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Resumo:

Neste trabalho o problema de propor uma dimensão para Análise de Correspondências

Multiplas (MCA) foi discutido em duas direções: a re-avaliação baseada na inércia

explicada no sentido de Benzécri (1979) and Greenacre (2006) e um teste proposto

por Ben Ammou and Saporta (1998). Isto se faz considerando uma melhor recons-

trução dos elementos fora da diagonal da sub-tabela de Burt cruzando as variáveis

Nominais. Então Greenacre (1988) introduziu a “Joint Correspondence Analysis”

(JCA). Resultados de duas aplicações são apresentados para avaliar a qualidade da

reconstrução de ambas MCA e JCA, também são comparados com os resultados de

Análise de Correspondências Simpes de tabelas 2 por 2. Observamos que a redução
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de dimensão é muito melhor para a técnica JCA do que para a MCA, que se revela

viesada e não monótona.

Este trabalho feito durante a visita do prof. Camiz a UFRJ, em abril 2013,

apoiada pela FAPERJ (processo APV-E-26/110.018/2013), foi enviado para ser

publicado na revista francesa “Revue des Nouvelles Technologies de l’Information

(RNTI)”.

Abstract

The problem of the proper dimension of a Multiple Correspondence

Analysis (MCA) is discussed, based on both the re-evaluation of the ex-

plained inertia sensu Benzécri (1979) and Greenacre (2006) and a test

proposed by Ben Ammou and Saporta (1998). This leads to the con-

sideration of a better reconstruction of the off-diagonal sub-tables of

the Burt’s table crossing the nominal characters taken into the account.

Thus, Greenacre (1988) Joint Correspondence Analysis (JCA) is intro-

duced and the results obtained on two applications are shown and the

quality of reconstruction of both MCA and JCA solutions are compared

to the Simple Correspondence Analysis results of the two-way tables. It

results that JCA’s reduced-dimensional reconstruction is much better

than the MCA’s one, that reveals highly biased and non-monotonous.

Keywords: Correspondence Analysis, Multiple Correspondence Analy-

sis, Joint Correspondence Analysis.

1 Introduction

The identification of the dimension of a data table under study is a crucial issue of

most multidimensional scaling techniques. A distinction should be done between

linear scaling, in which the encapsulated solutions allows an a posteriori choice

of the user, and non-linear one, in which usually the solution dimension is an a

priori choice that conditions the results. As the latter may be only hypothesized,
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e.g. according to the results of a previous linear scaling that may be used as a

starting configuration, the identification in the linear case has an importance that

goes beyond the simple linear case, to involve most of the analysis that follow the

scaling itself. To quote only some, the number of factors to be interpreted, those

on which to attempt a classification, the dimension in which search for a non-linear

solution or for a factor analysis, etc., are all items that depend on this choice.

In this paper, we deal with this problem in the framework of Multiple Corre-

spondence Analysis (MCA, Benzécri et al., 1973-82; Greenacre, 1983; Langrand and

Pinzón, 2009) in particular considering its alternative, the Joint Correspondence

Analysis (JCA, Greenacre, 1988), whose solution depends on an a priori selected

dimensionality, and the partial reconstruction of the original data that results by

the application of both MCA and JCA reconstruction formulas.

The application of these methods to two examples taken from studies in linguis-

tics (Nardi, 2007; Senna, 2013) will show unexpected results when comparing the

reconstruction: even if JCA was supposed to perform better, the results of MCA,

in comparison with those of JCA, would seriously get questionable its use. Indeed,

the application to the Burt’s table of the chi-square metrics, and the following cor-

respondence analysis, emphasize too much the importance of the block-diagonal

matrices, whose interest is practically null, in respect to the off-diagonal ones that

contain the most interesting information.

2 Theoretical framework

In exploratory multidimensional scaling the identification of the proper dimension

of the solution is strictly tied to the crucial distinction between relevant and non-

relevant information, something similar to the identification of errors in classical

statistics, but not the same. In this case, the relevant information is also tied to

the possibility to interpret the factors, according to the paradigms of the method

at hand: it may be either the percentage of explained inertia for the metric scaling

or the stress for the non-metric one, these being in practice the most widely used.
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Thus, to take into account a large share of inertia or reduce as much as possible

the stress are the most evident rough methods that may be used and a higher-

dimensional solution is normally preferred to a smaller one only if these values are

significantly smaller. But how to evaluate to what extent they are ”significantly

smaller”? According to the method at hand, a solution may be found: for Prin-

cipal Component Analysis, Jackson (1993) compared some of the existing ones in

literature.

2.1 Singular Value Decomposition and Generalized Singular Value

Decomposition

We may ground our further discussion on the well known Singular Value Decom-

position (SVD, Greenacre, 1983; Abdi, 2007) theorem, that states

Theorem 1. Any real matrix X may be decomposed as X = UΛ1/2V ′, with Λ the diagonal

matrix of the real non-negative eigenvalues of XX ′, U the orthogonal matrix of the corresponding

eigenvectors, and V the matrix of eigenvectors of X ′X (with the same eigenvalues), with both

constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of an r-rank matrix

xij =
r∑

α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:

Theorem 2. (Eckart and Young) The s-rank reconstruction of any real matrix X, with s < r,

the rank of X, once its singular values are sorted in decreasing order,

xij ≈
s∑

α=1

√
λα uiα vjα

is the best one in the least-squares sense.
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Thus, the exploratory analysis paradigm states that the most relevant infor-

mation is tied to the largest eigenvalues and the non-relevant to the least ones.

