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Abstract

In this paper we introduce a new item response theory (IRT) model with a
generalized Student t-link function with unknown degrees of freedom (df),
named generalized t-link (GtL) IRT model. In this model we consider only
the difficulty parameter in the item response function. GtL is an alternative
to the two parameter logit and probit models, since the degrees of freedom
(df) play a similar role to the discrimination parameter. However, the behav-
ior of the curves of the GtL is different from those of the two parameter mod-
els, since in GtL the curve obtained from different df’s can cross each other in
more than one latent trait level. The GtL model has similar proprieties to the
generalized linear mixed models, such as the existence of sufficient statistics
and easy parameter interpretation. Also, many techniques of parameter esti-
mation, model fit assessment and residual analysis developed for that models
can be used for the GtL model. We develop fully Bayesian estimation and
model fit assessment tools through a Metropolis-Hastings step within Gibbs
sampling algorithm. We consider a prior sensitivity choice concerning the de-
grees of freedom. The simulation study indicates that the algorithm recovers
all parameters properly. In addition, some Bayesian model fit assessment
tools are considered. Finally, a real data set is analyzed using our approach
and other usual models. The results indicate that our model fits the data
better than the two parameter models.

Keywords: Item response theory, generalized Student t distribution, item
response function, Bayesian inference.

1. Introduction

Item response theory has been increasingly used to analyze psychometric
data in recent years. It consists of a set of measurement models in which
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the so-called latent traits and item parameters are the main ingredients (see
Lord (1980) and Lord and Novick (1968)). The IRT models provide prob-
abilities of examinees obtaining a certain score on test items that composed
the test answered by these examinees. For any IRT model, the item response
function (IRF), which is equivalent to the link function in generalized linear
mixed models, determines the relationship between the latent traits and the
item parameters. That is, IRF provides the shape of the aforementioned
probabilities. Many link functions have been proposed in the literature, such
as probit, logit, log-log complement, power logit and skew probit (see Bazan
et al (2006) and Bazan and Bolfarine (2010)). Some works point out how
sensitive the inference is when an incorrect IRF is considered (Chen et al
(1999), Chen (2004) and Nagler (1994)). Among all IRFs, only the one-
parameter model, based on the probit or logit link function, belongs to the
class of generalized linear mixed models. In addition, this model is widely
accepted and used in the psychometric literature. Also, many methods of
parameter estimation and model fit assessment are available, including those
developed for generalized linear mixed models. However, for many situa-
tions, this model does not fit the data properly. The two-parameter model,
which is a natural extension of the one-parameter one, is more complex than
this model, even though it is applicable in more situations. However, many
of the mentioned interesting properties do not apply to two-parameter mod-
els. Furthermore, the two-parameter models impose that the curves of items
with different discrimination parameters and same difficulty parameter cross
each other only once. Also, the observed proportion of correct response ap-
proaches either 0 or 1 at a faster rate than that imposed by the probit link
model. In many situations, these behaviors do not apply.

The main goal of this paper is to present a new kind of two-parameter
model. A link function, based on the generalized Student-t distribution,
is proposed to define a two-parameter IRF, based on the work of Kim et
al (2008). Instead of the usual discrimination parameter the degrees of
freedom regulates the curvature of the item characteristic curve. We show
that the interpretation of the df is close to the dp, even though the curves are
different. The main difference is that the ICC’s (item characteristic curves)
produced by our model can cross each other in more than one latent trait
level. Second, the curves generated by our model approach either 0 or 1 at a
faster rate than that imposed by the probit link. We developed an MCMC
algorithm for estimating all parameters simultaneously. In addition, some
model fit assessment tools are presented. A simulation study is performed
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to assess the quality of the parameter recovery of the model and the MCMC
algorithm. Furthermore, a real data set is analyzed in order to illustrate our
developments. Finally, some comments about possible extensions are made.

This article is organized as follows: In Section 2 we present our model
and make some comparisons with the 2PP model. The MCMC algorithm
developed to fit the model is presented in Section 3. In Section 4 we perform
a simulation study and in Section 5 we conduct a real data analysis. Finally,
in Section 6 we present some conclusions, comments and suggestions for
future research.

