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Abstract

We develop a hierarchical dynamic Bayesian beta model for modeling a set of time
series of rates or proportions. The proposed methodology enables to combine the
information contained in different time series so that we can describe a common
underlying system, which is though flexible enough to allow the incorporation of
random deviations, related to the individual series, not only through time but also
across series. That allows to fit the case in which the observed series may present
some degree of level shift. Additionally, the proposed model is adaptive in the sense
that it incorporates precision parameters that can be heterogeneous no only over
time but also across the series. Our methodology was applied to both real and
simulated data. The real data set used in this article comprise three time series
of Brazilian monthly unemployment rates, observed in the cities of Recife, São
Paulo and Porto Alegre, in the period from March 2002 to April 2001. The new
parametrization of the precision parameter make possible the use of the same type
of link function for both the mean and the precision parameters, which are then
expressed in the (0, 1) interval, providing more meaninfull interpretation in terms
of the magnitude of the scale.

Key words: Dynamic models; Beta distribution; hierarchical models; Bayesian
analysis.

1 Introduction

The beta regression models, proposed by Ferrari and Cribari-Neto (2004), have
attracted the attention of many researchers. Those models are useful in situ-
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ations where the response is restricted to the standard unit interval. In this
seminal work the authors developed generalized linear models (GLM) theory
for dealing with the situation where only the parameter related to the mean of
the beta distribution was allowed to vary. In the context of GLM’s Nelder and
Lee (1991) and Smyth and Verbyla (1999) describe a class of joint generalized
linear models which allow both the mean and the dispersion parameters in
the GLM model to vary with the response. Nelder and Lee (1991) argue that
it is necessary to use two GLMs when both mean and dispersion are to be
modelled, i.e., we would have the so called mean process and the dispersion

process. Pregibon (1984) was the first to suggest this kind of specification.
Other articles related to such perspective, in which dispersion parameter of
the beta model is allowed to vary, include Cuervo-Cepeda and Gamerman
(2004), Smithson and Verkuilen (2006), Espinheira (2007), Simas et al. (2010)
and Bayer (2011). These works emphasize the need of correctly modeling the
dispersion parameter of the beta regression in order to achieve efficient esti-
mation.

Based on the class of beta regressions introduced by Ferrari and Cribari-Neto
(2004), Rocha and Cribari-Neto (2009) proposed a dynamic model for contin-
uous random variates that assume values in the standard unit interval (0,1).
The proposed frequentist βARMA model includes both autoregressive and
moving average dynamics, and also includes a set of regressors. Da-Silva et al.

(2011) proposed a dynamic Bayesian beta model for modeling and forecasting
single time series of rates or proportions. In such work only the mean param-
eter of the beta model was allowed to vary with time.

In the present work we build upon the dynamic Bayesian beta model intro-
duced by Da-Silva et al. (2011) and upon the class of conditionally Gaussian
dynamic models (see Cargnoni et al., 1997; Gamerman and Migon, 1993) to
propose a hierarchical dynamic Bayesian beta model in which both the mean
and the dispersion parameters of the beta model can vary with time. Since
the proposed model is hierarchical, the parameters in the model are related
both through time and hierarchically across several series, which supposedly
share a common underlying trend.

We motivate our study with the problem of forecasting monthly Brazilian un-
employment rates in different cities. The Brazilian Institute of Geography and
Statistics (IBGE) implemented the Monthly Unemployment Survey (PME)
in 1980, but since 2002 a new survey methodology has been adopted. The
PME is a monthly survey about workforce and income. The most important
metropolitan regions in Brazil are included in such survey: São Paulo, Rio de
Janeiro, Belo Horizonte, Porto Alegre, Recife and Salvador. The data can be
found at http://www.ibge.gov.br/. In Figure 1 we present the PME data
for the cities of Recife, São Paulo and Porto Alegre. As we can observe, the
three series have similar underlying trends but distinct levels and, possibly,
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distinct dispersions, specially in the case of the city of Recife.

