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Abstract. Consider the basic algorithm to perform the transformation
n 7→ n + 1, changing digits of the d-adic expansion of n one by one. We
obtain a family of Markov chains on the non-negative integers through
sucessive and independent applications of the algorithm modified by a
parametrized stochastic rule that randomly prevents one of the steps in
the algorithm to finish. The object of study in this paper are the spectra
of the transition operators of these Markov chains. The spectra of these
Markov chains turn out to be fibered Julia sets of fibered polynomials.
This enable us to analyze their topological and analytical properties
with respect to the underlying parameters of the Markov chains.

1. Introduction

Binary representations of real numbers have many useful applications in
science. One cares not only on how transformations on sets of real numbers
can be described through their binary representations but also on how these
transformations can be performed algorithmically. The transformation that
associate to a natural number its successor, adding one to the number, is one
of the simplest to be described by binary representations. A basic algorithm
to perform the transformation n 7→ n + 1, changing binary digits one by
one, requires less than ⌊log2(n)⌋ + 1 steps. Killeen and Taylor [6] proposed
a stochastic rule that randomly prevents one of the steps in the algorithm
to finish resulting in a number smaller than n+1. Successive interactions of
Killeen and Taylor rule give rise to a Markov chain on Z+ = {0, 1, 2, 3, ...}
whose transition operator has important spectral properties. In particular,
the spectrum of the transition operator in l∞ is equal to the filled-in Julia
set of a quadratic map. Here we propose a generalization of Killeen and
Taylor machine as well as of the results obtained in [2] and [6].

We extend these results in two directions. On the one hand, we con-
sider not only binary representation but also d-adic extension of the natural
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numbers. On the other hand, the stochastic rule we consider is more gen-
eral : the iteration of the adding algorithm is randomized through Bernoulli
variables whose parameters change at each step (see below).

Let us fix a positive integer d ≥ 2. Set

Γ = Γd :=
{

(aj)
+∞
j=1 ∈ {0, ..., d − 1}N :

+∞∑

j=1

aj <∞
}
.

There is a one to one map from Z+ to Γ that associates to each n a sequence
(aj(n))+∞

j=1 such that

n =

+∞∑

j=1

aj(n)dj−1 .

The right hand side of the previous equality is called the d-adic expansion
of n and aj(n) is called the jth digit of the expansion. The map n 7→ n+ 1
operates on Γ in the following way: we define the counter ζn = ζd,n :=
min{j ≥ 1 : aj(n) 6= d− 1} then

aj(n+ 1) =





0 , j < ζn
aj(n) + 1 , j = ζn
aj(n) , j > ζn .

So an adding machine algorithm, that maps n to n+ 1 using d-adic expan-
sions by changing one digit on each step, is performed in ζn steps in the
following way: the first ζn − 1 digits are replaced by zero recursively and in
ζnth step we add one to the ζnth digit (basically we are adding one modulus
d on each step). Note that 0 ≤ ζn ≤ ⌊logd(n)⌋ + 1.

As an example consider d = 3 and n = 98 = 2 · 30 + 2 · 31 + 1 · 32 + 1 · 34,
then the adding machine algorithm is performed in ζ3,98 = 3 steps as follows:

22101 7→ 02101 7→ 00101 7→ 00201 . (1.1)

Now suppose that for each step of the adding machine algorithm, indepen-
dently of any other step, there is a positive probability that the information
about the counter get lost, thus making the algorithm to stop. This im-
plies that the outcome of the adding machine is a random variable. We call
this procedure the adding machine algorithm with fallible counter, or simply
AMFCd where d represents the base.

Formally, we fix a sequence (pj)
+∞
j=1 of real numbers in (0, 1] and a se-

quence (ξj)
+∞
j=1 of independent random variables such that ξj is a Bernoulli

distribution with parameter pj. Define the random time τ = inf{j : ξj = 0}.
Then the AMFCd is defined by applying the adding machine algorithm to
n and stopping at the step τ if τ ≤ ζn (this means that steps j ≥ τ are not
performed).

Let us return to the previous example with d = 3 and n = 98. If ξ1 = 1
and ξ2 = 0, which occurs with probability p1(1 − p2) then τ = 2 < 3 = ζ98.
Thus the AMFC3 applied to n = 98 stops just after step one giving an
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outcome of 2 ·3+1 ·32 +1 ·34 = 96, see scheme in 1.1. Indeed the probability
distribution of the outcome of the AMFC3 applied to n = 98 is

22101 (98) 7→





22101 (98) , with probability 1 − p1

02101 (96) , with probability p1(1 − p2)
00101 (90) , with probability p1p2(1 − p3)
00201 (99) , with probability p1p2p3 .

Now fix a initial, possibly random, state X(0) ∈ Z+. We apply recur-
sively the AMFCd to its successive outcomes starting at X(0) and using in-
dependent sequences of Bernoulli random variables at different times. These
random sequences are associated to the same fixed sequence of probabilities
(pj)

+∞
j=1. In this way, we generate a discrete time-homogeneous Markov chain

(X(t))t≥0. This Markov chain is irreducible if and only if pj < 1 for infin-
itely many j’s. During the rest of the paper we will assume that the previous
condition is satisfied and the chain is irreducible.

As mentioned before, Killeen and Taylor [6], considered this stochastic
machine in the case d = 2 and pn = p for all n ∈ N. They proved that the
spectrum of S2 in l∞ is equal to the filled-in Julia set of a quadratic map.
In [2], El Abdalaoui and Messaoudi, studied the spectrum of S2 acting in
other Banach spaces as C0 and lα(Z+), α ≥ 1. Messaoudi and Smania [7]
also defined the stochastic adding machine in the case where the base of
numeration is not constant. In particular, they considered the case where
the base is the Fibonacci sequence. They proved that the eigenvalues of the
spectrum of the transition operator acting in l∞(Z+) is connected to the
Julia set of an endomorphism of C

2 (see also [9] for the case where the base
belong to a class of a recurrent sequences of degree 2).

In this paper, we study convergence and spectral properties of the AMFCd

Markov chain. We prove that the AMFCd Markov Chain is null recurrent
if and only if

∏+∞
j=1 pj = 0. Otherwise the chain is transient. We also prove

that the spectrum of the transition operator Sd acting on l∞ is equal to the
filled-in fibered Julia set E defined by

E = Ed :=
{
z ∈ C : lim sup

j→+∞
|f̃j(z)| < +∞

}
.

where f̃j := fj ◦ ... ◦ f1 for all j ≥ 1 and fj : C → C, is the function defined
by

fj(z) :=

(
z − (1 − pj)

pj

)d

.

