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Abstract

This article considers the relationship between stock return volatility and trading volume

by using the modified mixture model (MMM) framework proposed by Andersen (1996) and

Mahieu and Bauer (1998). We assume that the return shock has a skew-Student-t distribu-

tion with unknown degrees of freedom. This allows a parsimonious, flexible treatment of

skewness and heavy tails in the conditional distribution of returns. We propose to construct

an algorithm based on Markov chain Monte Carlo (MCMC) simulation methods to estimate

all the parameters in the model using a Bayesian approach. A clear advantage of MCMC

methods is that estimates of volatility are readily available for use in, for example, dynamic

portfolio allocation and option pricing applications. The series of returns and trading volume

of four common stocks of the New York stock exchange (NYSE) are analyzed.

Keywords: Markov chain Monte Carlo, nonlinear and non-Gaussian state space models,skew-

Student-t,stochastic volatility, trading volume.

1 Introduction

The relationship between returns and trading volume has interested financial economists and an-

alysts for a number of years. Clark (1973) started the discussion by presenting the simplest and

intuitively version of the mixture of distributions hypothesis (MDH), which assumes a joint depen-

dence of volatility and volume on the underlying information flow variable, i.e., price movements
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and the trading volume changes are caused primarily by the arrival of new information and the

volatility process that incorporates this information into market prices. In an extensive review of

the literature, Karpoff (1987) cites several reasons why the price-volume relationship is important

and observes that much of the previous research has been about the contemporaneous relationship

using correlations. Gallant et al. (1992) also point out that previous empirical work on the price-

volume relationship has focused primarily on the contemporaneous relationship between price

changes and volume. Although much of the empirical research documents a positive correlation

between trading volume and return volatility, the evidence on whether the observed relation can

be reconciled with the predictions of market microstructure theory is mixed (see, for example

Tauchen and Pitts, 1983; Richardson and Smith, 1994; Foster and Viswanathan, 1995).

The literature on MDH can be classified in two groups. The first one, under the assumption

of MDH, focuses on estimation of the model parameters and latent variables to evaluate the good-

ness of fit with respect to real data (see, for example Clark, 1973; Epps and Epps, 1976; Tauchen

and Pitts, 1983; Harris, 1987; Andersen, 1996; Liesenfeld, 1998). The second one concentrates

on the properties of the observed series, relying on an observable (realized) measure of volatility

(Bollerslev and Jubinski, 1999; Luu and Martens, 2003).

A first approach to merge the insights of the MDH with those of the market microstructure

theory is the empirical model of daily return-volume relationship developed by Andersen (1996).

He combines several important features of these models - for instance an asymmetric information

structure and the presence of liquidity or noise traders - with the MDH and the related concept of

stochastic volatility. The resulting model, called the modified mixture model (MMM), is estimated

with a dynamic first order autoregressive stochastic volatility process for the log of the latent rate

of information arrival, by using the generalized method of moments. As in Liesenfeld (1998), the

estimated measure of volatility persistence drops significantly compared with the univariate spec-

ifications for the return volatility. Mahieu and Bauer (1998) and Watanabe (2000) implemented

the MMM from a Bayesian viewpoint using simulation techniques based on MCMC methods to

estimate the parameters and the latent process. They find that consistent with the bivariate model’s

hypothesis volatility does not decrease but remains high in the bivariate case. Their results suggest
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that the choice of the estimation technique could be important in testing the validity of the MMM.

A large literature in financial econometrics has documented stylized facts which are frequently

found in stock and foreign exchange returns: skewness, heavy-tailedness and volatility clustering.

These properties are crucial not only for describing the return distributions but also for asset allo-

cation, option pricing, forecasting and risk management.

Stochastic volatility (SV) models were introduced in the financial literature for describing time

varying volatilities (Taylor, 1982, 1986). Various extensions of the simple SV model with normal

errors have been discussed in the literature. For instance, many empirical studies have shown

strong evidence of heavy-tailed conditional mean errors in financial time series (see for example

Chib et al., 2002; Jacquier et al., 2004). In this context, recently Abanto-Valle et al. (2010) ex-

tended the basic SV model by assuming the flexible class of scale mixtures of normal distributions.

The empirical evidence on the presence of asymmetry in the distribution of financial returns is not

as clear-cut even though asymmetry plays a non-trivial role in shaping economic decisions. Cor-

rado and Su (1997) suggests that fat tails and asymmetry jointly determine the so-called “volatility

smile” in option pricing using the Black-Scholes approach and that explicit account of them im-

prove accuracy in option pricing. Peiro (1999) provides further evidence of asymmetry in returns,

both from stock market indices and from individual assets. Further, Mittnik and Paolella (2000)

argue that skewness and heavy tails should be taken into account explicitly in Value-at-Risk fore-

casts. Cappuccio et al. (2006) found empirical evidence on asymmetry in financial returns using a

simple stochastic volatility modeling both skewness and heavy tails assuming that the conditional

distribution of returns is a skew-generalized error distribution.