The article is organized as follows. In Section 2 we introduce the hierarchi-
cal dynamic beta. In Section 3 we describe a fully Bayesian methodology to
analyze data from a hierarchical dynamic beta process. In Sections 4 to 6 we
apply the methods to simulated and real data.

2 The hierarchical dynamic beta model

In this section we present a methodology for modeling a set of I time series
of rates or proportions, yit, i = 1, . . . , I, which share certain characteristics
which allows us to treat them in the class of the hierarchical models.

Da-Silva et. al. (2001) used the parametrization of the Beta distribution given
by Ferrari and Cribari-Neto (2004) to describe a dynamic beta model in which
the precision parameter ζ was considered fixed. However, a more general model
can be described by considering both the mean and the precision parameters
varying with time. In such case, The observation equation of the dynamic
model is given by

p(yit | µit, ζit) =
Γ(ζit)

Γ(ζitµit)Γ(ζit(1 − µit))
yζitµit−1

it (1 − yit)
ζit(1−µit)−1. (1)

We have that E(yit | µit, ζit) = µit and V (yit | µit, ζit) = µit(1 − µit)/(1 + ζit),
with 0 ≤ µit ≤ 1 and ζit > 0.

Another parametrization for ζ, proposed by Bayer (2011), can be used in
our context, since it allows us to use link functions for the transformed ζ
which are easier to interpret than, say, a log link function, whose the upper
limit is unbounded. In equation (1), let φit = 1

1+ζit
so that ζit = 1−φit

φit
. Thus,

0 ≤ φit ≤ 1, and the observation equation of the model is now written as

Observation equation:

p(yit | µit, φit) =
y

µit

(

1−φit
φit

)

−1

it (1 − yit)
(1−µit)

(

1−φit
φit

)

−1

B
(

µit

(

1−φit

φit

)

, (1 − µit)
(

1−φit

φit

)) , (2)

where

B

(

µit

(

1 − φit

φit

)

, (1 − µit)

(

1 − φit

φit

))

=
Γ

(

µit

(

1−φit

φit

))

Γ
(

(1 − µit)
(

1−φit

φit

))

Γ
(

1−φit

φit

) ,
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with i = 1, . . . , I, t = 1, . . . , N , i.e., we have I time series in study, such that
(yit | µit, φit) is independent of (yjt | µjt, φjt) for i 6= j. Equation (2) incorpo-
rates heterogeneity in the precision parameter that may occur both over time
or across the series.

Other components, which essential in the description of our hierarchical dy-
namic beta model, are given, respectively, by (i) real transformations applied
to µit and φit, allowing the use of some simplifying Gaussian properties; (ii)
the structural equations represented in terms of linear models relating the
transformed parameters and the latent states and (iii) the system equation

of the dynamic model.

Real valued transformations:

Take η1it = h1(µit) and η2it = h2(φit) with ηit = (η1it, η2it)
′

such that ηit is a real
valued vector. Now, yit is parametrized by ηit, i.e., (yit | ηit) ∼ Beta(yit | ηit).
Notice that functions h1(·) and h2(·) describe the link functions associated to,
respectively, the mean process and the dispersion process.

Structural equations:

ηt = Ftθt + vt, vt ∼ N(0, V ), (3)

for each t, with ηit = Fitθt + vit, vit ∼ N(0, Vi), for each i ∈ {1, . . . , I}.

System Equation:

θt = Htθt−1 + wt, wt ∼ (0,W ). (4)

We assume that the error terms vit and wt are all mutually independent. The
notation used is given below.

Notation:

• θt is a real valued s-dimensional vector of latent states;
• Ft = (F

′

1t, . . . , F
′

It)
′

is the 2I × s design matrix for all the I series at time t;
• ηt = (η

′

1t, . . . , η
′

It)
′

is the 2I × 1 vector of structural parameters for all the I
series at time t;
• vt = (v

′

1t, . . . , v
′

It)
′

, is the 2I ×1 vector of errors for the structural equations;
• V = block-diag(V1, . . . , VI) is a (2I × 2I) block diagonal matrix;
• Ht is a specified s × s state evolution matrix;
• y = (y1, . . . , yN) with yt = (y1t, . . . , yIt)

′

;
• θ = (θ0, . . . , θN);
• η = (η1, . . . , ηN).
• W = block-diag(W1, . . . ,Wk), i.e., we are considering k effects associated to
the latent states and their respective covariance matrices.