The problem of distinguishing among them, that is to identify at least a tenta-

tive cutpoint of either the singular- or the eigen-values sequence, remains a crucial

issue, that seems more easily solved in the case of Simple Correspondence Analy-

sis (SCA, Benzécri et al., 1973-82; Greenacre, 1983; Langrand and Pinzón, 2009),

since the special chi-square metrics adopted allows some useful solutions and an

easy interpretation of the results.

Indeed, for our purposes, we shall refer to the Generalized Singular Value De-

composition (GSVD, Greenacre, 1983; Abdi, 2007). For a given matrix X, this

involves using two positive definite square matrices expressing constraints imposed

respectively on the rows and the columns of X. If M and N are such matrices, the

GSV D aims at decomposing X as X = UΛ1/2V ′, under the orthogonality constraints

U ′MU = I and V ′NV = I. We shall express these conditions by saying that U and

V are required to be M- and N-orthogonal, respectively.

Theorem 3. Given two real positive definite matrices M and N , any real matrix X may be

decomposed as X = ŨΛ1/2Ṽ ′, under constraints Ũ ′MŨ = I and Ṽ ′NṼ = I.

The solution is given by the SV D of the matrix X̃ =M1/2XN1/2 = FΛ1/2G′, with

F ′F = I, G′G = I, Ũ = M−1/2F , and Ṽ = N−1/2G. It results that Ũ Ũ ′ = M−1 and

Ṽ Ṽ ′ = N−1 respectively.

2.2 Correspondence Analysis

Let N an r × c contingency table, with n = n.. the table grand total, ~r = (p1., ..., pr.)
′

the vector of row marginal profile (with pij = nij/n), ~c = (p.1, ..., p.c)
′ the vector of

column marginal profile, and Dr = diag(~r), Dc = diag(~c) the corresponding diagonal

matrices. The SCA of N results from the application of GSVD to the contingency

table N with the constraints given by the diagonal matrices Dr and Dc. As a result,
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the reconstruction formula of N is:

nij = nricj


1 +

min(r,c)−1∑

α=1

√
λα fiα gjα


 .

This results from the formulation of the problem in terms of the best weighed

least-squares approximation of the matrix N by another matrix H of lower rank

which minimizes

r∑

i=1

c∑

j=1

(nij − hij)2
eij

=
r∑

i=1

c∑

j=1

(nij − hij)2
nricj

= n−1trace
(
D−1r (N −H)D−1c (N −H)′

)
(1)

where the weights are the inverse of the expected frequencies. Thus, the recon-

struction formula may be well synthesized as

N = n ~r ~c ′ +DrFΛ
1/2G′Dc. (2)

As a matter of fact, in order to produce a simultaneous graphical representation,

SCA eigenvectors are usually rescaled, by defining as coordinates the quantities

Φ = FΛ1/2 and Ψ = GΛ1/2. With this transformation, and applying the Eckart

and Young’s theorem, any reduced rank approximation obtained by limiting the

sum above to the r largest eigenvalues is the best approximation in the weighed

least-squares sense:

nij ≈ nricj

(
1 +

r∑

α=1

1√
λα

φiα ψjα

)
.

It results that the inertia along each dimension α equals χα
2 = nλα. As in SCA the

eigenvalues sum, up to the grand total, to the table chi-square, namely

χ2 = n

min(r,c)−1∑

α=1

λα,

the cutting problem is simply solved by using the classical test for goodness of fit

(Kendall and Stuart, 1961) or more easily through the Malinvaud (1987) test. The

test may be applied, as, for each α-dimensional partial reconstruction, the residuals
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correspond to

Qα =
∑

ij

(nij − ñαij)2
ñαij

,

asymptotically chi-square-distributed with (r − α− 1) × (c− α− 1) degrees of free-

dom. In the formula, ñαij is the cell value estimated by the α-dimensional solution,

and the table chi-square test results when α= 0 and ñ0ij =
ni· n·j

n··
is the expected

value under independence. Now, Malinvaud (1987) showed that, by substituting

the estimated cell values with the expected ones under independence hypothesis,

the formula may be approximated by

Q̃α =
∑

ij

(nij − ñαij)2
nricj

= χ2 −
α∑

β=1

χ2
β = n

min(r,c)−1∑

γ=α+1

λγ ,

that may be more easily used to check for nullity of the residuals. It is interesting

to observe that to the same property may be associated the partial chi-square test

for significance associated to each eigenvalue, χ2
α = n..λα, with df = (r + c− 2α− 1)

(Kendall and Stuart, 1961), to detect if there are linear ordinations of both rows and

column levels that explain the deviation from expectation (Orlóci, 1978). Whereas

Malinvaud’s is an overall test, that may be used to reject the hypothesis of the

residuals randomness, thus suggests to go further in the factors inspection, this

test informs on the existence of a significant one-dimensional relation among the

rows and column levels, independent from the previous ones. Indeed, non-linear

relations may results from the co-occurrence of several one-dimensional solutions

(not necessarily significant), as could be the case of the application in section 3.

2.3 Multiple Correspondence Analysis

It is well known that MCA is but a generalization of SCA and it is based on SCA of

either the indicator matrix Z, whose rows are the units and the columns are all the

levels of the considered variables, or the so-called Burt’s table B = Z ′Z that gathers

all contingency tables obtained by crosstabulating all the variables in Z, including

the diagonal tables obtained by crossing each variable with itself. We drop here
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other definitions and formulas of both SCA and MCA and their relations, that

may be found, e.g., in Greenacre (1983) or in Langrand and Pinzón (2009). Suffice

here to remind that, in both cases, the chi-square metrics is adopted so that the

interpretation of results ought to be done once again in terms of deviations from

expectation. It is easy to see that in this case the total inertia of Z is Iz =
J−Q
Q , where

Q is the number of variables and J the total number of levels, that is J =
∑Q

i=1 li

where liis the number of levels of the i-th character and that the eigenvectors in

SCA of both Z and B are the same, whereas the B’s eigenvalues are the squares of

Z’s: µ2α = να. Thus, it makes no difference to perform MCA on either matrix.

