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Abstract

In this article, we introduce a likelihood-based estimation method for the stochastic volatility

in mean (SVM) model with scale mixtures of normal (SMN) distributions (Abanto-Valle et al.,

2012). Our estimation method is based on the fact that the powerful hidden Markov model

(HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of

the likelihood of an SVM model with SMN distributions. The method is based on the proposal

of Langrock et al. (2012) and makes explicit the useful link between HMMs and SVM models

with SMN distributions. Likelihood-based estimation of the parameters of stochastic volatility

models in general, and SVM models with SMN distributions in particular, is usually regarded

as challenging as the likelihood is a high-dimensional multiple integral. However, the HMM

approximation, which is very easy to implement, makes numerical maximum of the likelihood

feasible and leads to simple formulae for forecast distributions, for computing appropriately

defined residuals, and for decoding, i.e. estimating the volatility of the process.

Keywords: feedback effect, non-Gaussian and nonlinear state-space models, scale mixture of

normal distributions, Value-at-Risk.
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1 Introduction

Over the last two decades, stochastic volatility models have proven to be useful for modeling

time-varying variances, mainly in financial applications where policy makers or stockholders are

constantly facing decision problems that usually depend on measures of volatility and risk. An

attractive feature of the stochastic volatility model is its close relationship to financial economic

theories (Melino and Turnbull, 1990) and its ability to capture the main empirical properties often

observed in daily series of financial returns (Carnero et al., 2004).

Many empirical studies have shown strong evidence of heavy-tailed conditional mean errors

in financial time series; see for example Mandelbrot (1963) and Fama (1965). In the stochas-

tic volatility literature, Liesenfeld and Jung (2000), Chib et al. (2002), Jacquier et al. (2004) and

Abanto-Valle et al. (2010), amongst others, have provided consistent evidence that leptokurtic dis-

tributions, such as the Student’s t, the GED or the SMN distributions, are more adequate to

capture this empirical regularity by relaxing the normality assumption in the distribution of the

returns.

Furthermore, evidence has been provided that unexpected returns and innovations to the volatil-

ity process are negatively correlated (Harvey and Shephard, 1996; Yu, 2005). The two popular

theories associated with the negative return-volatility relation are the leverage hypothesis and the

volatility feedback hypothesis. Conceptually, the idea of a reward to a risk-averse investor for

holding a risky asset appears theoretically sound and intuitively appealing. The theory generally

predicts a positive relation between expected stock returns and volatility if investors are risk averse.

In other words, a general agreement prevails that the more uncertain the investment, the higher

the return expected by the investor. However, empirical studies that attempt to test this impor-

tant relation yield mixed results. French et al. (1987) found a positive and significant relationship

and Theodossiou and Lee (1995) reported a positive but insignificant relationship between stock

market volatility and stock returns. Consistent with the asymmetric volatility argument, Nelson

(1991) and, more recently, Brandt and Kang (2004), Loudon (2006) and Abanto-Valle et al. (2012)

reported evidence of a negative and often significant relationship between volatility and returns.

Overall, there appears to be stronger evidence of a negative relationship between unexpected re-
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turns and innovations to the volatility process, which French et al. (1987) interpreted as indirect

evidence of a positive correlation between the expected risk premium and ex ante volatility. This

theory, known as feedback volatility, states that bad (good) news lead to decreased (increases) stock

prices and increased volatility, therefore determining a further decrease of the price. An alternative

explanation for asymmetric volatility where causality runs in the opposite direction is the lever-

age effect put forward by Black (1976), who asserted that a negative (positive) return shock leads

to an increase (decrease) in the company’s financial leverage ratio, which has an upward (down-

ward) effect on the volatility of its stock returns. However, French et al. (1987) and Schwert (1989)

argued that leverage alone cannot account for the magnitude of the negative relationship. For

example, Campbell and Hentschel (1992) found evidence of both volatility feedback and leverage

effects, whereas Bekaert and Wu (2000) presented results suggesting that the volatility feedback

effect dominates the leverage effect empirically.