4



In the prior specification for θ0, V and W , we assume that θ0, V1, . . . , VI

and W1, . . . ,Wk are mutually independent, θ0 ∼ N(m0, C0), Vi, i = 1, . . . , I
have a common inverse Wishart prior and that W is block-diagonal with an
inverse Wishart prior for each block.

Notice that equations (3) and (4) represent a standard dynamic linear model
for the state vector θt. Additionally, θ is conditionally independent of y given
η. These combined features imply in a substantial simplification in the pos-
terior computations of the parameters η and θ, as described in Cargnoni et.
al. (1997). We describe next the methodology adopted here with some adap-
tations to the procedure proposed by Cargnoni et. al. (1997).

3 Bayesian Analysis

It is more convenient to work with the precision matrices instead of with the co-
variance ones. Thus, let Φ0=block-diag(Φ01,. . . ,Φ0I) and Φ=block-diag(Φ1,. . . ,Φk)
where Φ0i = V −1

i , i = 1, . . . , I and Φl = W−1
l , l = 1, . . . , k. Suppose that

Φ0i, i = 1, . . . , I, follow independent Wishart distributions such that Φ0i ∼
W (ν0i, S0i) and, similarly, Φl ∼ W (ςl, Zl), independent prior distributions for
l = 1, . . . , k.

The joint posterior distribution is given by

p(η, θ, Φ0, Φ | y)∝

[

N
∏

t=1

(

I
∏

i=1

Beta(yit | ηit)N(ηit; Fitθt, Φ
−1
0i )

)

N(θt; Htθt−1, Φ
−1)

]

×N(θ0; m0, C0)
I

∏

i=1

W (Φ0i; ν0i, S0i)
k

∏

l=1

W (Φl; ςl, Zl). (5)

We need to obtain samples from the full conditional posteriors: p(η | θ, Φ0, Φ, y),
p(θ | η, Φ0, Φ, y) and p(Φ0, Φ | η, θ, y).

3.1 Sampling from p(θ | η, Φ0, Φ, y)

As mentioned before, the equations (3) and (4) represent a standard dynamic
linear model for the state vector θt. In such setting, the fact that θ is condition-
ally independent of y given η implies that p(θ | η, Φ0, Φ, y) = p(θ | η, Φ0, Φ).
Then, in a regular DLM, η has the same rule as y, so that in the sequential
updating formulations of the DLM, y will be replaced by η.
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The representation of the full conditional posterior distribution of p(θ | η, Φ0, Φ),
considering the conditional independence structure of the DLM as well the
Bayes theorem is given by

p(θ | η, Φ0, Φ) = p(θN | η, Φ0, Φ)
N−1
∏

t=0

p(θt | θt+1, . . . , θN , η, Φ0, Φ)

= p(θN | η, Φ0, Φ)
N−1
∏

t=0

p(θt | θt+1, η, Φ0, Φ)

∝ p(θN | η, Φ0, Φ)
N−1
∏

t=0

p(θt+1 | θt, η, Φ0, Φ)p(θt | η, Φ0, Φ). (6)

Thus, all the state vectors can be sampled from p(θ | η, Φ0, Φ) using the FFBS
(Forward-filtering, backward-sampling) algorithm (Carter and Kohn, 1994;
Frühwirth-Schnatter, 1994). Conditionally on the “observed values” of η, the
algorithm below is such that allows us to draw a sample θN , θN−1, . . . , θ0 from
p(θ | η, Φ0, Φ) as follows:

(1) Filtering

Using the so called Kalman filter (de Jong, 1991), compute the moments
mt and Ct of the joint posterior p(θt | η, Φ0, Φ), t = 1, . . . , N , by applying
the standard DLM sequential updating formulas with y replaced by η.
For more details see West and Harrison (1997).
• mt = at + Atet; Ct = Rt − AtQtA

′

t,
• At = RtFtQ

−1
t ; et = ηt − ft,

• at = Htmt−1; Rt = HtCt−1H
′

t + Φ−1,
• ft = Ftat; Qt = F

′

t RtFt + Φ−1
0 .