As SCA, given a Burt matrix B, MCA may be defined as the weighted least-

squares approximation of B by another matrix H of lower rank, minimizing

n−1Q−2trace
(
D−1r (B −H)D−1r (B −H)′

)
. (3)

Notice how (3) derives from (1). In terms of the subtables, this may be rewritten

as

n−1trace
(
D−1(B −H)D−1(B −H)′

)
=

= n−1
Q∑

i=1

Q∑

j=1

trace
(
D−1i (Nij −Hij)D

−1
j (Nij −Hij)

′
)
,

where H is the supermatrix of the Hij. Introducing the norm notation

‖A−B‖2ij = trace
(
D−1i (A−B) D−1j (A−B)′

)

the minimization can be written as

n−1
Q∑

i=1

Q∑

j=1

‖Nij −Hij‖2ij . (4)

In MCA the identification of the true dimension is particularly difficult, de-

spite the MCA is a SCA of a particular table, because the chi-square test has no

sense. Indeed, for B a chi-squared statistic may again be calculated as if it were a
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contingency table, and this simplifies as

χ2
B = 2

Q∑

i=1

i−1∑

j=1

χ2
ij + n(J −Q),

where χ2
ij is the chi-squared statistic for the off-diagonal subtable Nij = Z ′iZj crossing

the i-th and the j-th characters, but without the possibility to make a test. Un-

fortunately neither Qα nor Q̃α computed on the indicator matrix Z are chi-square

distributed (Ben Ammou and Saporta, 1998), since Z is composed by 0’s and 1’s.

Thus, the only useful information appears to be the tie of MCA with General-

ized Canonical Analysis (sensu Carroll, 1968; Carrol et al., 1986). Indeed, when

MCA is seen as the analysis of a multi-indicator matrix, the square roots of the

eigenvalues may be seen as the sum of the squares of correlations of the corre-

sponding eigenvector with its projections onto the subspaces spanned by the levels

of each character. Albeit it may be interpreted as a degree of coherence in the

meaning of each projection, this property is very difficult to handle, so that its use

is very limited. In practice, the current users are satisfied when the first two-tree

factors are enough larger than the following, regardless of their numerical value

or of the percentage of cumulated inertia, that is generally admitted to be highly

underestimated.

The term ”inflation” applied to the high number of eigenvalues of the MCA,

derives from Benzécri (1979) that explains it in terms of the arbitrary number of

levels in wich a continuous character may be discretized to become qualitative and

the fact that, if we compare SCA and MCA applied to the same two characters

contingency table, a relation between the eigenvalues may be found. Indeed, by

partitioning a two-characters Burt’s table Z ′Z into submatrices it can be shown

(ibid.) the relation µα = 1±
√
λα

2 that holds among the eigenvalues of Z and those

of the SCA of the contingency table crossing the two characters. In this case, it

is evident that to the eigenvalues λα = 0 of SCA correspond eigenvalues µα = 1
2 of

Z and να = 1
4 of B, whereas to the others two correspond, one of which larger and

the other smaller than 1
2 and 1

4 respectively. Generalizing this argument to several
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characters results in admitting to limit attention in MCA only to the eigenvalues

larger than their mean, that is µ ≥ µα = 1
Q .

The argument is discussed in detail by both Benzécri (1979) and Greenacre

(1988, 2006). Both authors suggest, in order to get a measure of relative importance

of each factor, to re-evaluate the eigenvalues larger than the mean (equal to 1
Q)

according to the formula

ρ (µα) =

(
Q

Q− 1

)2

(µα − µ)2 , µα ≥ µ =
1

Q
.

Thus, as Benzécri bases his argument on the discretization of a continuous charac-

ter, he suggests to consider as total inertia the sum of the re-evaluated eigenvalues

and consider as percentage of explained inertia the ratio ρ(µα)∑
α ρ(µα)

. This results in

a dramatic re-evaluation of the relative importance of the first eigenvalues. On

the opposite, Greenacre bases his arguments on the unusefulness to take into ac-

count the diagonal block matrices and the utility to limit attention only to the

total off-diagonal inertia of the table, that is the sum of squared (non-re-evaluated)

eigenvalues minus the diagonal inertia: that is

Q

Q− 1




∑

µα>1/Q

µ2α −
J −Q
Q2


 .

Experiments show that the Greenacre’s reevaluation is always limited to a share

of the total inertia of Burt’s table even by taking into account all the eigenvalues

larger than the mean.

An alternative is proposed by Ben Ammou and Saporta (1998, 2003): they

suggest to estimate the significance of the eigenvalues of MCA according to their

distribution. If the characters are independent,
∑J−Q

β=1 µβ = J−Q
Q and Sµ2 =

∑J−Q
β=1 µ

2
β =

J−Q
Q2 +

∑
i 6=j φ

2
ij

Q2 with n..φ
2
ij ≈ χ2

(li−1)(lj−1) , thus,

E[n..φ
2
ij ] = E[χ2

ij ] = (li − 1)(lj − 1)
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so the expectation of the variance S2
µ of the eigenvalues is

σ2 = E[S2
µ] =

1

n..Q2(J −Q)

∑

i 6=j

(li − 1)(lj − 1).