Frequently, the volatility of daily stock returns has been estimated with stochastic volatility

models, but the results have relied on a extensive pre-modeling of these series to avoid the problem of

simultaneous estimation of the mean and variance. Koopman and Uspensky (2002) introduced the

stochastic volatility in mean (SVM) model to deal with this problem and the unobserved volatility

is incorporated as an explanatory variable in the mean equation of the returns under the normality

assumption of the innovations. Abanto-Valle et al. (2012) proposed to enhance the robustness of the

specification of the innovation return in SVM models by introducing SMN distributions, referring

to this generalization as the SVM-SMN class of models. This rich class contains as proper elements

the SVM with normal (SVM-N), Student-t (SVM-T), slash (SVM-S) and the generalised Student-t

(SVM-GT) distributions. Abanto-Valle et al. (2012) proposed an efficient Markov Chain Monte

Carlo (MCMC) procedure for Bayesian estimation of SVM-SMN models. However, the resulting

MCMC algorithm has some undesirable features. The procedure is quite involved, requiring a large

amount of computer intensive simulations. In addition, the computational cost increases rapidly

with the sample size.

In this paper, we apply an alternative estimation method, using an approximation of the like-

lihood function via hidden Markov models (HMMs). The key idea, the use of iterated numerical

integration, was introduced by Kitagawa (1987). In the context of stochastic volatility models,
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it was applied by Fridman and Harris (1998), by Bartolucci and De Luca (2001; 2003), and by

Clements et al. (2006), although none of these papers makes explicit the link between stochastic

volatility models and HMMs. The method involves an approximation to the SVM likelihood that

can be made arbitrarily accurate, and that is competitive in terms of computational effort, due

to the powerful HMM forward algorithm becoming applicable. Further advantages of the HMM

formulation of SVM-SMN models are that simple explicit formulae exist for the residuals and the

forecast distributions, and that estimates of the latent log-volatility process can be obtained by

using the Viterbi algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction to SMN

distributions. Section 3 outlines the general class of the SVM–SMN models as well the maximum

likelihood based estimation procedure using HMMs methods. In Section 4 we perform a simulation

study in order to verify frequentist properties of the likelihood estimators. Section 5 is devoted

to the application and model comparison among particular members of the SVM-SMN models

using international market indexes. Finally, some concluding remarks and suggestions for future

developments are given in Section 6.

2 Scale mixture of normal distributions

A random variable Y belongs to the SMN family if it can be expressed as

Y = µ+ κ(λ)1/2X, (1)

where µ is a location parameter, X ∼ N (0, σ2), λ is a positive mixing random variable with

cumulative distribution function (cdf ) H(. | ν) and probability density function pdf h(.|ν), ν is

a scalar or parameter vector indexing the distribution of λ and κ(.) is a positive weight function.

As in Lange and Sinsheimer (1993) and Choy et al. (2008), we restrict our attention to the case in

that κ(λ) = 1/λ. Given λ, we have Y |λ ∼ N (µ, λ−1σ2), and the pdf of Y is given by

fSMN (y|µ, σ2, ν) =

∫ ∞

−∞
ϕ(y|µ, λ−1σ2)dH(λ|ν), (2)
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where ϕ(. | µ, σ2) denotes the density of the univariate N (µ, σ2) distribution. From equation (2),

we have that the cdf of the SMN distributions is given by

FSMN (y|µ, σ2, ν) =

∫ y

−∞

∫ ∞

−∞
ϕ(u|µ, λ−1σ2)dH(λ|ν)du

=

∫ ∞

−∞
Φ

(
λ1/2[y − µ]

σ

)
dH(λ|ν), (3)

where Φ(.) is the cdf of the standard normal distribution. The notation Y ∼ SMN (µ, σ2,ν;H)

will be used when Y has pdf (2) and cdf (3). As was mentioned above, the SMN family constitutes

a class of thick-tailed distributions including the normal, the Student-t, the Slash and Generalized