In this article we propose to expand the conditional distribution of the returns used in Mahieu

and Bauer (1998) by introducing the skew-student-t distribution (Branco and Dey, 2001; Azzalini

and Capitanio, 2003) which allows taking into consideration simultaneously skewness and heavey-

taildness. Inference in the MMM with skew-Student-t errors is performed under a Bayesian

paradigm via MCMC methods, which permits to obtain the posterior distribution of parameters

by simulation starting from reasonable prior assumptions on the parameters. We simulate the log-

volatilities, the shape and skewness parameters by using the block sampling algorithm (Shephard
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and Pitt, 1997; Watanabe and Omori, 2004; Abanto-Valle et al., 2010, 2011) and the Metropolis-

Hastings sampling, respectively.

The rest of the article is organized as follows: Section 2 shows a brief review about skew-

normal (Azzalini, 1986) and skew-t distributions (Branco and Dey, 2001) and their properties.

Section 3 presents the relation between stock return volatility and trading volume with the ex-

tended specification for the conditional distribution of the returns. Section 4 shows the Bayesian

estimation procedure using MCMC methods. Section 5 presents an empirical application on the

return and trading volume series for four common stocks of the NYSE. Finally, section 6 concludes

with suggested possible extensions.

2 The univariate skew-normal and skew-t distributions

We start by giving an important notation that will be used throughout the paper and present a re-

view of the univariate skew normal (SN) and skew-t (ST) distributions and a study of some related

properties of those distributions.

A univariate random variable X is said to follow a skew-normal distribution, X ∼S N (ζ ,ω2,λ ),

with location, scale and asymmetry parameters given by ζ , ω2 and λ , respectively, if the density

of this distribution has the form

p(x | ζ ,ω2,λ ) =
2
ω

ϕ
(

x−ζ
ω

)
Φ
(

λ
ω
(x−ζ )

)
, (1)

where ϕ(.) and Φ(.) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of the standard normal distribution. When λ = 0, the density in equation

(1) becomes N (ζ ,σ 2)(see Azzalini, 2005, for a comprehensive review). In the next sections, we

use the following stochastic representation of the SN distribution (Azzalini, 1986; Henze, 1986).

Let W ∼ N[0,∞)(0,1) and ε ∼ N (0,1), independently, and let δ ∈ (−1,1), where N[0,∞)(., .) and

N (., .) indicate the truncated normal and normal distribution, respectively. The random variable

X , defined by

X = ζ +ωδW +ω
√

1−δ 2ε , (2)
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Figure 1: The skew-t distribution. Left: ζ = 0,ω = 2,ν = 5 (fixed), λ = 0,−2,−4,−8. Right:

ζ = 0,ω = 2,λ =−2 (fixed), ν = 2,4,10 and 15.
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follows a univariate skew-normal distributions, that is, X ∼S N (ζ ,ω2,λ ), where λ = δ/
√

1−δ 2.

The kurtosis coefficient of a skew-normal distribution is restricted to the interval [3, 3.8692].

To achieve a higher degree of excess kurtosis, the skew-t distribution has been introduced by

Branco and Dey (2001) and latter studied by Azzalini and Capitanio (2003). A univariate random

variable X follows the scalar skew-t distribution, X ∼ S T (ζ ,ω2,λ ,ν), if it has the following

stochastic representation

X = ζ +U−1/2ωδW +U− 1
2 ω(1−δ 2)

1
2 ε, (3)

where W ∼N[0,∞)(0,1), ε ∼N (0,1) and U ∼G (ν
2 ,

ν
2 ) are independently distributed. The Gamma

distribution G (a,b) is defined with density p(u | a,b) = baua−1e−bu/Γ(a). The pdf of X is then

given by

f (X | ζ ,ω2,λ ,ν) =
2
ω

tν

(
x−ζ

ω

)
Tν+1

(
λω−1(x−ζ )

√
ν +1

ν +ω−2(x−ζ )2

)
, (4)

where tν(.) and Tν(.) denote the pdf and cdf of a standard Student-t distribution with ν degrees of

freedom. From (3), we have that

E(X) = ζ +

√
2
π

k1ωδ , (5)

V (X) = ω2k2 −
2
π

k2
1ω2δ 2, (6)

where δ = λ/
√

1+λ 2 and km = E(U−m/2). E(.) and V (.) denote the expected value and variance,

respectively. The skew-t nests the traditional symmetric Student’s t distribution as a special case

when λ = 0, and the conditional normal distribution as ν → ∞, and can capture left-tailed or

negative skewness when λ < 0, and positive skewness when λ > 0.

To interpret the parameters (λ ,ν) in relation to the skewness and heavy-tailedness, skew-t

densities are plotted using several combinations of the parameter values in Figure 1 with ζ and ω

fixed at 0 and 2, respectively. In Figure 1, left, the densities are drawn using λ = 0,−2,−4,−8

with ν fixed at 5. As mentioned, λ = 0 corresponds to a symmetric Student’s t-density. A lower

value of λ implies a more negative skewness or left-skewness as well as heavier tails. Figure 1,

right, shows the densities for ν at 2,4,10 and 15 with λ fixed equal to -2. As ν becomes larger, the
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density becomes less skewed and has lighter tails. Hence the skewness and heavy-tailedness are

determined jointly by the combination of the parameter values of λ and ν .