2. Model and motivation

As mentioned before, in many real data sets, the empirical curves (ob-
served proportion of correct response at each level of the observed score) may
not be suitably modeled by the two-parameter model. Figure 1 presents an
example of empirical curves of different items (with approximately the same
difficulty index) that cross each other more than once and that approach 0
or 1 at a faster rate than that imposed by probit link. Therefore (as we will
show later), the two-parameter models may not be suitable to analyze this
data set.
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Figure 1: Empirical curves of observed proportion of correct answer by observed score
(number of items correctly answered) for the real data set
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To define our model we consider the situation where a set of n examinees
(students, patients, schools) is submitted to a measurement instrument (test,
clinical evaluation, questionnaire) composed of I items. Let Yij, the answer
of examinee j to item i, be a Bernoulli random variable, with 1 indicating a
correct answer and 0 otherwise. The GtL model is given by:

Yij ∼ Bernoulli(Pij)

Pij = Fν1i,ν2i (θj − bi) (1)

θj ∼ N(0, 1) , (2)

where F(ν1,ν2)(.) stands for the c.d.f of a generalized Student-t distribution
function with (ν1, ν2) parameters. The quantities ν1 and ν2 are the shape
(degrees of freedom) and scale parameters, respectively. The density of a
random variable X, X ∼ t(ν1, ν2) is given by

p(x; ν1, ν2) =
1√
π

Γ
(
ν1+1
2

)
√
ν2Γ

(
ν1
2

) (1 +
x2

ν2

)− 1
2
(ν1+1)

.

Notice that when ν1 = ν2 = ν, we recover the standard Student t distribu-
tion, see Arellano-Valle and Bolfarine (1995). However, due to identification
problems and the difficulty on interpreting ν2, we will consider ν2 = 1 Kim
et al (2008). Figure 2 depicts some curves of the GtL model, for different
values of ν1 but with ν2 = 1. One can see that higher the df is, the steeper is
the ICC. Comparing these curves with those generated by the two-parameter
probit model (see Figure 3), shows that they are different. Even though the
increasing in the slope is related to the increase in either df or discrimination
parameters, there are two main differences. First, in the GtL model, two
curves can cross each other in more than one latent trait level. That is, the
df modifies the difficulty of the items too. Second, the curves of the GtL go
to zero or one slower than the curves of two-parameter model do. That is,
GtL accommodates extreme probabilities more properly. As pointed out by
Kim et al (2008) for a given binary response dataset, the generalized Stu-
dent t-link may fit the data better than the Student-t link if the probability
approaches either 0 or 1 at a faster rate than in the probit link.
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Figure 2: ICC of GtL model: latent traits versus probability of correct answer, for different
values of ν1.
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Figure 3: ICC of the two-parameter probit model: latent traits versus probability of
correct answer, for different values of ν1.

5



3. MCMC estimation for the GtL model

Bayesian inference is based on the marginal posterior distributions of
the parameters. Unfortunately, for the GtL and Bayesian IRT models in
general, it is impossible to obtain closed-form expressions of the marginal
posterior distributions. MCMC algorithms can be used to obtain samples
from these posterior distributions. In order to facilitate the implementation
of the MCMC algorithms, we will consider an augmented data scheme as
described in Albert (1992) and a stochastic representation of the generalized
Student-t distribution, given by Kim et al (2008), that is

Yij = I(Zij≥0)

Zij|(θj, ζi, wij) ∼ N
(
θj − bi,W−1

ik

)
Wij|νi ∼ Ga

(
νi
2
,
1

2

)
.