Student-t distributions, which are obtained respectively by choosing the mixing variables as: λ = 1,

λ ∼ G(ν2 ,
ν
2 ), λ ∼ Be(ν, 1) and λ ∼ G(ν12 ,

ν2
2 ), where G(., .), Be(., .) denote the gamma and beta

distributions respectively. In the Generalized Student-t, we set ν1 = ν and ν2 = 1, respectively, in

order to avoid identifiability problems.

3 The heavy-tailed stochastic volatility in mean model

The SVM model with heavy-tails is defined by

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 ϵt, (4a)

ht+1 = µ+ ϕ(ht − µ) + σηηt, (4b)

where yt and ht are, respectively, the compounded return and the log-volatility at time t. We

assume that |ϕ| < 1, i.e. that the log-volatility process is stationary and that the initial value

h1 ∼ N (µ,
σ2
η

1−ϕ2 ). The innovations ϵt and ηt are assumed to be mutually independent, ϵt ∼

SMN (0, 1, ν;H) and ηt ∼ N (0, 1), respectively. The aim of the SVM-SMN class of models is

to simultaneously estimate the ex-ante relation between returns and volatility and the volatility

feedback effect in the presence of outliers. This class of models includes SVM models with nor-

mal distribution (SVM-N) (Koopman and Uspensky, 2002), the Student-t (SVM-T), with slash

(SVM-S) and generalized Student-t (SVM-GT) distributions as special cases.
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3.1 Model fitting strategy

3.1.1 Likelihood evaluation by iterated numerical integration

To formulate the likelihood, we will require the conditional pdfs of the random variables yt, given ht

and yt−1 (t = 1, . . . , T ), and of the random variables ht, given ht−1 (t = 2, . . . , T ). We denote these

by p(yt | yt−1, ht) and p(ht | ht−1), respectively. For any member of the class of SMN distributions,

the likelihood of the model defined by equations (4a) and (4b) can then be derived as

L =

∫
. . .

∫
p(y1, . . . , yT , h1, . . . , hT | y0)dhT . . . dh1

=

∫
. . .

∫
p(y1, . . . , yT | y0, h1, . . . , hT )p(h1, . . . , hT )dhT . . . dh1

=

∫
. . .

∫
p(h1)p(y1 | y0, h1)

T∏
t=2

p(yt | yt−1, ht)p(ht | ht−1)dhT . . . dh1,

exploiting the dependence structure of state-space models (SSMs) – of which stochastic volatility

in mean models are a special type – in the last step. Hence, the likelihood is a high-order multiple

integral that cannot be evaluated directly. Via numerical integration, using a simple rectangular

rule based on m equidistant intervals, Bi = (bi−1, bi), i = 1, . . . ,m, with midpoints b∗i and of length

b, the likelihood can be approximated as follows:

L ≈ bT
m∑

i1=1

. . .

m∑
iT=1

p(h1 = b∗i1)p(y1 | y0, h1 = b∗i1)

×
T∏
t=2

p(ht = b∗it | ht−1 = b∗it−1
)p(yt | yt−1, ht = b∗it) = Lapprox . (5)

This approximation can be made arbitrarily accurate by increasing m, provided that the interval

(b0, bm) covers the essential range of the log-volatility process. We note that this simple mid-

point quadrature is by no means the only way in which the integral can be approximated (cf.

Langrock et al., 2012).