(2) Smoothing

At time t = N , sample the vector state θN from p(θN | η, Φ0, Φ), i.e.,
sample θN from (θN | η, Φ0, Φ) ∼ N(mN , CN). For times t = N −1, . . . , 0,
sample θt from p(θt | θt+1, η, Φ0, Φ) conditionally on the just sampled
value θt+1. That is performed by sampling θt from (θt | θt+1, η, Φ0, Φ) ∼
N(ut, Ut), where
• ut = mt + Bt(θt+1 − at+1),
• Ut = Ct − BtRt+1B

′

t, and
• Bt = CtHtR

−1
t+1.

3.2 Sampling from p(η | θ, Φ0, Φ, y)

Given θ, Φ0 and Φ, the ηit’s are mutually independent over all the times t
and the series i. That implies that a sample from the conditional posterior
of (η | θ, Φ0, Φ, y) is obtained through I × N independent samples from the
respective distributions given by

p(ηit | θt, Φ0i, Φ, yit) ∝ p(yit | ηit)p(ηit | θt, Φ0i). (7)
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The second term on the right-hand side of the full conditional (7) is the nor-
mal prior ηit ∼ N(Fitθt, Φ0i), while the first term is given by the Beta model
described by expression (2), such that η1it = h1(µit) and η2it = h2(φit).

Since the distribution p(ηit | θt, Φi0, yit) does not have closed form, it is neces-
sary to use the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hast-
ings, 1970) in order to draw samples from such distribution. Let m represent
the m-th MCMC draw. We use the following random-walk M-H with symmet-
ric normal proposal for ηit:

(a) Draw η∗

1it ∼ q1(η
m−1
1it , η∗

1it)
d
= N(ηm−1

1it , Φ−1
1i0) and η∗

2it ∼ q2(η
m−1
2it , η∗

2it)
d
=

N(ηm−1
2it , Φ−1

2i0).
(b) Calculate the acceptance probability α(ηm−1

it , η∗

it) = min{1, Rηit
}, where

Rηit
=

π(η∗

it | ·)

π(ηm−1
it | ·)

q(η∗

it, η
m−1
it )

q(ηm−1
it , η∗

it)
=

π(η∗

it | ·)

π(ηm−1
it | ·)

,

with π(η∗

it|·)=p(yit|η
∗

it)p(η∗

it|θt, Φ0i), π(ηm−1
it |·)=p(yit|η

m−1
it )p(ηm−1

it |θt, Φ0i), and
q(η∗

it, η
m−1
it ) = q1(η

m−1
1it , η∗

1it)q2(η
m−1
2it , η∗

2it).
(c) Set

ηm
it =











η∗

it with probability α(ηm−1
it , η∗

it),

ηm−1
it otherwise.

3.3 Sampling from p(Φ0, Φ | η, θ, y)

Reminding that Φ0 = block-diag(Φ01,. . . ,Φ0I) and Φ = block-diag(Φ1,. . . ,Φk)
where Φ0i = V −1

i , i = 1, . . . , I and Φl = W−1
l , l = 1, . . . , k, with Φ0i ∼

W (ν0i, S0i) and Φl ∼ W (ςl, Zl), l = 1, . . . , k, the full conditional distribution
of Φl is given by

p(Φl | η, θ, Φ0, y)∝

[

N
∏

t=1

k
∏

m=1

|Φm|
1/2 exp

{

−
1

2
(θt − Htθt−1)

T Φ(θt − Htθt−1)
}

]

×|Φl|
ςl−(pl+1)/2 exp{−tr(ZlΦl)}

∝ |Φl|
N/2+ςl−(pl+1)/2 exp

{

−tr

(

1

2

N
∑

t=1

ZZll,tΦl

)

− tr(ZlΦl)