On the other hand, in many applications ignorable missing data are com-
monly observed. Following, for example, Azevedo et al (2011), they can be
easily accommodated by considering an (observable) indicator variable:

Vij =

{
1, observed response of examinee j on item i
0, missing response

Under the usual assumptions of dichotomous IRT models, see Azevedo
et al (2011) for example, the joint conditional distribution of (Z,W ),Z =
(Z11, Z21, ..., ZIn)′,W = (W11,W21, ...,WIn) given (ζ,θ,y,v) is:

p(z,w|θ, ζ,y,v) =
I∏
i=1

n∏
j=1

{p(zij|wij, θj, bi, yij, vij)p(wij|νi)}

∝
I∏
i=1

n∏
j=1

{
exp {−0.5vij (zij − θj + bi)

2}wvij(
νi
2
−1)

ij

× exp
(
−wijvij

2

)}
. (3)
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3.1. Prior and posterior distributions

The joint prior distribution of the latent traits is the product of the den-
sities given in (2). For the item parameters, we follow Azevedo et al (2011)
and Liu (1996), that is

p(b,ν) =
I∏
i=1

{p(bi)p(νi)}

∝
I∏
i=1

{
exp

{
− 1

ψb
(bi − µb)2

}
p(νi)

}
. (4)

The choice of the prior for the degrees of freedom plays a crucial role in
the Bayesian analysis of Student-t models, see Fonseca et al (2008). In this
work we perform a sensitivity study concerning this choice. More specifically,
we compare the results obtained by using priors commonly considered in the
literature (Geweke (1993); Fernández and Steel (1999); Fonseca et al (2008);
Kim et al (2008)), that is:

p1(νi) ∝ ν−2i
p2(νi) ∝ e−λννi

p3(νi) ∝ νrλ−1i e−λννi

p4(νi) ∝
(

νi
νi + 3

)1/2 [
ψ′
(νi

2

)
− ψ′

(
νi + 1

2

)
− 2 (νi + 3)

νi (νi + 1)2

]1/2
p5(νi) ∝ p4(νi)

(
νi + 1

νi + 3

)1/2

.

The second tends to dominate the data concerning the likelihood, see Fon-
seca et al (2008). The third, which is a generalization of the second prior,
presents the same problem, even though this can be attenuated by choosing
the hyperparameters properly. The two last priors are independency Jeffreys
and Jeffreys rule priors obtained for a Student-t regression model, respec-
tively, see Fonseca et al (2008). The first is a limit case of the independency
Jeffreys prior.

Therefore, from (2), (3) and (4), the full posterior distribution is given
by
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p(z,w,θ, ζ|y,v) ∝
I∏
i=1

n∏
j=1

{
exp {−0.5vij (zij − θj + bi)

2}wvij(
νi
2
−1)

ij

× exp
(
−wijvij

2

)} n∏
j=1

{
exp {−0.5 (θj)

2}
}

×
I∏
i=1

{
exp

{
− 1

ψb
(bi − µb)2

}
p(νi)

}
(5)

3.2. MCMC algorithms

The distribution (5) has an intractable form, independently of the prior
distribution adopted for νi. In addition, the full conditional distribution
for the degrees of freedom is not known. Therefore, a full Gibbs sampling
algorithm is not feasible. However, a Metropolis-Hastings within Gibbs
sampling (GS) approach is, see Patz and Junker (1999). Also, this al-
gorithm can be slightly modified by simulating the augmented variables
W i., (W i. = (Wi1, ...,Win)) and the νi parameters jointly, through the col-
lapsed Gibbs technique of Liu (1994). We named this algorithm Metropolis-
Hastings within collapsed Gibbs sampling (CGS). In the simulation study,

we compare these two algorithms. Let ()̇ denote the set of all necessary
parameters. The main steps of both algorithms are summarized below.

The Metropolis-Hastings within Gibbs sampling scheme

1. Start the algorithm by choosing suitable initial values.

Repeat steps 2–6:.

2. Simulate Zij from Zij | (.), i = 1, ..., I, j = 1, ..., n.

3. Simulate Wij from Wij|(.), i = 1, ..., I, j = 1, ..., n

4. Simulate θj from θj | (.), j = 1, ..., n.

5. Simulate bi from bi | (.), i =1,...,I.

6. Simulate νi from νi | (.), i =1,...,I.

The Metropolis-Hastings within collapsed Gibbs sampling scheme

1. Start the algorithm by choosing suitable initial values.

Repeat steps 2–5:.

2. Simulate Zij from Zij | (.), i = 1, ..., I, j = 1, ..., n.
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3. Simulate (W i., νi) jointly from (Wi., νi)|(.), i = 1, ..., I.