3.1.2 Fast evaluation of the approximate likelihood using HMM techniques

In the form given in (5), the approximate likelihood can be evaluated directly, but the evaluation

will usually be computationally intractable as it involves mT summands. However, instead of the
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brute force summation in (5), an efficient recursive scheme can be used to evaluate the approximate

likelihood. To see this, note that the numerical integration essentially corresponds to a discretization

of the state space, i.e. of the support of the log-volatility process ht. Therefore, the approximate

likelihood given in (5) can be evaluated using the well-developed and powerful HMM machinery,

which have exactly the same dependence strucutre as SSMs, but a finite and hence discrete state

space (cf. Langrock, 2011; Langrock et al., 2012). A key property of HMM, which we exploit here,

is that the likelihood can be evaluated efficiently using the so-called forward algorithm, a recursive

scheme which iteratively traverses forward along the time series, updating the likelihood in each

step (Zucchini and MacDonald, 2009). For an HMM, applying the forward algorithm results in a

convenient, closed-form matrix product expression for the likelihood, and this is exactly what is

obtained also for the SVM-SMN class of models:

Lapprox = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yT−1)ΓP(yT )1
⊤ . (6)

Here, the m×m-matrix Γ =
(
γij

)
is the analogue to the transition probability matrix in case of an

HMM, defined by γij = p(ht = b∗j | ht−1 = b∗i ) · b, which is an approximation of the probability of

the log-volatility process changing from some value in the interval Bi to some value in the interval

Bj ; this conditional probability is determined by Eq. (4b). The vector δ is the analogue to the

Markov chain initial distribution in case of an HMM, here defined such that δi is the density of the

N (µ,
σ2
η

1−ϕ2 )-distribution — the stationary distribution of the log-volatility process — multiplied by

b. Furthermore, P(yt) is an m ×m diagonal matrix with ith diagonal entry p(yt | yt−1, ht = b∗i ),

hence the analogue to the matrix comprising the state-dependent probabilities in case of an HMM;

this conditional probability is determined by Eq. (4a). Finally, 1⊤ is a column vector of ones.

Using the matrix product expression given in (6), the computational effort required to evaluate the

approximate likelihood is linear in the number of observations, T , and quadratic in the number of

intervals used in the discretization, m. In practice, this means that the likelihood can typically be

calculated in a fraction of a second, even for T in the thousands and say m = 100, a value which

renders the approximation virtually exact (see the simulation experiments below). Furthermore,

Lapprox → L as bm,m → ∞ and b0 → −∞. It should perhaps be noted here that, although we are

using the HMM forward algorithm to evaluate the (approximate) likelihood, the specifications of
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δ, Γ and P(xt) given above do not define exactly an HMM, since in general the row sums of Γ will

only approximately equal one, and the components of the vector δ will only approximately sum to

one. If desired, this can be remedied by scaling each row of Γ and the vector δ to total 1.

3.1.3 Forecasts and model checking

The HMM forward algorithm can also be used to obtain forecast distributions for SVM models. For

example, it is straightforward to find the cumulative distribution function of the one-step-ahead

forecast distribution on day t− 1, i.e., the conditional distribution of the return on day t, given all

previous observations. This is given by

F (yt | yt−1, yt−2, . . . , y0) ≈
m∑
i=1

ζiF (yt | yt−1, ht = b∗i ), (7)

where ζi i is the ith entry of the vector αt−1/(αt−11
⊤), obtained from the “forward probabilities”

αt−1 = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yt−1) ,

with δ, P(yk) and Γ defined as above. The corresponding expression for longer forecast horizons

is similar (see Chapter 5 of Zucchini and MacDonald, 2009, for details). The approximation in 7

becomes virtually exact for values of m about 100. A closed-form expression for obtaining state

predictions, i.e., volatility predictions, is also available. Furthermore, the forecast distribution given

in Eq. (7) can be used in order to perform model checking via residuals (Kim et al., 1998). The

one-step-ahead forecast pseudo-residual (or quantile residual) is given by

rt = Φ−1(F (yt | yt−1, yt−2, . . . , y0)), (8)

for t = 1, . . . , T , where where Φ() denotes the cumulative distribution function of the standard

normal. For a correctly specified model, the rt follow a standard normal distribution (Rosenblatt,

1952; Smith, 1985; Kim et al., 1998; Gerlach et al., 1999; Liesenfeld and Richard, 2003, see, e.g.,).