Roughly, one may assume that the interval 1
Q ± 2σ should contain about 95% of the

eigenvalues. Indeed, since the kurtosis of the set of eigenvalues is lower than for a

normal distribution, the actual proportion is larger than 95%.

2.4 Joint Correspondence Analysis

Greenacre (1988) criticizes MCA approach since in his opinion ”it is not a natural

generalization of the geometrical [...] or the least squares approach [of SCA]” and

proposes his Joint Correspondence Analysis (JCA) as its natural generalization to

the case of nominal data, considered as a set of contingency tables obtained by

crossing them on the same individuals. According to him, in MCA ”appears to

be no justification for fitting the diagonal subtables B which contribute the term

n(J −Q) to the total variation”, a term that ”artificially inflates the total variation

to the extent that the percentages accounted for by the major principal axes can be

very low, especially when J−Q is large. A more natural measure of total variation is

the sum
∑∑

q 6=s χ
2
qs. This suggests an alternative generalization of correspondence

analysis which fits only the off-diagonal contingency tables, analogous to factor

analysis where values on the diagonal of the covariance or correlation matrix are

of no direct interest.”

Indeed, the proposed redefinition of the total variation, by removing the di-

agonal block-matrices, would fix an important bias due to the application to the

Burt’s table of the chi-square metrics, as the diagonal structure of the diagonal

block-matrices represents a very high deviation from the expected values, that

MCA analyzes as if it were a true deviation. On this basis, on the opposite to the

current use, this kind of analysis is not really suitable.

So, Greenacre (1988) proposes his Joint Correspondence Analysis (JCA) as a
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weighed least-squares approximation aiming at minimizing

n−1
Q∑

i=1

i−1∑

j=1

‖Nij −Hij‖2ij , (5)

instead of (4) with the corresponding χ2
J =

∑Q
i=1

∑i−1
j=1 χ

2
ij , sum of the chi-squares of

all off-diagonal tables, that unfortunately may not be checked for significance.

In order to get the solution, he proposes an alternating least-squares algorithm,

based on the reformulation of (5) as follows:

n−1
Q∑

i=1

i−1∑

j=1

‖Nij −Hij‖2ij = n−1
Q∑

i=1

i−1∑

j=1

∥∥Nij − n ~ri ~rj ′ − Lij

∥∥2
ij

(6)

with ~ri the diagonal of the i-th block-diagonal matrix. Calling H and L the su-

permatrices gathering the Hij and Lij respectively, Greenacre (1988) states the

equivalence of the rank-K solution of L which satisfies the normal equations in the

minimization of the second term of (6) with the rank-(K + 1) matrix H = ~r ~r ′ + L

which satisfies minimizing (5), with ~r the supervector gathering the Q vectors ~ri.

The matrix approximation L of rank K is of the form L = nDXDβX
′D, where

the J×K matrix X is normalized as X ′DX = QI, with D = diag(~r). The matrix X of

parameters has rows corresponding to the categories of the variables and columns

corresponding to the dimensions of the solution, that must be chosen in advance.

The diagonal matrix Dβ contains a scale parameter for each dimension. This form

of L and the normalization conditions are chosen to generalize the bivariate case

(2). The parameter matrix X is partitioned row-wise according to the variables as

X1, · · · , XQ, where Xq is Jq×K, so that the submatrices of L are Lqs = nDqXqDβX
′
sDs.

There are also inherent centering constraints on X of the form X ′r = 0 due to the

orthogonality with the dimension defined by the trivial solution. It is evident that

the dimension of the solution must be chosen in advance.

It is to be noted that fitting the off-diagonal submatrices reminds the MIN-

RES method for least-squares factor analysis where the off-diagonal elements of a

correlation matrix are fitted (Thomson, 1934, see also Gabriel, 1978).
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Thus Greenacre (1988) proposes the approximate reconstruction of the whole

matrix B − n ~r ~r ′, namely

B − n ~r ~r ′ ≈ nDXDβX
′D + C,

where C is a block diagonal matrix with submatrices Cqq, q = 1, ..., Q down the

diagonal and zeros elsewhere. Here, each Cqq is composed by dummy parameters

which effectively allow perfect fitting of the submatrices on the diagonal of B−n ~r ~r ′,

thereby eliminating their influence on the model of interest. The minimization of

B − n ~r ~r ′ = 2n−1
Q∑

i=1

i−1∑

j=1

∥∥Nij − n ~ri ~rj ′ − Lij

∥∥2
ij

+ n−1
Q∑

k=1

∥∥Nkk − n ~rk ~rk ′ − Lkk − Ckk

∥∥2
k
.

(7)

is equivalent to minimizing (6) because the latter set of terms in (7) can always be

made zero by setting Cii = Nii − n ~ri ~ri ′ − Lii.

The algorithm proposed by Greenacre (1988) to minimize (7) can be performed

iteratively by alternating between the variables in C and those in X and Dβ as

follows:

1. fix the dimension K of the solution.

2. initiate the algorithm with an analysis of the full Burt matrix B, that is

B − n ~r ~r ′ ≈ nDXDβX
′D. (8)

3. limiting attention to the first K dimensions, say the first K columns of X

~x(1), · · · , ~x(K), (8) can be rewritten as

B − n ~r ~r ′ ≈
K∑

k=1

nβkD~x(k)~x
′
(k)D.

so that, if all quantities except the βk (k = 1,· · · , K) are regarded as fixed, the
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problem reduces to a simple weighted least-squares regression (see Greenacre,

1988, for further details).

