi sites each visited by X in this inter-
val. An interval may correspond to several skeletons. We denote by
{yi}{vj} a pair where {yi} is a code and {vj} is its associated skeleton.

lemcount2 Lemma 2.12. (i) There are at most
∑N t

L=0

(
L+t/(2K)
t/(2K)

)
≤ Ct

1 choices of

skeleton corresponding to dual paths of size less than Nt for C1 > 0
not depending on t.
(ii) Given ṽ = (v1, v2, · · · , v t

4K
) there are at most Ct

2 choices of corre-

sponding codes for some C2 > 0 not depending on t.

Proof. We note first that
∑

i vi ≤ Nt and if L is the sum, the number

of skeletons is exactly
(
L+t/(2K)
t/(2K)

)
. By summing over L we can get an

upper bound of 2Nt+1+t/2K and inequality (i) follows. Part (ii) follows

from the standard path counting which gives at most (κ + 1)
t

2K = Ct
2

corresponding codes.
�

Thus every dual path X we have a renormalized coding {yi}{vj}
given by

(y0 · · · yv1) , (yv1 · · · yv1+v2) , ... , (yv1+...+v(t/2K)−1
· · · yv1+...+vt/2K ) .

For instance e.g. yv1+v2 · · · yv1+v2+v3 represents a v3 path of visited sites
from the first visited site to the last on the third time interval. Unlike
the initial coding there are multiple renormalized codings for a given X
but by Lemma 2.12 in any case there are at most (C1C2)t such codings.

lembound1 Lemma 2.13. For 0 < ε < 1 and fixed renormalized coding, the prob-
ability that more than εt of the intervals visited are bad is less than e−θt

uniformly over y0 chosen, where θ = θ(q) ↑ ∞ as q ↑ 1 and K ↑ +∞.
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In particular we can take q sufficiently large that Ct
1C

t
2e
−θ(q)t is ex-

ponentially small.

Proof. Let us simply remark that the intervals at a fixed time level
are independent, while given the information on thestatus’s up to
(dual) time (i + 1)K/2, the status of I(yj, i) are conditionally in-
dependent for yj ∈ yv1+v2···vi · · · yv1+v2+···yvi+1

with P (I(yj, i) is good

|Fi) ≥ e(1−q)K/2(1− e−qK/2) if either I(yj, i− 1) is not identified or is
good. Thus we easily see our probability is bounded by the probability
that a binomial with parameters Nt and 1− e(1−q)K/2(1− e−qK/2) has
value greater than ε/2. The desired bound now follows from elementary
binomial tail bounds. �

Since we are interested in the event that some dual path never en-
counters a good interval which percolates for time t/4. Were this to
happen then some renormalized code would never encounter a good
interval which percolates. Then every interval encountered would ei-
ther be bad (which by Lemma 2.13 for large enough q would only be
a small proportion) or must have a finite percolation lifetime. Thus
(unless the bound of Lemma 2.13 is violated) we must be able to
find a collection of levels i1, i2, · · · if and associated to each level ij a
wj ∈ yv1+v2···vij · · · yv1+v2+···yvij+1

so that I(wj, ij) is good but its perco-

lation lasts for time `wij and so that the size of |∪j [ij, ij+`wij ]| ≥ t
4K
−tε.

Choosing ε = ε(K) sufficiently small, by Vitali Covering Lemma we
can find i1′ , i2′ , · · · if ′ so that

(i) ∀j′ 6= j′′ [ij′ , ij′ + `wij′ ] ∩ [ij′ , ij′′ + `wi,j′′ ] = ∅
(ii) | ∪j [ij, ij + `xij ]| ≥ t

15K
.

vitalliprob Lemma 2.14. For fixed sequence {yi}{vj} as above the probability of

i1′ , i2′ , · · · , if ′ giving such intervals is at most Πf
j=1C4e

− θ̃t
5K ≤ C

t
4K
4 e−

θ̃t
5K

where θ̃ = θ̃(q) ↑ ∞ as q → 1.

This is simply Proposition 2.4 and independence which can be used
since our assumption is that the initial renormalized intervals for each
interval [ij′ , ij′ + `yij′ ] is good.

Proof of Proposition 2.10. We first consider a fixed coding {yi}{vj}.
We must count (or bound) the number of Vitali coverings [ij′ , ij′+ lwij′ ]
yielding cardinality t/(15K). To do this we must choose the sequence
of (wj, ij). This number is less than the number of ways of choosing a
subset from m ≤ t/2K distinct object, that is bounded by 2t/2K . This
factor is to be multiplied by the number of ways of choosing the lengths
`wi,j′ . Again the number of these choices is bounded by the number of
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ways of choosing a subset of size equal to the cardinal of set {ij′} from
m ≤ t/2K objects and once more is bounded by 2t/2K .

Thus from Lemmas 2.13 and 2.14, the probability that some coding
of lentgh smaller than Nt fails to touch a good interval is bounded by
(using Lemmas 2.13 and 2.14)

4
t

2K

(
e−θt + C

t
4K
4 e−

θ̃t
5K

)
.

Hence (using Lemma 2.11 and Lemma 2.12) the probability that
there exists a dual path not meeting a percolating interval is bounded
by

e−t + 4
t

2K (C1C2)t(e−θt + C
t

4K
4 e−

θ̃t
5K )

and the result follows. �

2.4. Proof of Proposition 1.4.
Fix a site x ∈ V such that d(x, z0) ≤ Rt for some fixed suitable R > 0

sufficiently large. By Proposition 2.10, outside an event of exponential
small probability, every path X in D(x, t, 3t/4) touchs at some point
(y, s) ∈ V × [3t/4, t] a K normalized ”dual” contact process that sur-
vives until time t/4. Since a dual path X in D(x, t, 3t/4) gets to a
distance of Rt from x with exponential small probability, we can sup-
pose that d(y, z0) ≤ 2Rt. By Proposition 2.9, the number of occupied
sites among {z0, ..., zRt} of the K normalized dual contact process at
time t/4 is at least 7R/10 with probability 1−e−ct. By Proposition 2.3
at least R/2 sites among the same {z0, ..., zRt} are occupied for both
processes η and η̃ at time t/4 with probability 1 − e−ct. Therefore,
outside an event of exponentially small probability there exists zj such
that η(zj) = η̃(zj) = 1 and this one is carried by a navigating path to y
at time s, i.e, we also have η(s) = η̃(s) = 1, thus X is t-activated. We
finish summing over all possible paths in D(x, t, 3t/4) analogously to
what we did in Section 2.3. By an appropriate choice of the constants,
we obtain Proposition 1.4.
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