Thus, forecast pseudo-residuals can be used to identify extreme values, and the suitability of the

model can be checked by using, for example, qq-plots or formal tests for normality.
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3.1.4 Decoding

Again building on standard HMM machinery, estimates of the underlying log-volatility values can

easily be obtained using the Viterbi algorithm, which is an efficient dynamic programming algorithm

for computing the most likely Markov chain state sequence to have given rise to observations

stemming from an HMM (see Langrock et al., 2012; Zucchini and MacDonald, 2009, for details)
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Figure 1: Simulated data set from the SVM-T with β = (0.2, 0.07,−0.18)⊤, µ = 0.1, ϕ = 0.98,

ση = 0.1 and ν = 10 and y0 = 0.2.
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4 Simulation Study

In order to assess the performance of the methodology described in Section 3.1, we conducted some

simulation experiments. All the calculations were performed using stand-alone code developed by

the authors using the Rcpp interface inside R. First, we simulated a data set comprising T = 6000

observations from the SVM-T model using β = (0.2, 0.07,−0.18)⊤, µ = 0.1, ϕ = 0.98, ση = 0.1,

ν = 10 and y0 = 0.2, which correspond to typical values found in daily series of returns. Figure 1

shows the resulting data set. In order to investigate the influence the sample size on the accuracy

and computing time, we fitted the SVM-T model using m = 50, 100, 150, 200, bm = −b0 = 4 and

T = 1500, 3000, 6000, respectively. Table 1 reports the results. We observe that the parameter

estimates obtained by the HMM method stabilize for values of m around 100, for all the sample

sizes considered here. We also investigated the influence of the choice of b0 and bm, finding that

the estimator performance was not affected much unless these were chosen either much too small

(thus not covering the essential support of the log-volatility process, which in the given setting

would be the case for example for bm = −b0 = 2) or much too large (thus leading to a partition

of the support into unnecessarily wide intervals in the numerical integration, and hence a poor

approximation of the likelihood, for example with m = 50 and bm = −b0 = 15). In practice, it can

easily be checked post-hoc if the chosen range, specified by b0 and bm, is adequate, by investigating

the stationary distribution of the fitted log-volatility process. A similar exercise was performed for

the SVM-GT and SVM-S models. These results are shown in the supplementary material. Another

important fact to be mentioned is the computing time to get the maximum likelihood estimators

of the parameters. For example, for the SVM-T with m = 200 and 6000 observations our approach

using the HMM machinery takes about 17 minutes, instead of almost 4 hours to realize 50000

iterations in order to achieve convergence of an MCMC procedure.

Next, we conducted a second simulation experiment with the objective to study properties of the

maximum likelihood estimators of the SVM model’s parameters. We generated 300 datasets of size

T = 2500 from the SVM-T model, specifying β = (0.20, 0.07,−0.18)⊤, ϕ = 0.98, ση = 0.1, µ = 0.10

and ν = 10. For each generated data set, we fitted the SVM-T model using m = 50, 100, 150, 200

and bm = −b0 = 4, respectively. Table 2 reports the sample mean, the mean relative bias (MRB),
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the mean relative absolute deviation (MRAD) and the mean square error (MSE) of the parameter

estimates. A similar simulation study for the SVM-GT and SVM-S is available in the supplementary

material.

The highest (yet still small) mean relative bias was found for the parameter ν giving the degrees

of freedom of the conditional Student-t distribution. The results obtained when using m = 50 are

similar to those using higher values of m and hence finer approximations of the likelihood. Overall,

it can be concluded that the use of HMM machinery to numerically maximize the approximate

likelihood function of SVM models leads to very good estimator performance, yet involves only a

modest computational effort.