3 The Model

Andersen (1996) develops an empirical return volatility-trading volume model using the theo-

retical framework of Glosten and Milgrom (1985). In his specification, the trading volume has

two components which are directly related to informed and uninformed traders. The uninformed

component is governed by a time invariant Poisson process with constant intensity m0, while the

informed volume has a Poisson distribution with parameter which is a function of the information

flow, that is m1eht . An empirical version of the MMM of Andersen (1996), which was formulated

by Mahieu and Bauer (1998), leads to the following specification:

yt = e
ht
2 εt , (7)

vt | ht ∼ P(mo +m1eht ), m0,m1 > 0 (8)

ht+1 = µ +φ(ht −µ)+σ 2
ηηt , (9)

where yt , vt and ht are respectively the compounded return, the trading volume and the log volatil-

ity on day t. P(.) indicates the Poisson distribution. We assume that |φ|< 1, i.e., the log-volatility

process is stationary and that the initial value h1 ∼ N (µ, σ2
η

1−φ2 ), εt and ηt are uncorrelated with

normal distribution with zero mean and unit variance. In equation (8), m0 reflects the uninformed

component of trading volume and is related to liquidity traders. The remaining part of trading vol-

ume that is induced by new information is represented by m1eht . The MMM defined by equations

(7)-(9) will be denoted as SV-N-VOL. Note that the univariate stochastic volatilty model (SV)

used extensively in financial literature see (see Jacquier et al., 1994; Kim et al., 1998; Mahieu and

Bauer, 1998; Abanto-Valle et al., 2010, among others) is specified by equations (7) and (9).

We modify the normality specification of the returns in (7) in order to capture heavy-tailedness

and skewness features in the marginal distribution of random errors using the stochastic represen-
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tation of the skew-Student-t in (3), as

yt = (ζ +ωδWtU
− 1

2
t )e

ht
2 + e

ht
2 U− 1

2
t ω(1−δ 2)

1
2 εt , (10a)

Wt ∼ N[0,∞)(0,1), (10b)

Ut |ν ∼ G (
ν
2
,
ν
2
), (10c)

where εt and ηt are mutually independent and normally distributed with zero mean and unit vari-

ance, δ = λ√
1+λ 2 , G (., .) denotes the Gamma distribution. We set ζ and ω in such a way that

E(yt | ht) = 0 and V (yt | ht) = eht . Model defined by equations (8),(9),(10a)-(10c) will be denoted

as SV-ST-VOL. In this setup, equations (8),(9),(10a) and (10c) with λ = 0 (equivalently δ = 0)

and ∀t = 1, . . . ,T define the SV-T-VOL model. Finally, equations (8),(9), (10a) and (10b) with

Ut = 1,∀t = 1, . . . ,T , results the SV-SN-VOL model.

4 Parameter estimation via MCMC

Let θ = (µ,φ,σ2
η ,ν ,λ ,m0,m1)

′ be the full parameter vector of the SV-ST-VOL model, h1:T =

(h1, . . . ,hT )
′ be the vector of the log volatilities, U1:T = (U1, . . . ,UT )

′ and W1:T = (W1, . . . ,WT )
′

be the mixing variables, y1:T = (y1, . . . ,yT )
′ and v1:T = (v1, . . . ,vT )

′ be the information available

up to time T , while ν is the degrees of freedom parameter vector associated with the mixture

distribution and λ the skewness parameter. The Bayesian approach to estimate the parameters in

the SV-ST-VOL model uses the data augmentation principle, which considers h1:T , W1:T and U1:T

as latent variables. The joint posterior density of parameters and latent unobservable variables can

be written as

p(θ ,W1:T ,U1:T ,h1:T | y1:T ,v1:T ) ∝ p(y1:T | θ ,W1:T ,U1:T ,h1:T )p(v1:T | θ ,h1:T )

× p(h1:T | θ)p(W1:T )p(U1:T | θ)p(θ), (11)

where p(θ) is the prior distribution. Since the posterior density p(θ ,W1:T ,U1:T ,h1:T | y1:T ,v1:T )

does not have closed form, we first sample the parameters θ , followed by the latent variables W1:T ,

U1:T and h1:T using Gibbs sampling. The sampling scheme is described by Algorithm 1. Sampling
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the log-volatilities h1:T in step 5 of Algorithm 1 is the most difficult task due to the nonlinear setup

in the observational equation in equations (10a) and (8). In order to avoid the higher correlations

due to the Markovian structure of the ht’s, in the next subsection we develop a multi-move block

sampler to sample h1:T by blocks (Shephard and Pitt 1997; Watanabe and Omori 2004; Abanto-

Valle et al. 2010, 2011). Details on the full conditionals of θ and the latent variables U1:T and

W1:T are given in Appendix.

Algorithm 1

1. Set i = 0 and set starting values for the parameters θ (i) and the latent quantities W(i)
1:T , U(i)

1:T

and h(i)
1:T .

2. Generate θ (i+1) in turn from its full conditional distribution, given U(i)
1:T , W(i)

1:T , h(i)
1:T y1:T and

v1:T .

3. Draw W(i+1)
1:T ∼ p(W1:T | θ (i),U(i)

1:T ,h
(i)
1:T ,y1:T ,v1:T ).

4. Draw U(i+1)
1:T ∼ p(U1:T | θ (i+1),W(i+1)

1:T ,h(i)
1:T ,y1:T ,v1:T ).