4. Simulate θj from θj | (.), j = 1, ..., n.

5. Simulate bi from bi | (.), i =1,...,I.

Notice that the assumptions stated by equations (1) and (2) are sufficient
to ensure the model identification, as in Kim et al (2008). In addition, since
the priors adopted for latent traits and difficulty parameters are proper, the
posterior will be proper, see Gosh et al (1993).

4. Simulation studies

In this section, the convergence properties and the parameter recovery of
the proposed model and MCMC estimation method are discussed. The per-
formance of the two MCMC algorithms is compared as well as the sensitivity
to the choice of the prior distribution for the degrees of freedom.

4.1. Convergence and Autocorrelation Assessment

An important aspect of the estimation method is assessing the conver-
gence of the MCMC iterations. Several tests of convergence have been pro-
posed, but there is no agreement about the most suitable one, see Gamerman
& Lopes (2006). Here, we investigate the convergence of the algorithm by
monitoring trace plots generated by three different sets of starting values, and
by evaluating Geweke’s and Gelman and Rubin’s convergence diagnostics.

Item responses were simulated by considering a group of 1000 examinees
answering a test of 30 items. This choice provides a sample size ratio of
approximately 17 (number of latent traits divided by the number of item
parameters). This value can be considered reasonable to obtain accurate
estimates according to De Ayala and Sava-Bolesta (1999). The values of the
parameters range from (-2.0,2.0) for the difficulty parameters and (0.4,20)
for the degrees of freedom. This allows having easy, medium and difficult
items as well as items with low, medium and high discrimination power. The
latent traits were sampled from a standard normal distribution. The results
below follow from CGS with µb = 0, ψb = 9 and with the df prior p1(.) using
60,000 iterations. Similar results were found with the other priors for the
degrees of freedom.

Figure 4 and 5 present the trace plots of the degrees of freedom and dif-
ficulty parameters for selected items. Sampled values were stored every 30th
iteration. In each plot, three different chains are plotted, which correspond
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to three different sets of initial values. From a visual inspection it can be
concluded that within 100 iterations each chain of simulated values reached
the same area of plausible parameter value, for the difficulty parameters.
The different sets of initial values did not result in visible changes in the rate
of convergence. For each starting set, each MCMC chain mixed very well,
which indicates that the entire area of the parameter space was easily reached.
The Geweke diagnostic, based on a burn-in period of 10,000 iterations, in-
dicated convergence of the chains of all difficulty parameters. Furthermore,
the Gelman-Rubin diagnostic ranged from .99 to 1.04, for all parameters.
From both the inspection of the trace plots and the convergence diagnostics
it can be concluded that the MCMC chains converged after 10,000 iterations,
for these parameters. A similar pattern is observed for the degrees of free-
dom, excluding item 23. For this item, the mixing of the chains was mildly
poor. This is due to the large value of its degrees of freedom (ν23 = 20).
This pattern is observed, in general, when the true degrees of freedom are
at least 20 even though the CGS provides lesser autocorrelations than GS.
This difference is illustrated by Figures 6 and 7, which present the estimated
autocorrelations for the aforementioned parameters. We can notice that the
autocorrelations related to CGS are significantly smaller than the autocorre-
lations related to GS. Thus, we can conclude that the mixing of the chains
obtained from CGS is better. The problem related to degrees of freedom es-
timation is probably due to the fact that their estimates depend on directly
on two sets of latent variables (Z, V ). In general, this happens in the pres-
ence of latent variables (see Leon-Gonzalez (2004)). In addition, following
Sahu (2002), the effective sample size (EES) and the effective sample size
per second (EESs) were calculated, for all item parameters, by using the real
data set (see Section 5). As described in Sahu (2002), ESS is defined for each
parameter as the number of MCMC samples drawn, B, divided by the param-
eter’s autocorrelation time, γ = 1+2

∑∞
k=1 ρk, where ρk is the autocorrelation

at lag k. Estimation of γ using sample correlations is problematic because
fewer MCMC samples are used in estimating ρk as k increases. There are
many alternatives, see Roberts (2006) for a review. Following Sahu (2002),
we use a simple upper bound (1 + ρ∗)/(1 − ρ∗) where ρ∗ = maxk≥1|ρk|. In
many applications ρ∗ = |ρ1| and we used this for our numerical example.
The results, averaged over the parameters, are presented in Table 1. The
efficiency (eff), which is the ratio of ESSs of collapsed MCMC by the EESs
of the MCMC, of the collapsed algorithm performs slightly better than GS.