We shall study topological properties of the filled-in fibered Julia set E. In
particular, we give sufficient conditions on the sequence (pn)n≥1 to ensure
that E is a connected set or has a finite number of connected components,
or is a Cantor set.

We also study some properties of the fibered Julia set ∂E, in particular, we
introduce the Green function of ∂E and prove that there exists 0 < ρ < 1 and
κ > 1such that whenever pi ∈ [ρ, 1] for all i ≥ 2, then ∂E is a κ-quasicircle.
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The paper is organized as follows: In section 2 we obtain the transition
operator of the AMFCd Markov chain and we give a necessary and sufficient
condition for recurrence and transience; Section 3 is devoted to provide an
exact description of the spectra of these transition operators acting on l∞;
Section 4 contains results about connectedness properties of the filled-in
fibered Julia sets E; In section 5, further properties of ∂E are established
in connection with properties of the associated fibered polynomials.

2. Transition operators and recurrence of AMFCd chains

In this section (X(t))t≥0 is an irreducible AMFCd Markov chain associated
to a sequence of probabilities p̄ = (pj)

+∞
j=1. Our first aim is to describe the

transition probabilities of (X(t))t≥0 which we denote s(n,m) = sp̄,d(n,m) :=
P (X(t+ 1) = m|X(t) = n). They can be obtained directly from description
of the chain. For every n ≥ 0, recall the definition of the counter ζn, one has

s(n,m) =





(1 − pr+1)
∏r

j=1 pj if m = n −∑r
j=1(d − 1)dj−1 ,

r ≤ ζn − 1 , ζn ≥ 2 ,
1 − p1 if m = n ,∏ζn

j=1 pj if m = n + 1 ,

0 otherwise .

(2.1)

From the exact expressions above, the transitions probabilities satisfy a
property of self-similarity. Indeed, the following Lemma is straightforward

Lemma 2.1. For all j ≥ 2 and for all dj−1 ≤ n ≤ dj − 2,

s(n,m) =

{
s(n− aj(n)dj−1,m− aj(n)dj−1) , dj−1 ≤ m ≤ dj − 1 ,

0 , otherwise.

Note that ζn ≤ j for this choice of n.

Moreover, if n = dj − 1, we have ζn = j+ 1 thus s(dj − 1, dj) =
∏j+1

l=1 pl and

s(dj − 1, dj − dr) = (1 − pr+1)

r∏

l=1

pl , 1 ≤ r ≤ j . (2.2)

With the transition probabilities, we obtain the countable transition matrix
of the AMFCd Markov chain S = Sd = [s(n,m)]n,m≥0. To help the reader,
the first entries of the matrix S2 are given below:



1 − p1 p1 0 0 0 0 0 0 0 · · ·

p1(1 − p2) 1 − p1 p1p2 0 0 0 0 0 0 · · ·

0 0 1 − p1 p1 0 0 0 0 0 · · ·

p1p2(1 − p3) 0 p1(1 − p2) 1 − p1 p1p2p3 0 0 0 0 · · ·

0 0 0 0 1 − p1 p1 0 0 0 · · ·

0 0 0 0 p1(1 − p2) 1 − p1 p1p2 0 0 · · ·

0 0 0 0 0 0 1 − p1 p1 0 · · ·

p1p2p3(1 − p4) 0 0 0 p1p2(1 − p3) 0 p1(1 − p2) 1 − p1 p1p2p3p4 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .
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For S3, the first entries of the matrix are given below:



1 − p1 p1 0 0 0 0 0 0 0 0 · · ·

0 1 − p1 p1 0 0 0 0 0 0 0 · · ·

p1(1 − p2) 0 1 − p1 p1p2 0 0 0 0 0 0 · · ·

0 0 0 1 − p1 p1 0 0 0 0 0 · · ·

0 0 0 0 1 − p1 p1 0 0 0 0 · · ·

0 0 0 p1(1 − p2) 0 1 − p1 p1p2 0 0 0 · · ·

0 0 0 0 0 0 1 − p1 p1 0 0 · · ·

0 0 0 0 0 0 0 1 − p1 p1 0 · · ·

p1p2(1 − p3) 0 0 0 0 0 p1(1 − p2) 0 1 − p1 p1p2p3 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .




The transition operator induced by S, acting on l∞(Z+), will also be denoted
by S. From a result in [2] we see that its restriction on lα(Z+), α ≥ 1, is a well
defined operator on each of these spaces. Note that S is doubly stochastic if
and only if

∏+∞
j=1 pj = 0. In fact S is stochastic and the sum of coefficients

of every column is 1, except the first one whose sum is 1 −∏+∞
j=1 pj .

In the next Proposition, we obtain a necessary and sufficient condition
for recurrence of the AMFCd Markov chain.

Proposition 2.2. The AMFCd Markov chain is null recurrent if and only
if

+∞∏

j=1

pj = 0 . (2.3)

Otherwise the chain is transient.

Proof. We start showing that condition (2.3) is necessary and sufficient
to guarantee the recurrence of the AMFCd Markov chain. From classical
Markov chain Theory, the AMFCd Markov chain is transient if and only if
there exists a sequence v = (vj)

+∞
j=1 such that 0 < vj ≤ 1 and

vj =
+∞∑

m=1

s(j,m) vm , j ≥ 1 , (2.4)

i.e, S̃d v = v where S̃d is obtained from S removing its first line and column.

Suppose that v = (vj)
+∞
j=1 satisfies the above conditions. We claim that

vdl+j = vdl , for every l ≥ 0 and j ∈ {1, ..., (d − 1)dl − 1} . (2.5)

The proof follows by induction. Indeed, for j ∈ {1, ..., (d−1)dl −1}, suppose

that vdl = vdl+r, for all 0 ≤ r ≤ j − 1 we have that vdl+j−1 =
∑j

m=1 s(d
l +

j − 1,m) vm. Since s(dl + j − 1,m) = 0 for all 0 ≤ m < dl, we have

vdl+j−1 =

j∑

r=0

s(dl + j − 1, dl + r) vdl+r

=

(
j∑

r=0

s(dl + j − 1, dl + r)

)
vdl

+s(dl + j − 1, dl + j)(vdl+j − vdl) . (2.6)
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Using the fact that j ∈ {1, ..., (d − 1)dl − 1} note that

j∑

r=0

s(dl + j − 1, dl + r) = 1 ,

thus, since s(dl+j−1, dl+j) > 0, from (2.6), we have that vdl+j = vdl+j−1 =
vdl . This proves the claim.