}

∝ |Φl|
N/2+ςl−(pl+1)/2 exp

{

−tr
(

(
1

2
ZZl· + Zl)Φl

)}

, (8)
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with ZZt = (θt − Htθt−1)(θt − Htθt−1)
T and ZZl· =

∑N
t=1 ZZll,t. Thus,

(Φl | η, θ, Φ0, y) ∼ Wishart(N/2 + ςl,
1

2
ZZl· + Zl), l = 1, . . . , k.

The full conditional distribution of Φi0 is given by

p(Φi0 | η, θ, Φ0, y)∝

[

N
∏

t=1

N(ηit; Fitθt, Φ
−1
0i )

]

W (Φ0i; ν0i, S0i)

∝

[

N
∏

t=1

|Φ0i|
1/2 exp

{

−
1

2
(ηit − Fitθt)

T Φ0i(ηit − Fitθt)
}

]

×|Φ0i|
ν0i−(p0i+1)/2 exp{−tr(S0iΦ0i)}

∝ |Φ0i|
N/2+ν0i−(p0i+1)/2 exp

{

−tr
(

(
1

2
SSηi

+ S0i)Φ0i

)}

, (9)

with SSηi
= (ηit − Fitθt)(ηit − Fitθt)

T . Thus,

(Φ0i | η, θ, Φ, y) ∼ Wishart(N/2 + ν0i,
1

2
SSηi

+ S0i), i = 1, . . . , I.

4 Application

In this section we set up the hierarchical beta model for a hypothetical case
in which yit represents a given rate or proportion at region i and time t,
i = 1, . . . , I and t = 1, . . . , N . We take the logit transformation of both µit

and φit and, to ηi1t and ηi2t, we fit dynamic models considering, respectively, a
second-order polynomial trend seasonal effects and a second-order polynomial
trend effects. The formulation of the structural equations is given below:

η1it = log

(

µit

1 − µit

)

= Fi1tθt + vi1t, vi1t ∼ N(0, Vi1),

η2it = log

(

φit

1 − φit

)

= Fi2tθt + vi2t, vi2t ∼ N(0, Vi2), (10)

with Vi = diag(Vi1, Vi2).

Modeling η1it: In equation (10) the term Fi1tθt, on the right-hand side of
ηi1t, is the linear predictor of the logit transformed expected value of the beta
model for time t and region i. We use a second-order polynomial trend seasonal
effects model with offset term in order to describe ηi1t, that is

η1it = βt + λt0 + γit + vi1t. (11)
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The DLM representation of the model for η1it is

Second-order polynomial effects for the level with respect to µit:

βt = βt−1 + δt−1 + wβt
(12)

δt = δt−1 + wδt

Free-form Seasonal effects:

λtr = λt−1,r+1 + wtr, r = 0, . . . , p − 2 (13)

λt,p−1 = λt−1,0 + wt,p−1

First-order polynomial effects for the offset term:

γit = γi,t−1 + wγit
, (14)

where,
• βt represents an underlying level at time t, with respect to h1(µit), that is
common to the I series;
• δt is the incremental growth;
• λt0 represents a seasonal effect that is common to the I series. We denote
as p the size of the seasonal cycle.
• γit is an offset parameter representing deviations of the unemployment rate
of region i at time t with respect to the average βt;
• vi1t represents the region i series-specific stochastic deviation.

Modeling η2it: In equation (10) the term Fi2tθt, on the right-hand side of η2it,
is the linear predictor of the logit transformed term related to the precision
of the beta model for time t and region i. We use a second-order polynomial
effects model with offset term in order to describe η2it, that is

η2it = ψt + αit + vi2t. (15)

The DLM representation of the model for η2it is

Second-order polynomial effects for the level with respect to φit:

ψt = ψt−1 + ξt−1 + wψt
(16)

ξt = ξt−1 + wξt

First-order polynomial effects for the offset term:

αit = αi,t−1 + wαit
, (17)

where
• ψt represents an underlying level at time t, with respect to h2(φit), that is
common to the I series;
• ξt is the incremental growth;
• αit is an offset parameter representing deviations of the unemployment rate
of region i at time t with respect to the average ψt;
• vi2t represents the region i series-specific stochastic deviation.
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Identifiability restrictions:

λt,p−1 = −
p−2
∑

r=0

λtr, γIt = −
I−1
∑

i=1

γit, αIt = −
I−1
∑

i=1

αit.