5. Generate h(i+1)
1:T by blocks as:

i) For l = 1, . . . ,K, the knot positions are generated as kl , the floor of [T ×{(l+ul)/(K+

2)}], where the u′ls are independent realizations of the uniform random variable on the

interval (0,1).

ii) For l = 1, . . . ,K, generate hkl−1+1:kl−1 jointly conditional on θ (i+1), W(i+1)
kl−1+1:kl−1,

U(i+1)
kl−1+1:kl−1, h(i)kl−1

, h(i)kl
,ykl−1:kl−1,vkl−1:kl−1.

iii) For l = 1, . . . ,K, draw h(i+1)
kl

conditional on y1:T , θ (i), W (i+1)
kl

, U (i+1)
kl

, h(i+1)
kl−1 and h(i+1)

kl+1 .

6. Set i = i+1 and return to 2 until convergence is achieved.

In the SV-ST-VOL model considered so far, an important modelling assumption is the regu-

larization penalty p(ν) on the tail thickness. A default Jeffreys’ prior was developed by Fonseca
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et al. (2008), with a number of desirable properties particularly when learning a fat-tail from a

finite dataset. The default Jeffreys’s prior for ν takes the form

p(ν) ∝
(

ν
ν +3

) 1
2
{

ψ ′
(

ν
2

)
−ψ ′

(
ν +1

2

)
− 2(ν +3)

ν(ν +1)2

} 1
2

, (12)

where ψ ′(a) = d{ψ(a)}
da and ψ(a) = d{logΓ(a)}

da are the trigamma and digamma functions, respec-

tively. The interesting feature of this prior is its behavior as ν goes to infinity and it has polynomial

tails of the form p(ν) ∝ ν−4. In this case, the tail of the prior decays rather fast for large values

of ν and assessing the degree of tail thickness can require prohibitively large samples. To the

skewness parameter, we assume that λ ∼ t0.5(0.0, π2

4 ), a Jeffreys’ prior suggested by Bayes and

Branco (2007), where ta(c,d) denotes the Student-t distribution with location a, scale b and a

degrees-of-freedom.

4.1 Block sampler

In order to simulate h1:T = (h1, . . . ,hT )
′ in the SV-ST-VOL model, we consider a two-step pro-

cess: first, we simulate h1 conditional on h2:T , next h2:T conditional on h1. To sample the

vector h2:T , we develop a multi-move block algorithm. In our block sampler, we divide it into

K + 1 blocks, hkl−1+1:kl−1 = (hkl−1+1, . . . ,hkl−1)
′ for l = 1, . . . ,K + 1, with k0 = 1 and kK+1 = T ,

where kl − 1 − kl−1 ≥ 2 is the size of the l−th block. We sample the block of disturbances

ηkl−1:kl−2 = (ηkl−1 , . . . ,ηkl−2)
′ given the end conditions hkl−1 and hkl instead of hkl−1+1:kl−1. In

order to facilitate the exposition, we omit the dependence on θ , Wt+1:t+k, Ut+1:t+k, yt+1:t+k and

vt+1:t+k, and suppose that kl−1 = t and kl = t + k + 1 for the l−th block, such that t + k < T .

Then η t:t+k−1 = (ηt , . . . ,ηt+k−1)
′ are sampled at once from their full conditional distribution

f (η t:t+k−1|ht ,ht+k+1,yt:t+k), which without the constant terms is expressed in log scale as

log f (η t:t+k−1|ht ,ht+k+1) = const− 1
2

t+k−1

∑
r=t

η2
r +

t+k

∑
r=t+1

l(hr)

− 1
2σ 2

η
[ht+k+1 −µ −φ(ht+k −µ)]2I(t + k < T ), (13)

where I(.) is an indicator function. We denote the first and second derivatives of l(hr) with re-

spect to hr by l′ and l′′, where l(hr) = log p(vr | m0,m1,hr)+ log p(yr | ν,λ ,Wr,Ur,hr) is obtained
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from equation (8) and (10a). As (13) does not have closed form, we use the Metropolis-Hastings

acceptance-rejection algorithm (Tierney, 1994; Chib and Greenberg, 1995) to sample from. We

propose to use the following artificial Gaussian state space model as a proposed density to simulate

the block η t+1:t+k

ŷr = hr +ξr, ξr ∼ N (0,dr), r = t +1, . . . , t + k, (14)

hr+1 = µ +φ(hr −µ)+σηηr, ηr ∼ N (0,1), r = t, t +1, . . . , t + k−1, (15)

where the auxiliary variables dr and ŷr for r = t + 1, . . . , t + k − 1 and t + k = T are defined as

follows:

dr = − 1
l ′′F(ĥr)

,

ŷr = ĥr +drl
′
(ĥr). (16)

For r = t + k < T , it follows that

dr =
σ 2

η

φ2 −σ 2
η l ′′F(ĥt+k)

,

ŷr = dr

[
l
′
(ĥr)− l

′′
F(ĥr)ĥr +

φ
σ2

η
[hr+1 −µ(1−φ)]

]
. (17)

We obtain the measurement equation (14) by a second-order expansion of lr around some prelim-

inary estimate of ηr, denoted by η̂ r, where ĥr is the estimate of hr equivalent to η̂r, and

l
′′
F(hr) = E[l

′′
(hr)] = −1

2
− (ζ +ωδWtU

− 1
2

t )2

4ω2(1−δ 2)
Ur −

m2
1e2hr

m0 +m1ehr
, (18)

which is everywhere strictly negative. The expectation in (18) is taken with respect to yr and vr

conditional on hr, Wr, Ur, θ . Since (14)-(15) define a Gaussian state space model, we can apply

de Jong and Shephard’s simulation smoother (de Jong and Shephard, 1995) to perform the sam-

pling. We denote this density by g. Since f is not bounded by g, we use the Metropolis-Hastings

acceptance-rejection algorithm to sample from f , as recommended by Chib and Greenberg (1995).