Based on these results, we decided to consider a burn-in period of 10,000
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values, storing every 50th values and simulating 60, 000 more values after
this burn-in. Thus, we estimated the marginal posteriors using 1,000 values.
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Figure 4: Trace plots of simulated values of the degrees of freedom and difficulty parame-
ters (items 1 and 8) for different starting values

Table 1: Estimated EES of the MCMC algorithms

Prior MCMC MCMC (collapsed) eff
ESS ESSs ESS ESSs

1 1148.5 37.0 1341.9 43.1 1.2
2 1172.9 37.4 1359.4 44.6 1.2
3 1133.9 36.4 1400.7 47.7 1.3
4 1165.7 37.5 1440.7 47.2 1.3
5 1149.3 38.0 1391.4 45.6 1.2
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Figure 5: Trace plots of simulated values of the degrees of freedom and difficulty parame-
ters (items 13 and 19) for different starting values
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Figure 6: Estimated autocorrelations of the MCMC chains the degrees of freedom and
difficulty parameters (items 1 and 8) for GS and CGS (collapsed)
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Figure 7: Estimated autocorrelations of the MCMC chains the degrees of freedom and
difficulty parameters (items 13 and 19) for MHWGS and CGS (collapsed)

4.2. Parameter Recovery Study

The results presented in the last section showed better performance of
CGS in terms of convergence. In this section we present a simulation study
of prior sensitivity concerning the CGS algorithm. We do not present the
results related to exponential prior p2(.), since that they are substantially
worse than the others. Two factors are considered (with the levels within
parenthesis), number of examinees (NE) (500,1000) and number of items (NI)
(20,30). Thus, we have four situations produced by crossing the four levels.
For each one of these situations, we generated a total of R = 10 replicas (that
is, ten response sets). The values of the difficulty parameter and degrees of
freedom were chosen in order to have from easy to difficult items as well
as items with low, medium and high discrimination power. For each one of
these data sets and considering each one of the prior distributions for ν, the
CGS was used to estimate all parameters. To compare the results of the five
algorithms, we consider the square root of the mean square error (RMSE)
and the absolute value of the relative bias (AVRB) based on the mean of the
ten sets of parameter estimates, see Azevedo et al (2011).

By inspecting Figures 9 and 8, we can conclude that, in general, the
results obtained by using the Jeffreys-rule prior are slightly better than the
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others. In addition, the estimates tend to be more accurate as the ratio
(NE/NI) increases. These results are consistent with those obtained by De
Ayala and Sava-Bolesta (1999) and DeMars (2003). The same pattern can
be observed for the AVRB (see Figures 11 and 10). In addition, the results
related to latent traits (not presented) showed the same conclusions.
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Figure 8: Root mean square error of the estimates of the difficulty parameters of ten
replicated data sets for different priors: ◦ improper prior; 4 gamma prior; + Jeffreys
prior; × Jeffreys-rule prior.
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Figure 11: Absolute value of the relative bias of the estimates of the degrees of freedom
across ten replicated data sets for different priors: 1 - improper prior; 2 - gamma prior; 3
- Jeffreys prior; 4 - Jeffreys-rule prior..

5. Real data analysis

The data set is draw from a major study related to PDE (Scholar De-
velopment Program) created by the Brazilian government. It is a program
that aims to improve the teaching quality and the general structure (class-
rooms, libraries, informatics laboratories, etc.) in Brazilian public schools. It
was implemented in 400 schools in different Brazilian states. The Brazilian
Government also aimed to compare schools included in the program with
schools not included, concerning mathematics and Portuguese, during five
years (from fourth to eighth grade). This study was conducted from 1999 to
2003. In 1999 a sample of 158 public schools was drawn, 55 in PDE and 103
not. The sample was spread over six Brazilian states, two in each selected
region (North, Northeast, and Midwest). The schools had at least 200 stu-
dents enrolled in daytime, were located in urban zones and served students
through eighth grade. In the baseline there were a total of 12,580 students.
From 2000 to 2003 the cohort was composed of the students from the original
sample who had advanced to the fifth grade and stayed at the same school.
The new students enrolled in the fifth grade (coming from other schools) and