It remains to obtain vdl+1 from vdl for l ≥ 0. First note that (2.5) implies
vdl+1−dr = vdl for 0 ≤ r ≤ l. From the transition probabilities expression in
(2.2), if we let p0 = 1, we have that

vdl = vdl+1−1 = (p0...pl+2)vdl+1 +

l∑

r=0

(p0...pr − p0...pr+1)vdl+1−dr .

= (p0...pl+2)vdl+1 + (1 − p0...pl+1)vdl .

Therefore for every l ≥ 1

vdl =
vdl−1

pl+1
=

v1∏l+1
j=2 pj

.

From this equality, we get to the conclusion that v exists and the chain is
transient if and only if

+∞∏

j=1

pj > 0 .

Now suppose that we are in the recurrent case. Since S is a irreducible
countable doubly stochastic matrix, it is simple to verify that the AMFCd

have no finite invariant measure and then cannot be positive recurrent. �

We can also obtain the recurrence/transience condition of Proposition 2.2
through probabilistic arguments. We just describe roughly these arguments
leaving the details to the reader. Let (X(t))t≥0 be the AMFCd Markov chain
starting at X(0) = 0. For n ≥ 0, denote the first hitting time of state dn by

τn = min{t ≥ 1 : X(t) = dn}
and the number of visits to 0 before the random time τn by Nn. Then the
expectation of Nn is

( n+1∏

j=1

pj

)−1
. (2.7)

We check this by induction. If n = 0 then N0 = τ0. But τ0 is a geomet-
ric random variable with parameter p1, which has expectation p−1

1 . Now
suppose that (2.7) holds for n. When the chain reachs state dn, it must
get to dn+1 − 1 to attempt a return to 0. If it returns to 0, it must spend
a time with the same distribution of τn to reach dn again. Moreover, the
number of visits to dn+1 − 1 resulting in a jump to 0 or a jump to dn+1 is
a geometric random variable of parameter p−1

n+2. By the Markov property,
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the expectation of Nn+1 is the expectation of Nn times p−1
n+2. This means

that (2.7) also holds for n+ 1.
Letting n goes to infinity, we get that the expected number of visits to 0 is(∏∞

j=1 pj

)−1
. Moreover, from classical Markov chain theory, the probability

that the chain never returns to 0 is the inverse of the expected number of
visits to 0, which is

∏∞
j=1 pj. Therefore, the chain is recurrent if and only if∏∞

j=1 pj = 0.
Finally, let us just point out that the previous argument also allows us

to show that the expectation of τn is given by dn
(∏n+1

j=1 pj

)−1
. Indeed, the

expected number of visits to each one of the states 0, ..., dn − 1 before time

τn is
(∏n+1

j=1 pj

)−1
.

3. Spectra of transition operators of AMFCd chains

In this section we describe the spectrum of the transition operator of an
AMFCd acting on l∞(Z+) for a fixed sequence p̄ = (pj)

+∞
j=1 with pj in (0, 1]

satisfying the irreducibility condition. We start introducing some notation.
Let fj : C → C, j ≥ 1, be the function defined by

fj(z) :=

(
z − (1 − pj)

pj

)d

.

Also let f̃0 := Id, f̃j := fj ◦ ... ◦ f1 and

Ep̄ = E :=
{
z ∈ C : lim sup

j→+∞
|f̃j(z)| < +∞

}
.

We use the notation D(w, r) = {z ∈ C : |w− z| < r} and D(w, r) = {z ∈ C :
|w − z| ≤ r}.
Lemma 3.1. The set Ep̄ is included in the closed disk D(1 − p1, p1). More-

over, for all z ∈ Ep̄ and j ≥ 1, f̃j(z) belongs to the disk D(1 − pj+1, pj+1).

Proof. Take pj ∈ (0, 1) and z ∈ C with |z| > 1 then
∣∣∣∣
z − (1 − pj)

pj

∣∣∣∣ ≥
|z| − (1 − pj)

pj
=

|z| − 1

pj
+ 1 > |z| > 1 .

Thus, we obtain, for every z ∈ C with |z| > 1 and j ≥ 1, that

|fj(z)| > |z|d > 1 .

Now suppose |f̃r(z)| > 1 for some r > 1, then by induction one can show
that for j > r

|f̃j(z)| ≥ |f̃r(z)|d
j−r

. (3.1)

From (3.1) we see that limj→+∞ |f̃j(z)| = +∞ whenever |f̃r(z)| > 1 for

some r > 1. In particular, if |f̃r(z)| > 1 then z /∈ E.
As regard the second part of the Lemma, suppose |z − (1 − p1)| > p1, this



8 ALI MESSAOUDI1, OLIVIER SESTER, GLAUCO VALLE2

implies that |f1(z)| > 1 and then z /∈ E. Analogously, if |f̃j(z)−(1−pj+1)| >
pj+1, we have that |f̃j+1(z)| > 1 and then z /∈ E. �

Corollary 3.2. We have the following equality

Ep̄ = D(1 − p1, p1) ∩
∞⋂

j=1

f̃−1
j

(
D(1 − pj+1, pj+1)

)

= D(0, 1) ∩
∞⋂

j=1

f̃−1
j

(
D(0, 1)

)
.

Proposition 3.3. The point spectrum of S in l∞(Z+) is equal to E. Fur-
thermore, fix λ ∈ E and v0 > 0 and define

vn = v0

⌊logd(n)⌋+1∏

r=1

(qλ(r))ar(n) , n ≥ 0 (3.2)

where ar(n) is the rth digit of n in its d-adic expansion and

qλ(r) = (hr ◦ f̃r−1 )(λ) (3.3)

with

hr(z) =
z

pr
− 1 − pr

pr
. (3.4)

Thus (vn)+∞
n=0 is, up to multiplication by a constant, the unique right eigen-

vector of S in l∞(N) with eigenvalue λ.

Proof. Since S is stochastic, its spectrum is a subset of the closed disk
D(0, 1). Let us fix λ ∈ D(0, 1) and (vn)+∞

n=0 the sequence defined in the
statement. Then the proof of the Proposition follows from the two claims
below:
Claim 1: (|qλ(j)|)+∞

j=1 is bounded above by one if and only if λ ∈ E, oth-

erwise it is unbounded. In particular, (vn)+∞
n=0 is a well defined element of

l∞(Z+) if and only if λ ∈ E.
Claim 2: If λ ∈ E, (vn)+∞

n=0 is, up to multiplication by a constant, the
unique right eigenvector of S with eigenvalue λ.
Proof of Claim 1: Simple to verify from definition (3.2), Lemma 3.1 and
the fact that

inf
j≥1

|hj(x)| ≥ |x| .