In the SV-SN-VOL case, we use the same procedure with Ut = 1 for t = 1, . . . ,T .

The procedure to select the expansion block ĥt+1:t+k is described in the Algorithm 2.
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Algorithm 2

1. Initialize ĥt+1:t+k.

2. Evaluate recursively l
′
(ĥr) and l

′′
F(ĥr) for r = t +1, . . . , t + k.

3. Conditional on the current values of the vector of parameters θ , Ut+1:t+k, Wt+1:t+k, ht and

ht+k+1, define the auxiliary variables ŷr and dr using equations (16) or (17) for r = t +

1, . . . , t + k.

4. Consider the linear Gaussian state-space model in (14) and (15). Apply the Kalman filter

and a disturbance smoother (Koopman, 1993) and obtain the posterior mean of η t:t+k (ht:t+k)

and set η̂ t:t+k (ĥt:t+k) to this value.

5. Return to step 2 and repeat the procedure until achieving convergence.

Finally, we describe the updating procedure for h1 and the knot conditions hkl , for l = 1, . . . ,K.

First, we simulate h1 from p(h1 | h2,θ ,y1:T ) by using the Metropolis-Hasting (MH) algorithm with

the normal density, N (µ +φ[h2 − µ],σ 2
η), as a proposal. Let hp

1 and h(i−1)
1 denote the proposal

and the previous iteration values, the acceptance probability is given by αMH = min{1, Q(hp
1 )

Q(h(i−1)
1 )

},

where Q(h1) is the conditional density of y1,v1 | θ ,W1,U1,h1. As the density p(hkl | hkl−1,hkl+1)

does not have a closed form, we use the MH algorithm with N (
µ(1−φ)2+φ(hkl−1+hkl+1)

1+φ2 ,
σ2

η
1+φ2 ), as

the proposal distribution. Let hp
kl

and h(i−1)
kl

denote the proposal value and the previous iteration

value. Thus, the acceptance probability is given by αMH = min{1,
Q(hp

kl
)

Q(h(i−1)
kl

)
}, where Q(hkl ) is the

conditional density of ykl ,vkl | θ ,Wkl ,Ukl ,hkl .

5 Empirical Application

This section analyzes the daily closing prices and daily number of traded shares corrected by

dividends and stock splits for the common stocks of the Chevron-Texaco (CVX), International

Business Machine (IBM), The Coca-Cola Company (KO) and Petroleo Brasileiro (PBR) listed

on the New York stock exchange (NYSE). The data set was obtained from the Yahoo finance
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Figure 2: Estimation results for IBM data set. SV-ST-VOL model. We plot the autocorrelation

function (ACF) and the histograms of the parameters µ , φ , σ 2
η , ν , λ , m0 and m1.
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web site at http://finance.yahoo.com. The analyzed period starts January 2, 2004 and ends

April 05, 2012, yielding 2081 observations. Throughout we work with compounded returns:

yt = 100×{log(Pt)− log(Pt−1)} where Pt is the closing price on day t. To make the volume

series stationary, the volume data are adjusted by regressing the log of the trading volume on a

constant and on time t = 1,2, . . . ,T . The exponential function of the residuals of this regression

is then linearly transformed so that the raw data and the detrended data have the same mean and

variance. For the following results, the detrended series is multiplied by 10−7.

Summary statistics of the return and detrended volume series are given in Table 1. As one can

see, the returns and trading volume are clearly not normally distributed. The kurtosis of each series

exceeds the value of three which would be expected for a normally distributed variable and the

Jarque-Bera statistics (JB) overwhelmingly reject normality. Finally, there is significant positive

contemporaneus correlation coefficient between return and volume, as confirmed by the correla-

tion coefficient between volume and absolute returns ρ|y|,v. All these findings are consistent with

the MMM.