16



those that missed the tests in the former grade but took the current test are
the second cohort, which was followed in the four subsequent years and so on.
That is, the longitudinal design allowed dropouts and inclusions along the
time points. In addition, several social-cultural covariables of the students
were collected. In each year, one test per subject (math and Portuguese) was
administered to the students.

The subset of the data that was analyzed consists of a sample of 1,500
students drawn from the fifth grade (second time point). We analyzed only
the results concerning mathematics. The test was composed of 40 items.

Two models were fitted to the data. The first was the GtL with p5(νi)
and the second was the two-parameter probit model (2PP) as in Azevedo
et al (2011). The models were fitted by using the CGS and the full Gibbs
sampling algorithms, respectively. For more details concerning the use of the
two-parameter model, see Azevedo et al (2011). Convergence was achieved
for all item parameters, according to the statistics mentioned in Section 4.1.
We did not investigate convergence for the latent traits.

Table 2 presents some model fit statistics for both models, see Spiegel-
halter et al (2002) and Kass and Raftery (1995), for more details. Clearly,
the GtL fitted the data better than the two-parameters model. For the two
last statistics, the higher the values were the better the model fit was, with
the opposite occurring for the other. Figure 12 presents the predictive and
observed score distributions and qq-plot for the latent traits estimates. Some
observed scores lie out the corrodibility intervals. This is probably due to
the fact that the test is composed of multiple choice items. Therefore, a
GtL with a guessing parameter would be more appropriate. In addition, the
latent trait distribution presents heavy tails, which indicates that the use
of a generalized Student-t distribution to model this distribution could ap-
propriate. In summary, a three-parameter GtL with a generalized Student-t
distribution to model the latent traits seems to be a more suitable model.
However, this is beyond the scope of this article.

Figure 13 presents the posterior means and 95% HPD intervals for the
difficulty parameters and degrees of freedom. Since a zero mean is assumed
for the latent trait distribution, the test was difficult for these examinees.
According to Figures 2 and 3, an item with a value higher than one for the
degrees of freedom has a reasonable discrimination power. Thus, 26 items
can be considering as having good discrimination powers. Under the two-
parameters model, only 24 items can be classified as having good discrimi-
nation power (a > 0.6). Thus, our model, in this case, was able to extract
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more information from the data than the two-parameters model, in terms of
latent trait estimation.

Table 2: Statistics of model fit
Model D(ϑ) D(ϑ) ρD IE(AIC) IE(BIC) predictive lik. LPLM
GtL 63213.0 61756.0 1456.3 63293.0 63653.0 -31543.0 -32616.0
2PP 63326.0 61871.0 1454.3 63406.0 63766.0 -31600.0 -32682.0

● ● ● ● ●
● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0
1

0
0

scores

fr
e

q
u

e
n

cy

●

expected score

credibility interval

observed score

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Figure 12: Predictive and observed score distributions and qq-plot for the latent traits
estimates
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Figure 13: Difficulty parameter and degrees of freedom estimates and 95% HPD intervals

6. Final comments

We presented an IRT model with a link function based on the generalized
Student-t distribution. This approach is an alternative to the two-parameters
model, since the degrees of freedom play a similar role to the discrimination
parameters. We developed an MCMC algorithm for the model fit. Such
approach properly recovers all parameters, according to the simulation study.
The GtL model better fit the real data set studied than the 2PP model. Also,
more items were classified as having good discrimination power through our
model than using the two-parameters model. In conclusion: our approach
is a promising alternative to the usual ones in analyzing IRT data sets. For
future research we intend to work on extensions for multiple groups and
longitudinal frameworks, considering the generalized Student-t distributions
for both IRF and latent trait distribution. Also, the use of other estimation
methods and model fit assessment tools should be investigated. For example,
the tools already developed for the GLMM could be used or adapted for the
GtL model.
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