5 Empirical Application

5.1 The Data

In this section, we analyze the indexes from the São Paulo Stock, Mercantile & Futures Ex-

change, Tokyo Stock Exchange and the New York Stock Exchange. The considered indexes are the

IBOVESPA (IBVSP), Nikkei 225 (NIKKEI) and the S&P 500 (SP500) respectively. The period

of analysis is from January 5, 1998, until June 30, 2011. All the datasets were downloaded from

http://finance.yahoo.com. Stock returns are computed as yt = 100× (logPt − logPt−1), where

Pt is the (adjusted) closing price on day t. Table 3 reports a summary of descriptive statistics for

the series returns. The IBVSP returns show positive skewness and the NIKKEI and SP500 returns

negative skewness (NIKKEI and SP500). All the series show kurtosis greater than three, confirming

a well-known stylized fact for return series, namely the departure from normality. We analyze the

data with the aim of providing robust inference by using the SMN class of distributions. In our

analysis, we compare the SVM-N, SVM-T, SVM-GT and SVM-S models for each one of the series

described above.

In order to obtain the maximum likelihood estimates (MLEs) of the parameters in the SVM

models, we apply the HMM machinery as introduced in Section 3.1. To ensure a good approx-

imation of the estimators, we use bm = −b0 = 4 and m = 200. As before, all the calculations

were performed using stand-alone code developed by the authors using the Rcpp interface inside

12



Table 2: SVM-T model: Simulaton study results based on 300 replicates using the the HMM

method (bmax = −bmin = 4).

Parameter True value mean MRB MARB MSE

m = 50

ϕ 0.98 0.9807 0.0008 0.0056 0.0001

ση 0.10 0.0990 -0.0010 0.1392 0.0003

µ 0.10 0.1068 0.0685 0.8932 0.0130

β1 0.20 0.1994 -0.0028 0.2607 0.0040

β2 0.07 0.0693 -0.0097 0.2430 0.0050

β3 -0.18 -0.1787 -0.0071 0.2612 0.0040

ν 10.0 10.4946 0.0495 0.1612 1.6120

m = 100

ϕ 0.98 0.9812 0.0013 0.0061 0.0001

ση 0.10 0.0965 -0.0353 0.1618 0.0004

µ 0.10 0.1038 0.0386 0.9051 0.0130

β1 0.20 0.1971 -0.0141 0.2553 0.0040

β2 0.07 0.0695 -0.0070 0.2477 0.0050

β3 -0.18 -0.1767 -0.0183 0.2597 0.0040

ν 10.0 10.5322 0.0532 0.1661 1.6610

m = 150

ϕ 0.98 0.9812 0.0013 0.0063 0.0001

ση 0.10 0.0965 -0.0342 0.1628 0.0004

µ 0.10 0.1039 0.0392 0.9059 0.0130

β1 0.20 0.1962 -0.0188 0.2530 0.0040

β2 0.07 0.0693 -0.0090 0.2471 0.0050

β3 -0.18 -0.1767 -0.0230 0.2573 0.0040

ν 10.0 10.5322 0.0514 0.1621 1.6200

m = 200

ϕ 0.98 0.9812 0.0013 0.0063 0.0001

ση 0.10 0.0965 -0.0343 0.1629 0.0004

µ 0.10 0.1039 0.0394 0.9058 0.0130

β1 0.20 0.1963 -0.0184 0.2535 0.0040

β2 0.07 0.0694 -0.0090 0.2473 0.0050

β3 -0.18 -0.1759 -0.0227 0.2577 0.0040

ν 10.0 10.5141 0.0514 0.1620 1.6210
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Figure 2: Decoded e
ht
2 using the viterbi algorithm: top (IBVSP), center (NIKKEI) and bottom

(SP500). The solid line (SVM-N), dotted red line (SVM-T) and dotted green line (SVM-S). The

grey line indicates the absolute returns.
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Table 3: Summary statistics of the return indexes

Return size mean SD Minimum Maximum Skewness Kurtosis

IBVSP 3338 0.0531 2.1964 -17.2082 28.8325 0.5748 16.7109

NIKKEI 3310 -0.0127 1.6010 -12.1110 13.2346 -0.3206 9.0383

SP500 3393 0.0089 1.3385 -9.4695 10.9572 -0.1494 10.2474

R package. Tables 4 and 5 show the results for the SVM-N, SVM-T, SVM-GT and SVM-S models

for each one of the return indexes series.