Now, we fitted the SV, SV-T, SV-SN, SV-ST, SV-N-VOL, SV-T-VOL, SV-SN-VOL and SV-

Table 1: Summary statistics of the returns and the detrended volumes series

Returns

Mean St. Dev. Min Max Skewness Kurtosis JB

CVX 0.06 1.82 -13.34 18.94 0.09 16.18 15065.6

IBM 0.04 1.40 -8.67 10.90 0.03 8.67 2786.8

KO 0.03 1.21 -9.06 12.99 0.42 16.63 16179.9

PBR 0.07 3.12 -26.24 26.45 -0.16 13.09 8837.2

Trading Volume

Mean St. Dev. Min Max Skewness Kurtosis JB ρ|y|,v

CVX 0.99 0.44 0.20 4.87 1.73 9.07 4240.9 0.56

IBM 0.68 0.32 0.01 3.11 2.19 10.88 7055.1 0.61

KO 0.89 0.43 0.89 5.92 2.69 18.94 24574.3 0.55

PBR 1.36 0.83 0.03 8.87 2.21 12.32 9238.0 0.54

ST-VOL models. In all cases, we simulated the ht’s in a multi-move fashion with stochastic knots
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based on the method described in Section 4. The number of blocks, K is set at 60, in a such

way that each block contained 35 h′ts on an average. We set the prior distribution of the parame-

ters as: φ ∼ N(−1,1)(0.95,100), σ 2 ∼ I G (2.5,0.025), µ ∼ N (0,100), m0 ∼ G (0.08,0.01) and

m1 ∼ N(0,∞)(0.10,100). We assume that λ ∼ t0.5(0.0, π2

4 ), a Jeffreys’ prior suggested by Bayes

and Branco (2007). Finally, for ν , we assume that the prior given by equation (12). For the pa-

rameter φ the priors’ mean and variance are 0.0032 and 0.3328, respectively. This prior setup is

equivalent to the uniform distribution on interval (-1, 1), which gives zero mean and variance of

0.3333. All the calculations were performed running stand-alone code developed by us using an

open source C++ library for statistical computation, the Scythe statistical library (Pemstein et al.,

2007), which is available for free download at http://scythe.wustl.edu.

For all models, we conducted the MCMC simulation for 130000 iterations. In all cases, the

first 30000 draws were discarded as a burn-in period. In order to reduce the autocorrelation be-

tween successive values of the simulated chain, only every 40th values of the chain were stored.

With the resulting 2500 values, we calculated the posterior means and the 95% credibility inter-

vals. All the sequences passed the convergence diagnostic (CD) statistics (Geweke, 1992) but the

results are not reported. Table 2 summarizes the results for the respective SV models for each one

of the analized stocks and Tables 3 and 4 summarizes the results for the SV-VOL class. Figure

2 shows a rapid decay of autocorrelations for all the parameters in the SV-ST-VOL model for the

IBM stock. It is an indicator that our MCMC algorithm mixed well.

From Table 2, consistent with the existing evidence of great persistence in the log-volatility

process, we found for all the stocks, that the posterior means of φ and the 95% posterior credibil-

ity intervals very close to unity. The values of posterior mean for the SV-T (SV-ST) being greater

than that of the SV-N (SV-ST), respectively. As expected, we found the persistence parameter

more persistent for stocks with higher kurtosis in the returns. The posterior mean of σ 2
η is smaller

in the SV-T (SV-ST) than that of the SV-N (SV-ST), indicating that the log-volatility process of

the heavy tailed version of the SV models are less variable than those of the SV-N and SV-SN.

From Tables 3 and 4, we found that the values of the posterior means of the persistence parameter

φ in the SV-VOL models are slightly lower than the equivalent SV models, but very close to the

15
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unity, indicating a high persistence. This is in sharp contrast with the results in Andersen (1996)

and Liesenfeld (1998), who found substantially lower persistence in volatility in the case of the

modified mixture model. The opposite ocurrs with σ2
η , so the posterior means are slighty greater

than the respective SV model.

We now turn to discuss our results for ν and λ the tail-fatness and skewness parameters re-

spectively. Our estimates on the SV and the SV-VOL models are consistently with the well es-

tablished stylized fact of presence of heavy tails. For example in the SV-T and SV-ST of the KO

stock, the posterior mean and creditibitly intervals of ν are 8.0742 (5.9779,11.1720) and 8.3837

(6.1100,12.0790) respectively. The results for this stock considering the SV-T-VOL and SV-ST-

VOL models are 8.6196 (6.2750,12.1830) and 9.1227 (6.4790,13.4790), respectively. In both

cases, our results indicate a strong evidence of heavy-tails. Similar results are obtained for the

IBM stock. In the PBR stock we have the posterior mean and credibility intervals for ν in the SV-

T and SV-ST-VOL are 22.7346 (11.7300,38.3400) and 22.4125 (10.9900,38.0500) respectively.

We found that the skewness parameter λ in the SV-ST model is significant for the CVX and

PTB stocks (the posterior credibility interval does not contain zero). In fact, we have the poste-

rior mean and credibility interval are -0.7642 (-1.2200,-0.0521) and -0.7045 (-1.1207,-0.09421),

respectively. The same ocurrs for the SV-ST-VOL, where the posterior mean and credibility inter-

vals are -0.5534 (-0.7601,-0.0254) and -0.7434 (-1.1688,-0.1395), respectively. For both stocks,

the posterior means of the ν parameter are greater than the IBM and KO stocks. On the other hand

for the IBM and KO stocks we found that the posterior mean is diferent from zero, but the poste-

rior credibility interval of λ parameter contains zero and there is a strong evidence of heavy-tails,

as mentioned earlier. The resuls are consistent with the SV model equivalent for each one of the

stocks.