Proof of Claim 2: Let v = (vn)n≥0 be a sequence of real numbers and
suppose that (S v)n = λ vn for every n ≥ 0. We shall prove that v satisfies
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(3.2). The proof is based on the following representation

(S v)n =




ζn∏

j=1

pj


 vn+1 + (1 − p1)vn

+

ζn−1∑

r=1




r∏

j=1

pj


 (1 − pr+1)vn−

Pr
j=1

(d−1)dj−1 , (3.5)

for ζn ≥ 2 and (S v)n = p1vn+1 + (1 − p1)vn if ζn = 1. This representation
follows directly from the definition of the transition probabilities in (2.1).
From (3.5), we show (3.2) by induction.

Indeed, for n = 1 we have that

λv0 = (1 − p1)v0 + p1v1 ⇒ v1 =

(
λ− (1 − p1)

p1

)
v0 = qλ(1) v0 .

Now fix n ≥ 1 and suppose that (3.2) holds for every 1 ≤ j ≤ n. By (3.5),
since (S v)n = λ vn, we have that

vn+1

v0
∏⌊logd(n)⌋+1

r=ζn+1 (qλ(r))ar(n)
(3.6)

is equal to

[λ− (1 − p1)]
[∏ζn−1

r=1 (qλ(r))d−1
]
(qλ(ζn))aζn (n)

∏ζn

j=1 pj

+
(1 − p2)

[∏ζn−1
r=2 (qλ(r))d−1

]
(qλ(ζn))aζn (n)

∏ζn

j=2 pj

... +
1 − pζn

pζn

(qλ(ζn))aζn (n) . (3.7)

Since

qλ(1) =
λ− (1 − p1)

p1
,

the first term in (3.7) is equal to

qλ(1)d
[∏ζn−1

r=2 (qλ(r))d−1
]
(qλ(ζn))aζn (n)

∏ζn

j=2 pj

.

Summing with the second term we get

(
(qλ(1))d − (1 − p2)

p2

)
[∏ζn−1

r=2 (qλ(r))d−1
]
(qλ(ζn))aζn (n)

∏ζn

j=3 pj

,
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which is equal to

(qλ(2))d
[∏ζn−1

r=3 (qλ(r))d−1
]
(qλ(ζn))aζn (n)

∏ζn

j=3 pj

.

By induction we have that the sum of the first ζd.n−1 terms in (3.7) is equal
to

(qλ(ζn − 1))d (qλ(ζn))aζn (n)

pζn

.

Finally, summing the previous expression with the last term in (3.7) we have
that (3.6) is equal to

(qλ(ζn − 1))d − (1 − pζn
)

pζn

(qλ(ζn))aζn (n) = (qλ(ζn))aζn (n)+1 ,

Therefore,

vn+1 = v0 (qλ(ζn))aζn (n)+1

⌊logd(n)⌋+1∏

r=ζn+1

(qλ(r))ar(n)

= v0

⌊logd(n+1)⌋+1∏

r=1

(qλ(r))ar(n+1) ,

which, by induction, completes the proof of Claim 2. �

Denote by σp̄ the spectrum of Sp̄ in l∞(Z+). We have proved in the
previous proposition that σp̄ ⊃ Ep̄ = E. In the next Proposition, we show
that σp̄ ⊂ Ep̄.

Theorem 3.4. The spectrum of Sp̄ is equal to E.

Proof. We prove here that σp̄ ⊂ E. Let us denote by τ : Z+ → Z+ the shift
map τ(n) = n+ 1 and p̄n := (pn+j)

∞
j=0 for a given n ∈ N.

Denote S̃p̄ the operator

S̃p̄ :=
Sp̄ − (1 − p1)Id

p1
,

which is also a stochastic operator acting on Z+. It is associated to a irre-
ducible Markov chain with period d. Thus S̃d

p̄ has d communication classes.

It is straightforward to verify that the communication classes of S̃d
p̄ are

{ j ∈ N : j ≡ n mod d} , 0 ≤ n ≤ d− 1 .

Furthermore, S̃d
p̄ acts on each of these classes as a copy of Sp̄2

. Therefore,

the spectrum of S̃d
p̄ is equal to the spectrum of Sp̄2

. Since, S̃d
p̄ = f̃1

(
Sp̄

)
, by

the Spectral Mapping Theorem([4]), we have that

f̃1

(
σp̄

)
= σp̄2

.



SPECTRUM FOR OPERATORS OF STOCHASTIC MACHINES 11

By induction, we have that

f̃j+1

(
σp̄

)
= σp̄j+1

,

for every j ≥ 1. Since, Sp̄j+1
is a stochastic operator, its spectrum is a subset

of D(0, 1). Therefore

|f̃j+1

(
λ
)
| ≤ 1 ,

for every j and λ ∈ σp̄. This implies that σp̄ ⊂ E. �

Remark 3.1. Let (X(t))t≥0 be an irreducible recurrent AMFCd Markov
chain starting at 0. Suppose that λ ∈ R ∩ E, λ 6= 1 and v = (vn)n≥0 is an
eigenvector associated to λ with v0 > 0. Since E ⊂ D(0, 1), then v is a super-
harmonic function on l∞(Z+) with respect to S, i.e., (Sv)n ≤ vn, for all
n ≥ 0. Therefore, by (3.2) and from the Potential Theory for Markov chains,
we have that (vX(t))t∈Z+

is a bounded supermartingale. If (vX(t))t∈Z+
is

positive, by the convergence theorem for supermartingales, we have that there
exists a bounded Z+ valued random variable v∞ such that limt→∞ vX(t) = v∞
almost surely. Since the chain is irreducible and recurrent, this can happen
only if v is constant. But for λ 6= 1, by (3.2), v is non-constant. Therefore,
either R∩E = {1} or vn < 0 for some n. However we have vn < 0 for some

n if and only if f̃j(λ) < 0 for some j ≥ 1, which, for a constant sequence
(pi)i≥1, implies that (−1, 0) ∩ E 6= ∅.

4. Connectedness properties of the spectra

This section is devoted to the study of the connectedness of E and its
complement. According to the parity of d, we obtain conditions for E to be
connected, have a finite number of connected components or to be a Cantor
set.

Proposition 4.1. The set C \ E is connected.

Proof. By Lemma 3.1, we have E =
⋂+∞

n=1 f̃
−1
n

(
D(0, 1)

)
where f̃−1

n+1

(
D(0, 1)

)
⊂

f̃−1
n

(
D(0, 1)

)
for every integer n ≥ 1. Then C \ E =

⋃+∞
n=1 C \ f̃−1

n

(
D(0, 1)

)
.