For all three series of returns and all four models considered, we find that the MLEs of ϕ are

above 0.97, indicating a high persistence of the log-volatility process. For the SVM-GT model, the

MLEs and the 95% confidence intervals of ϕ tend to be higher than those obtained using the other

three models, while the persistence in the log-volatility process underlying the SVM-N model is

smaller than that found using the other three models. The MLE of ση is smaller in the SVM-GT

than those of the SVM-N, SVM-T and the SVM-S models, indicating that the volatility of the

SVM-GT is less variable than those of the other three models. The variability of the log-volatility

process is highest in case of the SVM-N model.

For the mean process, we find that the MLEs of β0 are positive and statistically significant,

since the 95% confidence intervals do not contain zero (for all models and series considered). For

the IBVSP and the NIKKEI return series, there is an indication that β1 might not be relevant. In

the SP500 case, β1 is significant. The β2 parameter, which measures both the ex ante relationship

between returns and volatility and the volatility feedback effect, is estimated to be negative and

is deemed statistically significant, for all models and indexes considered. This result confirms pre-

vious results in the literature and indicates that when investors expect higher persistent levels of

volatility in the future they require compensation for this in the form of higher expected returns.

The magnitude of the tail fatness is measured by the shape parameter ν in the SVM-T, SVM-

GT and SVM-S models. The MLEs of ν are obtained as 13.11, 12.69 and 12.03 in the SVM-T

for the IBVSP, NIKKEI and SP500, respectively. The MLEs of ν in the SVM-GT are 5.59, 6.71

and 6.92 for the IBVSP, NIKKEI and SP500 , respectively. Finally, the MLEs of ν in the SVM-S

are approximately 4.49, 4.33, 3.53 for the IBVSP, NIKKEI and SP500, respectively. These results
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suggest that the noise in the stock returns is better explained by heavy-tailed distributions.

In Figure 2, we plot the decoded volatility, e
ht
2 , obtained by applying the Viterbi algorithm for

the IBVSP (top), NIKKEI (center) and SP500 (bottom) series. The solid line, dotted red line and

and green line indicate the values obtained by the SVM-N, SVM-T and SVM-S, respectively. There

are notable differences especially in high volatility periods. This can have a substantial impact, for

instance, in the valuation of derivative instruments and several strategic or tactical asset allocation

topics. We considered here only the SVM-N, SVM-T and SVM-S models, becuase they are the

better models for three indexes considered here.

To compare the different models considered, we calculate the Akaike information criterion

(AIC), defined as AIC = −2 logL + 2p, where logL is the log-likelihood of the fitted model and

where p denotes the number of parameters of the model evaluated. From a suite of candidate

models, we favor the model which has the smallest AIC. As reported in Table 6, the AIC selects

the SVM-S as the best model for the IBVSP series, and the SVM-T for the NIKKEI and SP500

series, respectively.

We now perform an out-of-sample analysis of the forecast performance of the models covered

in Table 6. The observation period is January 5, 1988 until September 29, 2014. For each return

series the data are now divided into a calibration and a validation sample:

• Calibration sample (in-sample period): from January 5, 1998 until June 30, 2011.

• Validation sample (out-of-sample period): from July 1, 2011 until September 29, 2014.