4. Keeping X and Dβ fixed, set

Cii = Nii − n ~ri ~ri ′ − nDiXiDβX
′
iDi (i = 1, · · · , Q).

5. Keeping C fixed, minimize with respect to X and Dβ: this is achieved by

performing a correspondence analysis on the table B∗ = B − C, that is the

Burt matrix with modified submatrices on its diagonal, setting X equal to the

first K vectors of optimal row or column parameters and the diagonal of Dβ

equal to the square roots of the first K principal inertias respectively.

6. Iterate the last two steps until convergence.

In the special case Q = 2, where the problem reduces to fitting the single off-

diagonal submatrix N12, the initial solution described above is optimal and provides

the simple correspondence analysis of N = N12 exactly.

3 Two applications

To deal with both examples, all computations have been performed with the ca

package (Nenadic and Greenacre, 2006, 2007) contained in the R environment (R-

project, 2009).

3.1 A small example

To show in detail the different behavior of the different correspondence analyses,

we refer to a data set taken from Nardi (2007), consisting in 2000 words taken from

four different kind of periodic reviews (Childish (TC), Review (TR), Divulgation

(TD), and Scientific Summary (TS)), classified according to their grammatical

kind (Verb (WV), Noun (WN), and Adjective (WA)) and the number of internal
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layers (Two- (L2), Three- (L3), and Four and more layers (L4)), as a measure of

the word complexity.

In Table 1 the Burt’s table that results by crossing the three characters is

reported. In Table 2 are represented the first results of the SCAs of the three

contingency data tables, crossing the three characters two by two, limited to the

first two eigenvalues, namely, the eigenvalues, the percentage of corresponding

inertia, and the p-value associated to the chi-square calculated for the corresponding

one-dimensional reconstruction, that in this case is identical to the Malinvaud’s

test, since each solution is 2-dimensional. In two cases, the chi-squares test that

the second factor has no real meaning, since the p-value is larger than 5%, whereas

for the case of the table crossing the type of publication and the kind of words

the second factor is also significant. In Figure 1 the results of the three SCAs are

represented too: it must be pointed out that the vertical position of the items is

significant only for the second graphic. Indeed, the inspection of this factor plane

shows an arch pattern due to a Guttman effect (Guttman, 1941; Camiz, 2005).

Running MCA, the pattern of eigenvalues is represented in Table 3, in which

are reported the singular values of the indicator matrix Z, their percentage to

their total (that equals J−Q
Q = 2.33), the cumulate percentage, the eigenvalues of

the Burt’s matrix, corresponding to the inertia explained by the factor, and the

cumulate inertia.

Indeed, according to both Benzécri (1979) and Greenacre (1988), only three

singular values are larger than 1/Q = 1/3, so that the re-evaluations, reported in

Table 4, are referenced to only three dimensions, albeit the fourth is very close to

this value (0.33). In both cases, the first dimension re-evaluated inertia is by far

larger than the others.

If we apply the Ben Ammou and Saporta (1998, 2003) estimation of the average

singular value distribution under independence, we find that the standard deviation

is σ = 0.0159364, so that the confidence interval at 95% level is (0.30146 < λ < 0.36521).

As a consequence, only the first singular value is outside the confidence interval

and should be considered significant. As a matter of facts, the second one is very
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close to the threshold (0.3640): this is consistent with the fact that one of the

2-dimensional tables has a significant second eigenvalue.

Let us look now at the one-dimensional reconstruction, as resulting by the SCAs

of the three individual tables, by the MCA, and by Greenacre’s JCA as reported in

Table 5. The comparison of the SCA one-dimensional solutions with the original ta-

bles shows that the amount of the cumulate absolute residuals is in good agreement

with the quality of the solution, as represented by the corresponding chi-square.

For this reason, the low quality of the reconstruction of the table crossing kind

of words with the type of publications depends on the significance of the second

dimension of the SCA of this table. At first glance, it is evident the high difference

in the cumulate absolute residuals of MCA in respect to the other solutions, that

is an important sign of the limits of MCA in respect to JCA. Indeed, the quality

of JCA one-dimensional reconstruction is in all cases acceptable, so that it is pos-

sible to observe a synthetical graphical representation of the three tables that is

realistic. On the opposite, the MCA reconstruction is dramatically bad: in Table 6

are reported the cumulate absolute residuals of reconstructions of both MCA and

JCA, both for the whole Burt’s table and for the three off-diagonal two-way ta-

bles. The residuals for 0-dimension are the deviations from independence and the

following are reported for all the allowed dimensions: 7 = J −Q for MCA and 3 for

JCA, that corresponds to the number of singular values of the Burt’s table larger

than the mean. Looking at the table, we may notice a continuous decrease of the

total residuals in both analyses, with a perfect fit for the total reconstruction of

MCA, decrease that is somehow slower for JCA. On the opposite, the off-diagonal

reconstruction of JCA is fast and effective, with the 3-dimensional solution nearly

perfect, whereas the reconstruction of MCA follows a very different pattern. In-

deed, the off-diagonal residuals increase progressively, instead of diminishing, until

the average eigenvalue, then lower, but improving the reconstruction in respect to

the deviation from independence only with the last two dimensions.

To graphically study the results, we can now compare the 2-dimensional graphics

obtained by the three SCAs, shown in Figure 1, with those obtained by both MCA
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and JCA, shown in Figure 2. The position of the levels of each character are

represented on the plane spanned by the first two factors. Considering also that

the second dimension is limited in significance, we may note that both MCA and

JCA factor planes represent a good compromise among the three 2-dimensional

graphics. The reciprocal positions of the items are not so different among MCA

and JCA: only WV and TS, are more shifted and their position on JCA plane

seemsbetter reflect their relation with the other levels.