Since for any integer n, fn is a polynomial function, thenXn = C\f̃−1
n

(
D(0, 1)

)

is a connected set. Since Xn is an increasing sequence, we deduce that C\E
is also a connected set. �

In the rest of this this paper we need to introduce some more notations.
Let gj : C → C, j ≥ 2, be the function defined by

gj(z) :=
1

pj
zd − (1 − pj)

pj
,

and g̃j := gj+1 ◦ ... ◦ g2. Let

K =
{
z ∈ C : lim sup

j→+∞
|g̃j(z)| < +∞

}
. (4.1)
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Recall that hj(z) = z
pj

− 1−pj

pj
, the functions gj+1 and fj are conjugated

in the following sense

gj+1 = hj+1 ◦ fj ◦ h−1
j (4.2)

Since g̃j(h1(z)) = hj+1 ◦ f̃j(z) for all j ≥ 2, we deduce that

if lim inf
i→∞

pi > 0, then E := h−1
1 (K) (4.3)

According to Lemma 3.1, since h1 maps the disk D(1 − p1, p1) to D(0, 1),
we have that if lim infi→∞ pi > 0, then K is also included in the closed disk
D(0, 1). Indeed, by the Lemma 3.1, we have an analogous of Corollary 3.2.
In the case where lim inf i→∞ pi = 0, the same results are true, and we have
h−1

1 (K) ⊂ E.

Lemma 4.2. Let R > 1 then K =
⋂+∞

n=2 g̃
−1
n (D(0, R)) where g̃−1

n+1(D(0, R)) ⊂
g̃−1
n (D(0, R)) for every integer n ≥ 2.

Remark 4.1. 1. The use of g̃j instead of f̃j simplify the study of some
topological properties of E. Indeed, since h1 is a linear homeomorphism
from C to C, we have when lim infi→∞ pi > 0 that E and K are really the
same up to a linear change of coordinates.
2. The analysis of the number of connected components of E relies on the
Riemann-Hurwitz Formula, see [8]. It relates the number of connected com-
ponents of E with the number of critical points (counted with multiplicity) of

f̃n that do not belong to E. The critical points of f̃n are of the form z ∈ C

such that z = 1 − p1 or f̃k(z) = 1 − pk+1 for some integer 1 ≤ k < n.

As it will become clear just ahead, the fact that 0 belongs or not to K is
relevant in the study of the connectedness of both E and K.

4.1. Case where pi = p for all i ≥ 2. Here gj does not depend on j and
will be denoted by

g(z) :=
1

p
zd − (1 − p)

p
, z ∈ C.

Lemma 4.3. Suppose that pi = p for all i ≥ 2. If 0 ∈ K then K is a
connected set, otherwise K is a Cantor set.

Proof. The result is a consequence of Lemma 4.2, Riemann-Hurwitz For-
mula, and the fact that 0 is the unique critical point of all gn, n ≥ 2. �

Proposition 4.4. Let p ∈ (0, 1) be a fixed real number and suppose that
pj = p for all j ≥ 2, then the following properties are satisfied.

(i) If d is even, then E is connected if and only if p ≥ 1
2 , otherwise E

is a Cantor set.
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(ii) If d is odd, then E is connected, if and only if, p ≥ ϑd = dθd−1
d where

θd ∈ (0, 1) is the unique non-negative solution of

d θd−1 + (d− 1) θd = 1 , (4.4)

otherwise E is a Cantor set.

Remark 4.2. 1. Since θd ∈ (0, 1), we have that d θd−1 > (d− 1) θd and by
equation (4.4) we have that ϑd > 1/2. This implies a noticeable difference
with the case d even.
2. If d = 3 then θ3 = 1/2 and ϑ3 = 3/4.
3. We have that ϑd decreases to 1/2 as d→ ∞.

Proof. of Proposition 4.4.

(i) Assume that d is even. If p < 1
2 , then g(0) = − (1−p)

p < −1, hence

0 6∈ K. By Lemma 4.3 and Remark 4.1, K and E are Cantor sets. Now,
suppose p ≥ 1

2 and let −1 ≤ x ≤ 1, then we see easily by induction on n

that −1 ≤ − (1−p)
p ≤ gn(x) ≤ 1 for all n ∈ N. Hence 0 ∈ K. By Lemma 4.3

and Remark 4.1, K and E are connected.

(ii) Now, assume that d is odd .

Claim : 0 ∈ K if and only if the equation x = g(x) has a real solution
−1 ≤ x ≤ 0.

Proof of the Claim: Assume that there exists a real number x ≤ 0 such that
x = g(x). Then, from monotonicity properties of g, for any integer n ≥ 0,
we have x ≤ gn(0) ≤ 0, therefore 0 ∈ K.

Now suppose that 0 ∈ K and put l = inf{gn(0) : n ∈ N}. Let ε > 0 and

n ∈ N such that gn(0) = 1
pg

n−1(0)d− 1−p
p < l+ε, then g(l) = ld−(1−p)

p < l+ε.

On the other hand l ≤ gn+1(0) < 1
p(l + ε)d − 1−p

p . Since ǫ is arbitrary, then

l = g(l) = ld−(1−p)
p . From the fact that −1 ≤ l ≤ 0, the claim is proved.

Now consider the equation ψ(x) = p(g(x)− x) = xd − px− (1− p). Since

ψ(−1) = 2(p − 1) < 0, ψ(0) = p− 1 < 0 and maxx≤0 ψ(x) ≤ ψ
(
− (p

d )
1

d−1

)
,

we have that

0 ∈ K ⇐⇒ ψ
(
−
( p
d

) 1

d−1
)
≥ 0.

Consider the function φ(p) = ψ
(
− (p

d)
1

d−1

)
= (d − 1)

(
(p

d)
d

d−1

)
− (1 − p).

As for any integer d ≥ 2, we have φ(0) < 0, φ(1) > 0 and φ is increasing,
we deduce that there exists a unique real number 0 < ϑd < 1 such that

φ(ϑd) = ψ(−
(

ϑd

d )
1

d−1

)
= 0. Since ∂pψ(x) = −x + 1 ≥ 0 for all x ≤ 0, we

obtain that 0 ∈ E if and only if p ≥ ϑd. On the other hand, if θd =
(

ϑd

d

) 1

d−1

,

then (d− 1)θd
d + dθd−1

d − 1 = 0 and ϑd = dθd−1
d . �
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4.2. Case where (pi)i≥2 is not constant. Now we focus on the general
setting, again there are two different behaviors with respect to the parity of
d.

Proposition 4.5. Assume that d is even and let s = #{i ≥ 2, pi <
1
2}.