In order to exemplify the construction of the model, we consider I = 3 re-
gions where the rates are measured over time. Thus, the vector (η1it, η2it)

′

is
described by







η1it

η2it





 =







βt + λt0 + γit

ψt + αit





 +







vi1t

vi2t





 , i = 1, 2, 3.

That is,
ηit = Fitθt + vit, i = 1, 2, 3,

where γ3t = −(γ1t + γ2t), α3t = −(α1t + α2t). If, for example, we are dealing
with seasonal cycles of size p = 4 (quarters), then λt3 = −(λt0 + λt1 + λt2).

Considering a cycle of generic size p, the vector θt is represented by

θt = (βt, δt, λt0, λt1, . . . , λt,p−2, ψt, ξt, γ1t, γ2t, α1t, α2t).

Consider the following matrices:

J =







1 1

0 1





 , and P =







−1
′

p−2 −1

Ip−2 0





 .

The matrices J and P are essential in the description of our dynamic model.
Suppose a DLM such that the observation equation is yt = βt + εt and the sys-
tem equation is given by the pair of equations in expression (12). Such model
is called a linear growth model and it includes a time-varying slope in the dy-
namics of βt. If we define θt = (βt, δt)

′

and F = (1, 0)
′

, then the observation
equation can be represented by yt = F

′

θt + εt, while the system equation, by
θt = Jθt−1 + (wβt

, wδt
)
′

.

The matrix J allows us to write a linear growth model such The permuta-
tion matrix P is p−cyclic, so that P np = Ip and P h+np = P h, for h = 1, . . . , p,
and any integer n ≥ 0. For example, suppose, for simplicity, a DLM model,
with yt = Fθt + εt describing the observation equation and θt = θt−1 + wt, the
system equation. Additionally, suppose a a purely seasonal series and that we
have quarterly data yt, t = 1, 2, . . ., so that if yt−1 refers to the first quarter of
the year, yt refers to the second one.

Because of the restriction
∑4

i=1 αi = 0, the series might be described by sea-
sonal deviations from the zero. Thus assume that yt−1 = α1+εt−1, yt = α2+εt,
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and so on, so that to (yt−1, yt, yt+1, yt+2, yt+3, yt+4, yt+5, yt+6) are associated the
respective seasonal deviations from zero, (α1, α2, α3, α4, α1, α2, α3, α4). Con-
sider now that θt−1 = (α1, α4, α3, α2) and that F

′

= (1, 0, 0, 0). Then, the
successive application of matrix P makes possible the establishment of the
desired quarterly seasonal pattern.

For the models that were formulated to η1it and η2it, the design matrix Ft

(see expression (3)), given by Ft = F = (F
′

1, F
′

2, F
′

3)
′

, and the state evolution
matrix Ht = H (see expression (4)), are shown below.

H =























J2×2 02×(p−1) 02×2 02×2 02×2

0(p−1)×2 P(p−1)×(p−1) 0(p−1)×2 0(p−1)×2 0(p−1)×2

02×2 02×(p−1) J2×2 02×2 02×2

02×2 02×(p−1) 02×2 I2 02×2

02×2 02×(p−1) 02×2 02×2 I2























F1 =





1 0 1 01×(p−2) 0 0 1 0 0 0

0 0 0 01×(p−2) 1 0 0 0 1 0



 , F2 =





1 0 1 01×(p−2) 0 0 0 1 0 0

0 0 0 01×(p−2) 1 0 0 0 0 1



 , and

F3 =





1 0 1 01×(p−2) 0 0 −1 −1 0 0

0 0 0 01×(p−2) 1 0 0 0 −1 −1



 .