3.2 A larger example

This second example is taken from a work in progress concerning the definition of

an index for the degree of mental disease of patients affected by aphasia (Senna,

2013). For this aim, 46 patients (half of them not affected, taken as control group)

were submitted to a test, in which each one had to identify and verbalize 154

images. In this example we consider six scale characters taken by the resulting

data table: two of them, Time Response (in blue in the graphics) and Segments

Substitution (orange), result from the test itself; two, Frequency (green) and Prim-

itiveness (red), are features of the images and their name; and two, Time of disease

(black) and Oral Comprehension (dark red), concern the patients’ conditions. The

characters’ levels are 4, 5, 4 , 4 , 5 , and 3, respectively, summarizing 25 levels. In

this case, the Burt’s table is composed by 15 off-diagonal tables and is reported in

Table 10.

The MCA gives 19 non-zero eigenvalues, of which 8 above the average (0.1667)

and only 5 above the 95% confidence interval upper bound (0.1778), assumed by

Ben Ammou and Saporta (1998, 2003) as a threshold for the number of factors. In

Table 7 the sequence of all the eigenvalues is reported. The inertia re-evaluation

is shown in Table 8. Looking at the re-evaluated values, it results that the factors

following the third do not add more than 1% of inertia, a too small value to deserve

being really taken into account. Note that, according to Benzécri (1979) the three-

dimensional representation explains over 98% of total inertia, whereas according
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to Greenacre (1988) it is only 74.78% (but indeed 98% of the possible total).

We ran JCA on the same table and we can compare the step-by-step recon-

struction with MCA, as for the other example (see Table 9). Once again are

visible both the non-monotonicity of the MCA off-diagonal pattern and its tremen-

dous reduction in JCA. Concerning the relative importance of the axes within the

three-dimensional solution, we may say that the percentage of inertia attributed to

them is 60.11, 21.89, and 17.99% respectively. It may be noted that, in respect to

the maximum inertia solution obtained, the 8-dimensional one, it represents over

90% of the latter.

Eventually, the pattern of levels of each character on the planes spanned by the

factors 1-2 and 1-3 is represented for both MCA and for JCA. Comparing the two

graphics in Figure 3, that is the representation of the trajectories on the factor

plane spanned by the axes 1 and 2, it is clearly visible that in JCA their relative

range is somehow changed. In particular, all of them are enlarged in respect to

the Segment Substitution one. On this plane, the first factor opposes the lowest

levels on the right side (typical of the non-affected control patients) to the highest

ones on the left. On the other side, it is difficult to derive an interpretation of

the second factor, dominated by the Segment Substitution on the upper side side

(with the minimum folded) and the Oral Comprehension with its intermediate level

opposed to both others on the lower side. As well, the Time of Disease develops

most along this factor, but with a folded pattern. On the following graphics in

Figure 4, that represent the pattern on the plane spanned by the axes 1 and 3, the

same adjustment results, that indeed gets more interpretable the mutual relations

between the characters. On the other side, it is evident the highest agreement

of Time of Response and Familiarity both among themselves and with the third

factor, so that they appear really independent from the others. Only for the highest

levels of the other characters there is a slight agreement, but folded, thus of difficult

interpretation. Similar comments may be done on the planes spanned by the axes

2 and 3 (not shown), that confirm the independence between Time of Response

and Familiarity in respect to all other characters.
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4 Conclusion

This study started with the aim to understand to what extent the JCA (Greenacre,

1988) could be of help in identifying the true dimension of an analysis concerning a

set of qualitative data. In this sense, the confidence interval proposed by Ben Am-

mou and Saporta (1998, 2003) seems a useful answer to this problem, in agreement

with the most one-dimensional solution of the SCAs applied to the two-way tables of

the first application. During the study, the problem of the data reconstruction not

only showed that MCA is bad in reconstructing the data table, due to the inflation

in the number of eigenelements, but also that the re-evaluations proposed by both

Benzécri (1979) and Greenacre (2006) do not take into account the fact that the re-

construction of the two-way off-diagonal tables is for the most reduced-dimensional

solutions worst than the initial independence table. This may explain the problem

encountered by both Camiz and Ferrazza (2006) and Camiz and Venditti (2007)

that needed the whole MCA reconstruction to perform a qualitative discriminant

analysis sensu Saporta (1975) of some quality: indeed, the bad reduced dimen-

sional reconstruction could be the cause of the bad discrimination that resulted

by withdrawing the dimensions with lowest inertia. To get closer to the daily use

of the graphics, as a help for the description and the interpretation of the data,

the higher homogeneity of the ranges of the various characters on factor planes

of JCA improves the interpretation ability of the graphics themselves. It is very

strange that, despite the number of studies developed on MCA, no trace results in

literature of the serious drawbacks found in MCA, nor Greenacre (1988) and the

followers (Tateneni and Browne, 2000; Vermunt and Anderson, 2005; Greenacre,

2006) quote their important improvement. Thus, JCA seems a most promising de-

velopment and its properties deserve some further deepening. Acknowledgements
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Table 1: Burt’s table of the words’ type example.
L2 L3 L4 WN WV WA TC TR TD TS