As mentioned earlier, m0 reflects the noisy component of trading volume generated by liquid-

ity traders. The remaining part of trading volume that is induced by new information is represented

by m1eht . We find that the distributions of m0 and m1 have posterior means close to 0.75, 0.53,

0.71 and 0.87 (m0) and 0.08, 0.08, 0.07 and 0.06 (m1) for the CVX, IBM, KO and PBR stocks

for all the SV-VOL models considered here. It is important to note that the posterior mean of the
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skewness parameter is modified with the inclusion of the trading volume. For example, for the

PBR stock. In the SV-ST model, the posterior mean and 95% credibility interval for λ are -0.7045

(-1.1207,-0.09421) and considering the SV-ST-VOL model, -0.7434 (-1.1688,-0.1395). Similar

findings are found for the other stocks. We conclude that considering the trading volume can also

explain asymmetric volatility.

To assess the goodness of the estimated models, we calculate the Bayesian predictive informa-

tion criteria, BPIC (Ando, 2006, 2007). The BPIC criterion is defined as

BPIC = −2Eθ |y1:T
[log{p(y1:T | θ)}]+2T b̂, (19)

where b̂ is given by

b̂ ≈ 1
T

{
Eθ |y1:T

[log{p(y1:T | θ)p(θ)}]− log[p(y1:T | θ̂)p(θ̂)]+ tr{J−1
T (θ̂)IT (θ̂)}+0.5q

}
.

(20)

Here q is the dimension of θ , Eθ |y1:T
[.] denotes the expectation with respect to the posterior distri-

bution, θ̂ is the posterior mode, and

IT (θ̂) =
1
T

T

∑
t=1

(
∂ηT (yt ,θ)

∂θ
∂ηT (yt ,θ)

∂θ ′

)∣∣∣∣θ=θ̂
,

JT (θ̂) =
1
T

T

∑
t=1

(
∂ 2ηT (yt ,θ)

∂θ∂θ ′

)∣∣∣∣θ=θ̂
,

with ηT (yt ,θ) = log p(yt | y1:t−1,θ)+ log p(θ)/T. In all the applications here, the log-likelihood

function, log p(y1:T | θ), is estimated using the auxiliary particle filter (see, e.g., Pitt and Shephard,

1999) with 10000 particles. The best model has the smallest BPIC.

As the quantity of information available is different between models with and without trading

volume, we compare first the SV-N, SV-T, SV-SN and SV-ST models. From Table 2, according to

the BPIC, the SV-SN and SV-ST give the worst and the best fit for the returns data set for CVX,

IBM, KO and PB stocks, respectively. So, it gives evidence that for all the stocks it is impor-

tant to take account simultaneously flat-tailness as well as skewness, not skewness only. Now,

17



we compare the SV-N-VOL, SV-T-VOL, SV-SN-VOL and SV-ST-VOL. As in the corresponding

SV model, the best fit is given by the SV-ST-VOL model and the worst for the SV-SN-VOL. It

confirms our previous comment, about the importance to model jointly skewness and heavy-tails.

In Figure 3 , we plot the smoothed mean of e
ht
2 obtained from the MCMC output for the SV-

N-VOL (solid line) and the SV-ST-VOL (dotted line) for all the series of returns, that is the CVX,

IBM, KO and PTB. From a practical point of view, we are mainly interested in whether we find

a significant difference between the two series. Therefore, in the right of Figure 3, we plot the

smoothed mean and 95% credibility intervals of the differences of e
ht
2 from the SV-N-VOL and

SV-ST-VOL models. This graph shows us that these series do not differ very much in most pe-

riods, but in some periods of high volatility, we observe differences in percentages of more than

2%. This can have a substantial impact, for instance, in the valuation of derivative instruments and

several strategic or tactical asset allocation topics.
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6 Conclusions

This article studies the joint distribution of daily returns and trading volume based on the modi-

fied mixture model. We extend this specification to take account for skewness and heavier-tailed

for the returns using the skew-Student-t distribution. We have constructed an algorithm based on

Markov Chain Monte Carlo (MCMC) simulation methods to estimate all the parameters and latent

quantities in the model using the Bayesian approach. As a by product of the MCMC algorithm, we

were able to produce an estimate of the latent information process which can be used in financial

modeling. The SV-ST-VOL model is supported by the data set of the common stocks of the CVX,

IBM, KO and PBR.

This article makes certain contributions, but several extensions are still possible. First, we

specify the log of volatility as a simple AR(1) process, but more elaborate models, such as long

memory models, may be required to specify volatility. Second, we can include a dynamic pattern

in the parameters m0 and m1, considering them as time varying parameters, and finally we can

extend the model to include many assets.
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Appendix A: The full conditionals

In this appendix, we describe the full conditional distributions for the parameters and the mixing

latent variables U1:T and W1:T for the SV-ST model.
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Figure 3: Left: Posterior smoothed mean of e
ht
2 and the absolute returns. Right: Posterior

smoothed mean of the difference of e
ht
2 in the SV-ST-VOL and SV-N-VOL.
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Full conditional distribution of µ , φ and σ2
η

The prior distributions of the common parameters are set as: µ ∼ N(µ̄,σ 2
µ), φ ∼ N(−1,1)(φ̄,σ2

φ),

σ 2
η ∼ I G (T0

2 ,
M0
2 ). We have the following full conditional for µ:

µ | h1:T ,φ,σ2
η ∼ N (

bµ

aµ
,

1
aµ

), (A.1)

where aµ = 1
σ2

α
+ (T−1)(1−φ)2

σ2
η

+ (1−φ)2

σ2
η

and bµ = µ̄
σ2

µ
+ (1−φ2)

σ2
η

h1 +
∑T−1

t=1 (ht+1−φht)(1−φ)
σ2

η
. In a similar

way, the conditional posterior distribution of φ is given by

p(φ | h1:T ,µ,σ 2
η) ∝ Q(φ)exp{−aφ

2 (ψ − bφ
aφ
)2}I|φ|<1, (A.2)

where Qφ =
√

1−φ2 exp{− 1
2σ2

η
[(1−φ2)(h1−µ)2}, aφ = ∑T−1

t=1 (ht−µ)2

σ2
η

+ 1
σ2

ψ
, bφ = ∑T−1

t=1 (ht−µ)(ht+1−µ)
σ2

η
+

φ̄
σ2

φ
and I|φ|<1 is an indicator variable. As p(φ | h0:T ,α,σ 2

η) in (A.2) does not have closed form,

we sample from it by using the Metropolis-Hastings algorithm with truncated N(−1,1)(
bψ
aψ
, 1

aψ
) as

the proposal density.

Finally, the full conditional of σ2
η is I G (T1

2 ,
M1
2 ), where T1 = T0 + T and M1 = M0 + [(1−

ψ2)(h1 −µ)2]+∑T−1
t=1 [ht+1 −µ −ψ(ht −µ)]2.

Full conditional of ν , λ , Ut and Wt

We, set ζ and ω in such a way that E(yt | ht) = 0 and V (yt | ht) = eht . So, we have ζ =−
√

2
π k1δω

and ω2 =

[
k2 − 2

π k2
1δ 2

]−1

, where k1 =
√

ν
2

Γ( ν−1
2 )

Γ( ν
2 )

, k2 =
ν

ν−2 and δ = λ√
1+λ 2 . Then the full condi-

tionals of ν and λ are as follows:

p(ν | .) ∝
(

ν
ν +3

) 1
2
{

ψ ′
(

ν
2

)
−ψ ′

(
ν +1

2

)
− 2(ν +3)

ν(ν +1)2

} 1
2

×
(

1
ω

)T

e
− 1

2ω2(1−δ2)
∑T

t=1 Ut e−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

, (A.3)

p(λ | .) ∝
(

1+
2λ
π2

4

)− 3
4
(

1
1−δ 2

) T
2

e
− 1

2ω2(1−δ2)
∑T

t=1 Ut e−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

. (A.4)

Since the above full conditional distributions are not in any known closed form, we must simulate

ν and λ using the Metropolis-Hastings algorithm. The proposal density used are N(ν>2)(µν ,τ2
ν)
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and N (µλ ,τ2
λ ), with µυ = x− q′(x)

q′′(x) and τ2
υ = max{0.001,(−q′′(x))−1} for υ = ν or λ , where x

is the value of the previous iteration, q(.) is the logarithm of the conditional posterior density, and

q′(.) and q′′(.) are the first and second derivatives respectively.

As Ut ∼ G (ν
2 ,

ν
2 ), the conditional posterior of Ut is given by

p(Ut | ht ,Wt ,ν ,λ ) ∝ Q(Ut)U
ν+1

2 −1
t e

−Ut
2 [ν+ e−ht (yt−ζ e

ht
2 )2

ω2(1−δ2)
]
, (A.5)

where Q(Ut) = e
U

1
2

t δWt e−
ht
2 (yt−ζe

ht
2 )

ω(1−δ2) . As p(Ut | ht ,Wt ,ν ,λ ) in (A.5) does not have closed form, we

sample it by using the Metropolis-Hastings algorithm with G (ν+1
2 , 1

2 [ν + e−ht (yt−ζ e
ht
2 )2

ω2(1−δ 2)
]) as the

proposal density. Finally, from equations (10a) and (10b), we have the full conditional of Wt is the

N[0,∞)(
δU

− 1
2

t e−
ht
2 [yt−ζ e

ht
2 ]

ω , 1
1−δ 2 ).

Full conditionals of m0 and m1

We assume that prior distributions are, respectively, m0 ∼ G (a0,b0) and m1 ∼ N (a1,b1). Then

the full the conditionals of m0 and m1 are as follows:

p(m0 | y1:T ,v1:T ,h0:T ,m1) ∝ e−(b0+T )m0e∑T
t=1 log[m

a0−1
T

0 (m0+m1eht )vt ], (A.6)

p(m1 | y1:T ,v1:T ,h0:T ,m1) ∝ e[−
1

2b1
(m1−a1)

2+∑T
t=1 eht ]e∑T

t=1 log[(m0+m1eht )vt ]. (A.7)

Since the above full conditional distributions are not in any known closed form, we must simulate

m0 and m1 using the Metropolis-Hastings algorithm. The proposal density used is N(mi>0)(µmi ,τ2
mi
),

with µmi = x− q′(x)
q′′(x) and τ2

mi
= (−q′′(x))−1 for i = 0,1, where x is the value of the previous itera-

tion, q(.) is the logarithm of the conditional posterior density, and q′(.) and q′′(.) are the first and

second derivatives respectively.
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