Then we have the following results

(i) If s = 0, then E is connected.
(ii) If 0 < s < +∞, then E has dk connected components where s ≤ k ≤

t−1 where pt <
1
2 and pi ≥ 1

2 for all i > t. In particular, if pi < 1/2
for all 2 ≤ i ≤ n and pi ≥ 1/2 for all i > n + 1, then E has exactly
dn−1 connected components.

(iii) If s = +∞, then E is a Cantor set.

Proof. (i) Let n ≥ 2 and z be a critical point of g̃n = gn+1 ◦ . . . ◦ g2, then
z = 0 or g̃i(z) = 0 for some 2 ≤ i ≤ n.

Suppose s = 0 then pi ≥ 1
2 for all integer i ≥ 2. It is easy to see that all

integers 2 ≤ k ≤ m, −1 ≤ 1− 1
pm+1

≤ g̃m(0) ≤ 1. We deduce that all critical

points of g̃n belong to K. Hence K is a connected set. Thus by (4.3), we
deduce that E is connected,

(ii) Assume that 0 < s < +∞, then there exist s integers k1 < k2 < . . . <
ks such that pkj

< 1
2 for all 1 ≤ j ≤ s. Hence 1− 1

pkj

< −1 for all 1 ≤ j ≤ s.

Let n > ks, 1 ≤ j ≤ s, and zj be a complex number such that g̃kj−2(zj) =

0, then g̃n(zj) = gn+1 ◦ . . .◦gkj+1(1− 1
pkj

) diverges to −∞ as n→ ∞. Hence

zj 6∈ K. Since zj is a critical point of g̃n. Using Riemann-Hurwitz formula,
we deduce that K has at least ds connected components. On the other hand,
as pi ≥ 1

2 for all i > ks, we deduce that all complex number z satisfying that

g̃m(z) = 0, m > ks, belongs to K, therefore E has at most dks connected
components.

(iii) Suppose that s = +∞. If lim inf i→∞ pi > 0, then by (4.3) and item
(ii), we deduce that E is a Cantor set.

Now, suppose that lim infi→∞ pi = 0, Since if R > 1 is a real number, then
E =

⋂+∞
n=1 f̃

−1
n D(0, R) where f̃−1

n+1D(0, R) ⊂ f̃−1
n D(0, R) for every integer

n ≥ 1; and the fact that the critical points of f̃n are z such that z = 1 − p1

or f̃k(z) = 1 − pk+1 for some integer k < n. Using the same idea done in
the proof of item (ii), we deduce that E is a Cantor set.

�

Proposition 4.6. If d is odd, then the following assertions hold:

(i) E is connected if and only if 1 − p1 ∈ E.
(ii) If pj ≥ ϑd for all j ≥ 2, then E is connected.
(iii) For every 0 < δ < ϑd, there exists k = k(δ) such that if pm+r <

ϑd − δ, for some m ≥ 2 and all 0 ≤ r ≤ k, then E is not connected.
(iv) If pj < 1/2, for some j, then E has at least dj connected components.
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(v) If pj < 1/2 for infinitely many j’s, then E is a Cantor set.
(vi) If pj is randomly chosen in a way that (pi)

∞
i=1 is a sequence of iid ran-

dom variables with P (pi < ϑd) > 0, then P (Ep̄ is a Cantor set) = 1.

For the proof of the previous Proposition and the next examples, we stop
to mention K and we speak directly of E. This avoids some unnecessary
assertions.

Examples : We show here with examples in the case where d is odd that
few can be said about the connectedness of E when we have indexes j for
which 1/2 ≤ pj < ϑd. Recall that in the case d = 3, we have θ3 = 1

2 and

ϑ3 = 3
4 .

1. Take p2 = 2/3 and pj = 3/4 otherwise. In this case, g̃2(0) = −1/2 =
−θ3 thus g̃j(0) = −1/2 for every j. Since the sequence (g̃j(0))j≥2 is
bounded, E is connected.

2. Take p2 = 2/3, p3 = 9/14 and pj = 3/4 otherwise. In this case,
g̃2(0) = −1/2 and g̃3(0) = −3

4 < −1/2, thus limj→∞ g̃j(0) = −∞
and E is not connected. Moreover, any other critical point of g̃j

distinct from 0 is in E by the previous case. Then E has d connected
components by the Riemann-Hurwitz Lemma (see Figure 1 above).

3. Take p2 = 2/3, p3 = 9/14, p4 = 126
128 and pj = 3/4 otherwise. In this

case, g̃2(0) = 1/2, g̃3(0) = −3
4 < −1/2 and g̃4(0) = − 6

14− 1
63 > −1/2.

Thus −1/2 < g̃j(0) < 0 for every j ≥ 4 which implies that (g̃j(0))j≥2

is bounded and E is connected.

Figure 1. In degree 3, E may have a finite number of con-
nected components
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Proof. of Proposition 4.6.

Proof of (i): By Riemann-Hurwitz Formula, E is connected, if and only

if, E contains all the critical points of f̃j for every j ≥ 1. Since 1 − p1 is

clearly a critical point of every f̃j, if E is connected then 1 − p1 ∈ E. Now

suppose that 1 − p1 ∈ E and let z be a critical point of f̃l, for some fixed
l ≥ 2. By the chain rule for derivatives, there exists 1 ≤ m < l such that
f̃m(z) = 1 − pm+1. Thus, for every j ≥ l,

0 ≥ f̃j(z) = (fj ◦ ... ◦ fm+2)(0) ≥ (fj ◦ ... ◦ fm+2)(f̃m+1(1− p1)) = f̃j(1− p1) ,

which follows from the fact that (fj◦...◦fm) is increasing and f̃m+1(1−p1) =

(fm+1 ◦ ... ◦ f2)(0) < 0. Since (f̃j(1 − p1))j≥1 is bounded, (f̃j(z))j≥1 is also
bounded and z ∈ E. Therefore E is connected.

Proof of (ii): Since d is odd, 1 − p1 ∈ E (equivalent to 0 ∈ K), if and only
if, limj→∞ gj(0) = −∞. Let

g(x, p) :=
xd − (1 − p)

p
,

then ∂pg(x, p) ≥ 0, for x < 0. Thus

g̃j(0) ≥ gj(0, ϑd) ,

for every j. By Proposition 4.4, we have −1 < limn→∞ gj(0, ϑd) < 0, thus
(ii) holds.

Proof of (iii): By Proposition 4.4, we have limj→∞ gj(0, ϑd − δ) = −∞.
Therefore there exists k = k(δ) > 1 such that

gk−1(0, ϑd − δ) < −1 .

Put

f(x, p) :=

(
x− (1 − p)

p

)d

.