L2 1512 0 0 788 483 241 433 385 399 295

L3 0 375 0 203 23 149 64 82 86 143

L4 0 0 113 62 9 42 3 29 21 60

WN 788 203 62 1053 0 0 229 284 273 267

WV 483 23 9 0 515 0 174 133 125 83

WA 241 149 42 0 0 432 97 79 108 148

TC 433 64 3 229 174 97 500 0 0 0

TR 385 82 29 284 133 79 0 496 0 0

TD 399 86 21 273 125 108 0 0 506 0

TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

Table 2: SCA of the three contingency data tables of words’ type example, crossing the
three characters two by two. In the columns, the eigenvalues, the percentage of inertia,
and the p-value of the chi-square associated to the factors.

words vs. levels publications vs. words publications vs. levels

N. eigen % p-value eigen % p-value eigen % p-value

1 .0925 99.98 .0000 .0253 80.53 .0000 .0619 98.82 .0000
2 .0000 0.02 .8625 .0061 19.47 .0022 .0007 1.18 .4771
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Table 3: MCA singular values, percentage to the total and cumulate percentage, eigenval-
ues, and cumulate inertia of the Burt’s table of words’ type example.
Number Singular value Percentage Cumulate % Eigenvalue Cumulate inertia

1 0.4896 20.98 20.98 0.239688 0.239688

2 0.3640 15.60 36.58 0.132472 0.372160

3 0.3434 14.72 51.30 0.117930 0.490090

4 0.3300 14.14 65.44 0.108885 0.598975

5 0.3084 13.22 78.66 0.095100 0.694076

6 0.2728 11.69 90.35 0.074431 0.768507

7 0.2252 9.65 100.00 0.050713 0.819220

Table 4: Inertia re-evaluation according to both Benzécri (1979) and Greenacre (1988)
of words’ type example.

Benzécri’s Re-evaluation Greenacre’s Re-evaluation

Number Inertia % Cum.% Inertia % Cum.%

1 0.0549 95.91 95.91 0.2344 88.36 88.36

2 0.0021 3.69 99.60 0.0460 3.40 91.76

3 0.0002 0.40 100.00 0.0151 0.37 92.13

Total 0.0572 100.00 0.2954 92.13
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Table 5: Original two-way contingency tables of words’ type example and their reconstruc-
tion according to the first dimension of SCAs, MCA, and JCA, with the corresponding
cumulate absolute residuals.

Original Burt’s Matrix

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 433 385 399 295 WN 229 284 273 267

L3 203 23 149 L3 64 82 86 143 WV 174 133 125 83

L4 62 9 42 L4 3 29 21 60 WA 97 79 108 148

SCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 435 382 400 296 WN 253 257 267 276

L3 204 23 149 L3 60 89 85 141 WV 165 144 127 79

L4 61 9 42 L4 5 25 22 61 WA 82 96 112 142

SCA cumulate absolute residuals

2 107 2210

MCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 770 559 183 L2 492 409 401 211 WN 249 257 264 283

L3 216 -24 183 L3 13 69 82 211 WV 219 155 145 -3

L4 67 -20 66 L4 -5 18 23 76 WA 32 84 97 219

MCA cumulate absolute residuals

14440 18972 21183

JCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 783 484 245 L2 435 391 393 293 WN 259 260 266 269

L3 207 29 139 L3 53 82 87 153 WV 160 136 136 82

L4 63 2 48 L4 12 24 25 52 WA 81 100 104 147

JCA cumulate absolute residuals

280 488 2570

Table 6: Words’ type example. Absolute residuals of the reduced dimensional reconstruc-
tions of both the Burt’s table and the two-way off-diagonal ones according to MCA and
JCA respectively: to 0 correspond the deviations from independence.

MCA JCA

Dim total Off-diag. total Off-diag.

0 2052807 50788 2052807 50788

1 1426816 54595 1560452 3338

2 1012894 115712 1451977 1003

3 791539 147734 1379887 21

4 570840 120163

5 269518 52164

6 133539 34851

7 0 0
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Table 7: Aphasia example: MCA singular values, percentage to the total and cumulate
percentage, eigenvalues, and cumulate inertia of the Burt’s table.
Number Singular value Percentage Cumulate % Eigenvalue Cumulate inertia

1 0.3831 12.10 12.10 0.146759 0.146759

2 0.2774 8.76 20.86 0.076924 0.223683

3 0.2538 8.01 28.87 0.064394 0.288077

4 0.1951 6.16 35.03 0.038073 0.326150

5 0.1829 5.78 40.81 0.033462 0.359612

6 0.1734 5.48 46.28 0.030081 0.389693

7 0.1729 5.46 51.74 0.029885 0.419578

8 0.1705 5.38 57.13 0.029060 0.448638

9 0.1668 5.27 62.39 0.027825 0.476463

10 0.1655 5.23 67.62 0.027388 0.503851

11 0.1610 5.08 72.70 0.025917 0.529768

12 0.1546 4.88 77.59 0.023903 0.553671

13 0.1467 4.63 82.22 0.021533 0.575204

14 0.1398 4.41 86.64 0.019542 0.594747

15 0.1343 4.24 90.88 0.018035 0.612782

16 0.0928 2.93 93.81 0.008604 0.621386

17 0.0820 2.59 96.40 0.006723 0.628110

18 0.0658 2.08 98.47 0.004328 0.632438

19 0.0484 1.53 100.00 0.002339 0.634777

Table 8: Aphasia example: inertia re-evaluation according to both Benzécri (1979) and
Greenacre (1988)

Benzécri’s Re-evaluation Greenacre’s Re-evaluation

Number Inertia % Cum.% Inertia % Cum.%

1 0.0674 69.04 69.04 0.2597 52.53 52.53

2 0.0176 18.06 87.09 0.1328 13.74 66.27

3 0.0109 11.18 98.27 0.1045 8.51 74.78

4 0.0012 1.19 99.46 0.0341 0.91 75.69

5 0.0004 0.39 99.85 0.0195 0.30 75.98

6 0.0001 0.07 99.92 0.0081 0.05 76.03

7 0.0001 0.06 99.98 0.0074 0.04 76.08

8 0.0000 0.02 100.00 0.0046 0.02 76.09

9 0.0000 0.00 100.00 0.0002 0.00 76.09

Total 0.0977 100.00 0.5710 76.09
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Table 9: Aphasia example: absolute residuals of the reduced dimensional reconstructions
of both the Burt’s table and the two-way off-diagonal ones according to MCA and JCA
respectively: to 0 correspond the deviations from independence.