4.1 Estimated proportions and forecasting

The estimated proportions are calculated using the following procedure:
(1) The inverse transformations µit = exp(η1it)

1+exp(η1it)
and φit = exp(η2it)

1+exp(η2it)
are evalu-

ated at the estimated values (posterior means) of η1it and η2it, for i = 1, . . . , I
and t =, . . . , N .
(2) For i = 1, . . . , I and t =, . . . , N we simulate n (say, n = 1, 000) samples

from a beta distribution Beta
(

µit

(

1−φit

φit

)

, (1 − µit)
(

1−φit

φit

))

and then we take
the average value of those draws.
(3) For the confidence bands we repeat the steps (1) and (2) for the 2.5% and
97.5% percentiles of the posterior distribution of ηit.

The k-step-ahead forecasting are calculated using the following considerations.
For 0 ≤ j < k, at each t the forecast distribution (yt+k | Dt) is described next.

From the system equation, θt = Htθt−1 + wt; wt ∼ (0,Wt). Thus, from
repeated application of the system equation,

θt+k = HHt+k(k)θt +
k

∑

r=1

HHt+k(k − r)wt+r,
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where HHt+k(r) = Ht+kHt+k−1 × · · · × Ht+k−r+1 for all t and integer r ≤ k,
with HHt+k(0) = I. Thus, by linearity and independence and also taking into
account the Bayesian linear estimation method,

θt+k ∼ (at(k), Rt(k)),

with at(k) = Ht+kat(k−1) and Rt(k) = Ht+kRt−kH
′

t+k +Wt+k, and at(0) = mt

and Rt(0) = Ct. Thus the “future” θt values are then obtained by successively
sampling from the system equation (see expression (3)), followed by the struc-
tural equation (see expression (4)). The forecast rates are then obtained by
following steps (1) to (3) given above.

5 Application to simulated data

We applied the model described in Section 4 to simulated data in which we
considered N = 72 time points (say, six years), I = 3 subpopulations and
cycles of size p = 4. In order to obtain initial values for the MCMC proce-
dure, we estimated the parameters involved by running separate DLM models
(described by equations (3) and (4)) for each of the subpopulations. All the
routines were written using the R language (http://www.r-project.org/).
We also made extensive use of the excelent dlm R library by Petris (2010).

In such DLM setting the η′

its have the same rule as the observed data. Thus,

in order to run those initial models we estimated η1it by log
(

yit

1−yit

)

and η2it

by log
(

σ̃2

it

1−σ̃2

it

)

with σ̃2
it = var(yi)/(yit(1−yit)) (see properties of expression (1)).

For the simulated data we considered a hierarchical dynamic Beta model in
which a second-order polynomial trend seasonal effects was fitted to the pa-
rameters related to the mean, µit, and a second-order polynomial effects was
fitted to the parameters related to the precision, φit. We run chains of size
50,000 with burn-in period of 20,000. The autocorrelations could be signifi-
cantly controlled by using gaps of size 30.

Figures 2 and 3 show the true values (in red) used in the simulations, the
estimated values of the parameters involved in expressions (11) and (15), and
the respective confidence bands for the main effects of level, growth and sea-
sonality. Figures 4 and 5 show the individual sub-populations effects. Figure
6 shows the estimated proportions for each of the sub-populations and their
corresponding confidence bands. As we can observe, except for the η23t terms,
all the effects and probabilities are, in general, well estimated.
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6 Applying the hierarchical dynamic beta model to Brazilian un-

employment rates

In this section we apply our methods to fit the three time series of Brazilian
monthly unemployment rates that were described in Section 1. We analyze
monthly unemployment rates (MUR) based on PME data in the period from
March 2002 to April 2011 (N=110 observations). Forecast rates are also pro-
vided: we used MUR data for the months of May, June, July and August of
2011.

The three subpopulations involved in the analysis are Recife, São Paulo and
Porto Alegre, i.e., I = 3. We considered a hierarchical dynamic Beta model in
which a second-order polynomial trend seasonal effects (with cycles of p = 12
months) was fitted to the parameters related to the mean, µit, and a second-
order polynomial effects was fitted to the parameters related to the precision,
φit. We applied the same developments discussed in sections 4 and 5.