By (4.2), hϑd−δ ◦fk−1(1−p1, ϑd−δ) = gk−1(0, ϑd−δ). Hence fk(1−p1, ϑd−
δ) =

(
hϑd−δ ◦ fk−1(1 − p1, ϑd − δ)

)d
< −1.

Now suppose that pm+r < ϑd − δ, for some m ≥ 2 and all 0 ≤ r ≤ k.
Since, f is increasing in both x and p, for x ≤ 0, then

f̃m+r(1 − p1) = (fm+r ◦ ... ◦ fm+1)(f̃m(1 − p1))

≤ (fm+r ◦ ... ◦ fm+1)(0) ≤ fk(0, ϑd − δ) ≤ −1 ,

for every j ≥ m+ r. Thus 1 − p1 /∈ E and hence E is not connected.

Proof of (iv): If pj < 1/2 then fj(0) < −1. For every critical point z ∈ C of

g̃j, we have that f̃m(z) = 1− pm+1 for some 0 ≤ m < j, then f̃j+1(z) < −1.
Thus z /∈ E. By Riemann-Hurwitz Formula, E has at least dj connected
components.

Proof of (v): Take j → ∞ in (iv).
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Proof of (vi): By continuity of measures, there exists δ such that P (ρi <
ϑd − δ) > 0. Take k = k(δ) as in (iii). By Borel Cantelli Lemma, we have
that almost surely there exists a sequence (jn)n≥1 such that limn→∞ jn = ∞
and pjn+r < ϑd − δ for all 0 ≤ r ≤ k and n ≥ 1. Since, from (iii), we have

(fjn+r ◦ ... ◦ fjn)(0) < −1 ,

following the arguments in (iv), we get that Eρ̄ has at least djn+r connected
components. Since limn→∞ jn = ∞, we have that Eρ̄ is Cantor. �

5. Further topological and analytical properties of the

spectra

Fix d ≥ 2. We are now able to identified the sets E and K with fibered
Julia sets associated to a suitable fibered polynomial (see [10]). Indeed, let
us denote X = [0, 1]N, this is a compact set endowed with the product topol-
ogy.
We define the shift map τ : X → X in the standard way : for all p =
(p1, . . . , pn, . . .) ∈ X, τ(p) = (p2, . . . , pn+1 . . .). Let us define the ”parame-
ters” of our fibered polynomial map for all p = (pn)n≥1 ∈ X

a(p) =
1

p1
and b(p) = −1 − p1

p1
.

We introduce the fibered polynomial map of degree d over (X, τ) defined by

P : X × C −→ X × C

(p, z) 7−→
(
τ(p), Pp(z) = a(p)zd + b(p)

)
,

Note that P is a skew-product map (i.e.the first variable does not depend on
the second one!). If Pn is the n-iterate of P then Pn(p, z) = (τn(p), Pn

p (z))
where

Pn
p (z) = Pτn−1(p) ◦ . . . ◦ Pτ(p) ◦ Pp(z), (5.1)

Observe that Pn+1
τ(p) is exactly the map g̃n defined in the previous section.

Now, we need to make the assumption that there exists ε > 0 such that for

all n ≥ 2, ε ≤ pn ≤ 1. Thus we restrict τ to the compact set X̃ = [ε, 1]N ⊂ X.

With this restriction, a and b turn out to be continuous functions on X̃ . We
could also consider the τ -invariant compact set Y = {τn(ω), n ∈ N} for a
given ω = (p1, . . . , pn, . . .) and consider the restriction τ : Y → Y .
Whenever f : X → C is a continuous map we consider the uniform norm
‖f‖∞ = supx∈X |f(x)|.
The first point is to conjugate P to a monic fibered polynomial by a fibered
homeomorphism of X×C of the form : (p, z) 7→ (p, λ(p)z). This is the objet
of the following Proposition

Proposition 5.1. Assume that pi ∈ [ε, 1], ε > 0, then there exist a contin-
uous function λ : X → R

+ such that P is conjugated by (p, z) 7→ (p, λ(p)z)

to P̂ (p, z) = (τ(p), zd + c(p)) where c(p) = λ(τ(p))b(p).
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Proof. Let us define Λ(p, z) = (p, λ(p)z). The conjugacy equation reads as

follow Λ ◦P (p, z) = P̂ ◦Λ(p, z). Thus, by identifying the second term of this
equation, we obtain for all (p, z) ∈ X × C:

λ(τ(p))(a(p)zd + b(p)) = λd(p)zd + c(p)

This provides

λ(τ(p))a(p) = λ(p)d , (5.2)

λ(τ(p))b(p) = c(p) . (5.3)

To solve the first equation, we simply define λ(p) =

+∞∏

i=0

a(τ i(p))1/di+1

. This

infinite product is convergent since 1 ≤ a(p) = 1
p1

≤ 1
ε and then

0 ≤
+∞∑

i=0

1

di+1
log(a(τ i(p)) ≤ 1

d− 1
log(

1

ε
) < +∞ .

Clearly, λ defined by this way, satisfies equation (5.2) and p 7→ λ(p) is

continuous on X with 1 ≤ λ(p) ≤ (
1

ε
)

1

d−1 . �

Thus after conjugacy we can assume that the fibered polynomial takes the

form P̂ (p, z) = (τ(p), zd + c(p)). Given a sequence of numbers (pi) ∈ [ε, 1],
λ is given by the formula of the previous proposition :

λ(p) =
+∞∏

i=1

(
1

pi

)1/di

.

and c(p) = b(p)λ(τ(p))

c(p) = −1 − p1

p1

+∞∏

i=1

(
1

pi+1

)1/di

.

To avoid heavy notation we still denote P (p, z) the fibered polynomial

P̂ = (τ(p), zd + c(p)) and Pn(p, z) = (τn(p), Pn
p (z)). Now we can follow [10]

and verify that most of the results there are still valid in our context.
Recall that the global filled-in Julia sets are defined by

K =
{

(p, z) ∈ X × C such that sup
n∈N

|Pn
p (z)| < +∞

}
,

and for all p ∈ X

Kp =
{
z ∈ C such that (p, z) ∈ K

}
.