MCA JCA

Dim total Off-diag. total Off-diag.

0 84100 17917 84100 17917

1 64651 12369 61508 10275

2 59923 11766 53545 7557

3 48571 7980 41627 3257

4 47619 10017 37899 2255

5 46863 10714 36823 1937

6 46682 11475 34737 1304

7 46134 12377 33401 810

8 44534 13167 32943 685

9 44241 13311 31939 340

10 41003 12687

11 34973 10431

12 33437 9963

13 30953 9617

14 26018 8555

15 18406 5441

16 14641 4559

17 8992 2963

18 4357 1341

19 0 0

Figure 1: Words’ type example: The pair of characters levels on the three two-way SCAs:
(a) Words vs. Levels; (b) Publications vs. Words; (c) Publications vs. Levels.
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Figure 2: Words’ type example: representation of the three-characters levels on the plane
spanned by the first two factors: (a) MCA; (b) JCA.
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Figure 3: Aphasia example: representation of the six characters trajectories on the plane
spanned by the first two factors: (a) MCA; (b) JCA.
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Figure 4: Aphasia example: representation of the six characters trajectories on the plane
spanned by the factors 1 and 3: (a) MCA; (b) JCA.
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Table 10: Burt’s table of the six-characters data set of Aphasia example.
Time Response Segments Substitution Frequency Primitiveness Time of disease Oral Comprehension

1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3

1 2056 0 0 0 0 0 0 12 2044 336 693 670 357 480 908 403 265 1746 98 21 128 63 1934 36 86

2 0 2756 0 0 8 3 12 73 2660 582 942 799 433 601 1107 495 553 1505 370 115 527 239 2083 205 468

3 0 0 1055 0 26 10 17 100 902 277 400 232 146 202 371 199 283 215 202 100 315 223 547 175 333

4 0 0 0 1217 31 7 1 62 1116 369 449 277 122 143 420 237 417 76 408 72 262 399 364 508 345

1 0 8 26 31 65 0 0 0 0 16 28 14 7 10 20 15 20 1 13 11 14 26 15 26 24

2 0 3 10 7 0 20 0 0 0 6 7 6 1 2 7 3 8 0 4 5 7 4 2 1 17

3 0 12 17 1 0 0 30 0 0 6 14 8 2 6 13 7 4 3 5 1 14 7 6 5 19

4 12 73 100 62 0 0 0 247 0 92 80 53 22 23 79 60 85 12 40 30 112 53 63 43 141

5 2044 2660 902 1116 0 0 0 0 6722 1444 2355 1897 1026 1385 2687 1249 1401 3526 1016 261 1085 834 4842 849 1031

1 336 582 277 369 16 6 6 92 1444 1564 0 0 0 46 276 460 782 782 238 68 272 204 1088 204 272

2 693 942 400 449 28 7 14 80 2355 0 2484 0 0 322 1150 552 460 1242 378 108 432 324 1728 324 432

3 670 799 232 277 14 6 8 53 1897 0 0 1978 0 598 874 276 230 989 301 86 344 258 1376 258 344

4 357 433 146 122 7 1 2 22 1026 0 0 0 1058 460 506 46 46 529 161 46 184 138 736 138 184

1 480 601 202 143 10 2 6 23 1385 46 322 598 460 1426 0 0 0 713 217 62 248 186 992 186 248

2 908 1107 371 420 20 7 13 79 2687 276 1150 874 506 0 2806 0 0 1403 427 122 488 366 1952 366 488

3 403 495 199 237 15 3 7 60 1249 460 552 276 46 0 0 1334 0 667 203 58 232 174 928 174 232

4 265 553 283 417 20 8 4 85 1401 782 460 230 46 0 0 0 1518 759 231 66 264 198 1056 198 264

1 1746 1505 215 76 1 0 3 12 3526 782 1242 989 529 713 1403 667 759 3542 0 0 0 0 3542 0 0

2 98 370 202 408 13 4 5 40 1016 238 378 301 161 217 427 203 231 0 1078 0 0 0 308 616 154

3 21 115 100 72 11 5 1 30 261 68 108 86 46 62 122 58 66 0 0 308 0 0 154 0 154

4 128 527 315 262 14 7 14 112 1085 272 432 344 184 248 488 232 264 0 0 0 1232 0 616 0 616

5 63 239 223 399 26 4 7 53 834 204 324 258 138 186 366 174 198 0 0 0 0 924 308 308 308

1 1934 2083 547 364 15 2 6 63 4842 1088 1728 1376 736 992 1952 928 1056 3542 308 154 616 308 4928 0 0

2 36 205 175 508 26 1 5 43 849 204 324 258 138 186 366 174 198 0 616 0 0 308 0 924 0

3 86 468 333 345 24 17 19 141 1031 272 432 344 184 248 488 232 264 0 154 154 616 308 0 0 1232

1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3
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