As a first step, the SVM-N, SVM-S and SVM-T models was fitted to the calibration sample of

each series. This was done by using the HMM method with m = 200, a value that is large enough

to ensure that any anomalies that may occur could not be attributed to inaccuracies in the ap-

proximation of the likelihood. Then, for each one of the observations in the validation sample, the

(one-step-ahead forecast) pseudo-residual was computed according to equation 8. As described in

Section 3.1.3, non-normality of these residuals is an indication of mis-specification of the corre-

sponding model.

The p-values for the Jarque–Bera tests applied to the pseudo-residuals are listed in Table 7.

As an example, the qq-plots for the three return series and SVM-N, SVM-S and SVM-T models
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Figure 3: qq-plot of the forecast pseudo-residuals for SVM-N (left), SVM-T (middle) and SVM-S

(rigth) and the three returns indexes IBVSP(top), NIKKEI(middle) and SP500 (bottom).
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Table 6: Model comparison via AIC; for each series considered, the minimum AIC is highlighted

in bold.

AIC

Return SVM-N SVM-T SVM-GT SVM-S

IBVSP 13596.64 13601.62 13700.98 13590.52

NIKKEI 11636.80 11636.40 11691.54 11636.50

SP500 10137.06 10126.62 10160.04 10126.92

Table 7: p-values of Jarque–Bera tests applied to one-step-ahead ahead forecast pseudo-residuals

SVM-N SVM-S SVM-T

IBVSP 0.97 0.51 0.49

NIKKEI 0.11 0.12 0.07

SP500 0.0002 0.0006 0.004

are given in Figure 3. For IBVSP return index the qq-plot indicate a lack of fit in the left tail

(SVM-N) and rigth tail (SVM-T and SVM-S). The JB test accept the hypothesis of normality

of the residuals of the three models at the 5% and 10% level. For the NIKKEI return index the

qq-plot reveals a poor fit in left tail (SVM-N)evels and a similar fit in the right tail. The JB test

accept the normalty assumption of the pseudo-residuals at the 10% level for the SVM-N and SVM-S

models and reject the SVM-T and at the 5% level the JB test accept normality of the three models.

Finally, considering the SP500 returns the qq-plot identifies a poor fit in the left tail for the three

models, it is more evidently in the normal case. The JB test confirms these findings and reject the

normality assumption of the pseudo-residuals. This apparently mis-specification could be caused

by the presence of correlation between the perturbation terms defined by equations (4a) and (4b).
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6 Discussion

In this article, we presented an implementation of a maximum likelihood-based estimation approach

for the SVM model (Koopman and Uspensky, 2002). The SVM model allows to investigate the

dynamic relationship between returns and their time-varying volatility. The Gaussian assumption

of the mean innovation was replaced by univariate thick-tailed processes, known as scale mixtures

of normal distributions. We studied three specific sub-classes, viz. the Student-t, slash and the

generalized Student-t distributions, and compared parameter estimates and model fit with the

default normal model. We illustrated our methods through an empirical application of the IBVSP,

NIKKEI and SP500 index returns. The AIC was used to asses in-sample fit. According to the AIC,

the SVM-S model showed the best fit for the IBVSP series and the SVM-T model for the NIKKEI

and SP500 series, respectively. For all indexes and models considered, the β2 estimate, which

measures both the ex ante relationship between returns and volatility and the volatility feedback

effect, was found to be negative. The results are in line with those of French et al. (1987), who

found a similar relationship between unexpected volatility dynamics and returns, and confirm the

hypothesis that investors require higher expected returns when unanticipated increases in future

volatility are highly persistent. This is consistent with our findings of higher values of ϕ combined

with larger negative values for the in-mean parameter.

Our SVM-SMN models showed considerable flexibility to accommodate outliers, however their

robustness aspects could be seriously affected by the presence of skewness and heavy-tailedness

simultaneously. To deal with this problem, the scale mixtures of skew-normal distributions can be

used, or alternatively, the conditional distribution of the retunrs could be modeled nonparametri-

cally (Langrock et al., 2014). A deeper investigation of such modifications is beyond the scope of

the present paper, but provides stimulating topics for further research.
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