One has P (K) = K and Pp(Kp) = Kτ(p), K is a compact subset of X × C,
Kp is compact subset of C bounded by 1 + maxp∈X |c(p)|. The fibered Julia

sets are the topological boundary Jp = ∂Kp, and we let J =
⋃

p∈X{p} × Jp.
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We also consider the Green function of P defined by

G(p, z) = Gp(z) := lim
n→+∞

1

dn
log+ |Pn

p (z)| ,

where log+(p) := max{0, log(p)}. Then one has Proposition 2.4 in section
2.3 of [10]:

Proposition 5.2. The map G : X × C → R
+ is continuous and satisfies:

(1) Gp is harmonic in C \ Kp and Kp is exactly the set of z ∈ C such
that Gp(z) = 0 ;

(2) G satisfies the functional equation : G(P (p, z)) = dG(p, z);
(3) there exist constants A and B such that for all |z| ≥ B,

sup
p∈X

∣∣∣Gp(z) − log |z|
∣∣∣ ≤ A

|z|2 . (5.4)

In section 2.4 of [10], the continuity of the Kp and Jp with respect to
p is considered, see also [5]. Let us denote Comp(C) the set of non-empty
compact subsets of C endowed with the Hausdorff distance. Then, by Propo-
sition 2.9 in [10], we have the following result.

Proposition 5.3. 1) The map p ∈ X 7→ Kp ∈ Comp(C) is upper semi-
continuous.
2) The map p ∈ X 7→ Jp ∈ Comp(C) is lower semi-continuous.

Theorem 5.4. Let P (p, z) = (τ(p), zd + c(p)) a fibered polynomial over

(X, τ). If the continuous map c : X 7→ C satisfies, max |c| < (1
2)

d
d−1 then

there exists k > 1 such that the Julia sets Jp are κ-quasicircles, i.e. Jp is
the image of the unit circle by a k-quasiconformal map.

Concerning quasiconformal mapping and quasiconformal circles we refer
to Ahlfors ([1]) where a lot of characterization and properties are provided.

Here we need to adapt the results of [10] where only the degree d = 2 was
considered.

Proof. The first step is to find an attracting domain. Let r := (1
2 )

1

d−1 , we
claim that the image Pp(D(0, r)) is compactly contained in D(0, r). Indeed,
for all |z| ≤ r

|Pp(z)| ≤ |z|d + |c(p)| < rd +

(
1

2

) d
d−1

=

(
1

2

) d
d−1

+

(
1

2

) d
d−1

=

(
1

2

) 1

d−1

.

Next, we will check that this property is sufficient to guarantee that the
Julia set is a ”uniform” quasi-circle. We follow the main lines in [10] see
also [3].

Let us denote Vp = P−1
p (D(0, r)), and A(p) = Vp \ D(0, r). Note that Vp

is a simply connected domain and thus A(p) is and annulus with bounded
modulus from below.
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According to lemma (5.5) in [10], there exists K > 0 and for all p ∈ X a
K-quasiconformal diffeormorphism ηp : C → C such that ηp = Id on the
complement of Vp, ηp is holomorphic on D(0, r) and satisfies ηp(c(p)) = 0.

Let us define P̃p = ηp ◦ Pp and

P̃n
p = P̃τn−1(p) ◦ . . . ◦ P̃p

We also consider an ellipse field σp by making it circle on D(0, r)∪ (C \Kp)

and to be invariant under P̃p on

∞⋃

n=0

(P̃n
p )−1(A(τn(p)).

The crucial point is that the sets (P̃n
p )−1(A(τn(p)) for n ∈ N are disjoint.

Thus σp is well defined and there is only one distortion in the first itera-

tion since P̃p is analytic everywhere except on A(p). Let us denote µp the
Beltrami coefficient of σp, and define µp = 0 on any remaining part of C.
Hence

‖µp‖∞ ≤ κ < 1.

Let ψp be the solution of the associated Beltrami equation ψp = µpψp with
the normalization ψp(0) = 0 and ψp is tangent to the identity at infinity. It

is a k-quasiconformal map and by construction, ψτ(p) ◦ P̃p ◦ ψ−1
p turns out

to be an analytic map of degree d, with the critical point of order d − 1 at

0 and also critical value 0. Thus, ψτ(p) ◦ P̃p ◦ψ−1
p (z) = zd for all z ∈ C. But

recall, P̃p = Pp on the complement of Vp, this yields :

Pp(ψ
−1
p (z)) = ψ−1

τ(p)(z
d) ∀|z| ≥ r0

and Jp is the image of the unit circle by the k-quasiconformal map ψ−1
p . �

Corollary 5.5. There exist 0 < ρ < 1 such that whenever pi ∈ [ρ, 1] for all
i ≥ 2, then there exist κ > 1 such that Jp is κ-quasicircle. Actually, we can

take ρ = 2(
√

2 − 1) ≈ 0.828.

Proof. It suffices to prove that whenever pi ∈ [ρ, 1] with ρ suitable chosen

|c(p)| =
1 − p1

p1

+∞∏

i=1

(
1

pi+1

)1/di

<

(
1

2

) d
d−1

. (5.5)

Assume pi ∈ [ρ, 1] then 1 ≤ 1
pi

≤ 1
ρ and

|c(p)| ≤
(

1

ρ
− 1

)(
1

ρ

) 1

d−1

≤
(

1

ρ
− 1

)(
1

ρ

)
.

Since 1
4 <

(
1
2

) d
d−1 , a sufficient condition that implies inequality (5.5) is

(
1

ρ
− 1

)(
1

ρ

)
≤ 1

4
.
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In particular when ρ = 2(
√

2 − 1) there is equality, thus (5.5) hold.

Figure 2. A filled-in Julia set which is a quasi-disque, here
(pi) is a sequence of uniform random variables in [0.83, 9]

Then the previous Theorem provides the conclusion. �

Remark 5.1. To be more precise, associated to each d there is a unique
solution of the equation

(
1

ρ
− 1

)(
1

ρ

) 1

d−1

=

(
1

2

) d
d−1

which provides a value 0 < ρ(d) < 1 a little more accurate.

Finally, we can easily deduce the same result for the spectrum of our
Markov chain Sd. Indeed, in Theorem 3.4 we have shown that the spectrum
is exactly Ep, the set of points z with bounded orbit that is such that the

family (f̃n(z))n∈N is bounded. Then we conjugated f̃n to g̃n through affine

maps : g̃n ◦ h1 = hn+1 ◦ f̃n. Finally, g̃n is conjugated to Pn
p thanks to

Proposition 5.1. Thus we have that the following diagram is commutative :

C
f̃n−−−−→ C

h1

y
yhn+1

C
g̃n−−−−→ C

z 7→λ(p)z

y
yz 7→λ(τn(p))z

C
P n

p−−−−→ C
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Since we need to restrict our parameters p ∈ [ε, 1]N clearly (f̃n(z))n∈N is
bounded if and only (Pn

p (λ(p)h1(z)))n∈N is bounded. Let ψ denote the
inverse of z 7→ λ(p)h1(z) which is also an affine map, it follows that Ep is the
image of Kp under ψ. Thus the conclusions of Proposition 5.3, Theorem 5.4,
and Corollary 5.5 also applied to Ep.
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