Figures 7 and 8 show the estimated values of the parameters involved in ex-
pressions (11) and (15), and the respective confidence bands for the main
effects of level, growth and seasonality. Figures 9 and 10 show the individual
sub-populations effects and Figure 11 shows the estimated proportions or rates
for each of the sub-populations and their corresponding confidence bands. We
also added the forecast rates (see Figure 11, after the dotted vertical lines). It
is really reassuring how well the model is capable of describing the observed
proportions for each of the subpopulations.

7 Discussion

In this article we propose an extension to the Bayesian beta dynamic model de-
veloped by Da-Silva et al. (2011). We develop a hierarchical dynamic Bayesian
beta model for modeling a set of time series of rates or proportions. The pro-
posed methodology enables to combine the information contained in different
time series so that we can describe a common underlying system, which is
though flexible enough to allow the incorporation of random deviations, re-
lated to the individual series, not only through time but also across series.
That allows to fit the case in which the observed series may present some
degree of level shift. Additionally, the proposed model is adaptive in the sense
that it incorporates precision parameters that can be heterogeneous no only
over time but also across the series. The use of two link functions, one for
the mean process and another to the dispersion process. make such extension
possible. Additionally, the choice of the matrices Ft and Ht allow for a mul-
tiplicity of ways of specifying the model, even allowing for the inclusion of
covariates. The work of Cargnoni et al. (1997) was used in the development
of our model.

13



Missing observations can be easily accommodated: if the observation at time
t is missing, then yt = NA and yt does not carry any information. Then, we
set p(θt | Dt) = p(θt | Dt−1).

Our methodology was applied to both real and simulated data. The real data
set used are three time series of Brazilian monthly unemployment rates, ob-
served in the cities of Recife, São Paulo and Porto Alegre, in the period from
March 2002 to April 2001. We used a second-order polynomial trend seasonal
effects to the parameters related to the mean, µit, and a second-order poly-
nomial effects to the parameters related to the precision, φit. The very good
features of the proposed model can be appreciated when looking at the graphs
presented. The new parametrization of the precision parameter that was pro-
posed by Bayer (2011) was used in the model formulation. It is very convenient
since both, the link function for µit and φit are expressed in the (0, 1) interval,
which gives us a more meaningful interpretation in terms of the magnitude of
the scale.

For future work we envision the possibility of extending the current model
to enable the inclusion of different regimes for the level of the processes of the
mean, µit, and also of the precision, φit.
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Fig. 1. Observed unemployment rates in the cities of Recife, São Paulo and Porto
Alegre - Brazil.
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Fig. 2. Simulated data - estimated values and 95% credibility bounds for the com-
ponents of η1it: (a) Level (βt), (b) Growth (δt), (c) Seasonality (λt).
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Fig. 3. Simulated data - estimated values and 95% credibility bounds for the com-
ponents of η2it: (a) Level (ψt) and (b) Growth (ξt).
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Fig. 4. Simulated data - estimated values and 95% credibility bounds for (a) η11t,
(b) η12t, (c) η13t.
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Fig. 5. Simulated data - estimated values and 95% credibility bounds for (a) η21t,
(b) η22t and (c) η23t.
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Fig. 6. Simulated data - estimated proportions and 95% credibility bounds for the
three sub-populations.
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Fig. 7. MUR data - estimated values and 95% credibility bounds for the components
of η1it: (a) Level (βt), (b) Growth (δt), (c) Seasonality (λt).
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Fig. 8. MUR data - estimated values and 95% credibility bounds for the components
of η2it: (a) Level (ψt) and (b) Growth (ξt).
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Fig. 9. MUR data - estimated values and 95% credibility bounds for (a) η11t, (b)
η12t, (c) η13t.
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Fig. 10. MUR data - estimated values and 95% credibility bounds for (a) η21t, (b)
η22t and (c) η23t.
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Fig. 11. MUR data - estimated proportions and 95% credibility bounds for the three
sub-populations: (a) Recife, (b) São Paulo and (c) Porto Alegre. The forecast rates
are presented after the dotted vertical lines.
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