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1 Introduction

Surveys have long been an important way of obtaining accurate information from

a finite population. For instance, governments need to obtain descriptive statistics of

the population for purposes of evaluating and implementing their policies. For those

concerned with official statistics in the first third of the twenty century, the major

issue was to establish a standard of acceptable practice. Neyman (1934) created such a

framework by introducing the role of randomization methods in the sampling process.

He advocated the use of the randomization distribution induced by the sampling design

to evaluate the frequentist properties of alternative procedures. He also introduced the

idea of stratification with optimal sample size allocation and the use of unequal selection

probabilities. His work was recognized as the cornerstone of design-based sample survey

theory and inspired many other authors. For example, Horvitz and Thompson (1952)

proposed a general theory of unequal probability sampling and the probability-weighted

estimation method, the so-called “Horvitz and Thompson’s estimator”.

The designed-based sample survey theory has been very appealing to official statistics

agencies around the world. As pointed out by Skinner et al. (1989), the main reason is

that it is essentially distribution-free. Indeed, all advances in survey sampling theory

from Neyman onwards have been strongly influenced by the descriptive use of survey

sampling. The consequence of this has been a lack of theoretical developments related

to the analytic use of surveys, in particular for prediction purposes. In some specific

situations, the designed-based approach has proved to be inefficient, providing inadequate

predictors. For instance, estimation in small domains and the presence of the non-

response cannot be dealt with by the designed-based approach without some implicit

assumptions, which is equivalent to assuming a model. Supporters of the designed-based

approach argue that model-based inference greatly depends on the model assumptions

which might not be true. On the other hand, interval inference for target population

parameters (usually total or means) relies on the Central Limit Theorem, which can not

be applied in many practical situations, where the sample size is not large enough and/or

independent assumptions of the random variables involved are not realistic.
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Basu (1971) did not accept estimates of population quantities, which depend on the

sampling rule, like the inclusion probabilities. He argued that this estimation procedure

does not satisfy the likelihood principle, at which he was adept. Basu (1971) created

the circus elephant example to show that the Horvitz-Thompson estimator could lead to

inappropriate estimates and proposed an alternative estimator. The question that arises

is whether it is possible to conciliate both approaches. In the superpopulation model

context, Zacks (2002) shows that some designed-based estimators can be recovered by

using a general regression model approach. Little, in Chapter 4 of Chambers and Skinner

(2003), claims that: “careful model specification sensitive to the survey design can address

the concerns with model specifications, and Bayesian statistics provide a coherent and

unified treatment of descriptive and analytic survey inference”. He gave some illustrative

examples of how standard designed-based inference can be derived from the Bayesian

perspective, using some models with non-informative prior distributions.

In the Bayesian context, another appealing proposal to conciliate the designed-

based and model-based approaches was presented by O’Hagan (1985) in an unpublished

report. O’Hagan (1985)’s approach is based upon the Bayes linear estimator (see Section

2 for further details), which is therefore distribution-free. This methodology is an

alternative to the methods of randomization and appears midway between two extreme

views: on the one hand the procedures based on randomization and on the other those

based on superpopulation models. His model formulation assumes only second-order

exchangeability, which in practice means the need of stating first and second moments

only, describing prior knowledge about the structures present in the population. He dealt

with several population structures, such as stratification and clustering, by assuming

suitable hypotheses about the first and second moments and showed how some common

designed-based estimators can be obtained as a particular case of his more general

approach. He also pointed out that his estimates do not depend on how the sample

was selected, that is, he assumed non-informative sampling. He quoted Scott (1977) and

commented that informative sampling should be carried out by a full Bayesian analysis.

An important reference about informative sampling dealing with hierarchical models can

be found in Pfeffermann et al. (2006).
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The paper is organized as follows. Section 2 generally describes the Bayes linear

estimation (BLE) approach applied to a general linear regression model for finite

population prediction and shows how to obtain some designed-based estimators as

particular cases. In Section 3 a new ratio estimator is proposed for practical situation in

which auxiliary information is available. Section 4 extends the BLE approach to multiple

categorical data. Section 5 offers some conclusions and suggestions for further research.

The appendix A contains some details of the approach developed in Section 2.

2 Bayes linear estimation for finite population

Consider U = {u1, . . . , uN} a finite population with N units. Let y = (y1, . . . , yN)′

be the vector with the values of interest of the units in U . The response vector y is

partitioned into the known observed n-sample vector ys, and the non-observed vector

ys̄ of dimension N − n. A general problem is to predict a function of the vector y,

such as the total T =
∑N

i=1 yi = 1′sys + 1′s̄ys̄, where 1s and 1s̄ are the vectors of

1’s of dimensions n and N − n, respectively. In Classical approach, it is usually done

by assuming a parametric model for the population values yi’s and then obtaining the

Empirical Best Linear Unbiased Predictor (EBLUP) for the unknown vector ys̄ under

this model. Usually, the mean square error of the EBLUP of T is obtained by second

order approximation, as well as an unbiased estimator of it. See Valliant et al. (2000) for

details.

Bayesian approach to finite population prediction often assumes a parametric model,

however it aims to find the posterior distribution of T given ys. Point estimates can

be obtain by setting a loss function, although in many practical problems, it is often

considered the posterior mean and its associated precision given by the posterior variance,

i.e:

E(T | ys) = 1′sys + 1′s̄E(ys̄ | ys)

V (T | ys) = 1′s̄V (ys̄ | ys)1s̄.
(1)

In this article, we aim to obtain the point estimates in (1) but using Bayes linear

estimation approach. This is done by proposing a hierarchical regression model for
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finite population, where particular cases describing usually population structure found

in practice are easily derived from it.

In many practical situations the relation between the response variable and a set of

auxiliary variables can be represented by a regression model. We consider the following

robust two-stages hierarchical regression model for finite population prediction purposes,

specified only by their respective mean and variance-covariance matrices:

y | β ∼ [Xβ,V] , (2)

β ∼ [a,R] ,

where X is a covariate matrix of dimension N × p, with Xi = (xi1, . . . , xip), i = 1, . . . , N ;

β = (β1, . . . , βp) is a p× 1 vector of unknown parameters; y, given β, is a random vector

with mean Xβ and covariance matrix V. It should be noted that the distributions of y

and β are specified only by their respective means and variance-covariance matrices.

Since the response vector y is partitioned into ys, and ys̄, X, which is assumed to be

known for all units, is analogously partitioned into Xs and Xs̄, and V is assumed to be

partitioned into Vs,Vs̄, Vss̄ and Vs̄s. The first aim is to predict ys̄ given the observed

sample ys and then the total T . We did this in the following steps: first, we had used a

joint prior distribution that is only partially specified in terms of moments, as follows: ys̄

ys

∣∣∣∣∣β ∼
 Xs̄β

Xsβ

 ,

 Vs̄ Vs̄s

Vss̄ Vs

 .
Therefore, applying the general result in the appendix, equation (12), the BLE of

E(ys̄ | ys,β) and the associated estimate of V (ys̄ | ys,β) are given by:

Ê(ys̄ | ys,β) = Xs̄β + Vs̄sV
−1
s (ys −Xsβ),

V̂ (ys̄ | ys,β) = Vs̄ −Vs̄sV
−1
s Vss̄.

But since β is unknown, we use the hierarchical Bayesian approach and find the BLE

of β given ys, β̂, and its associated variance, V (β̂), as follows (details in the appendix):

β̂ = C
(
X′sV

−1
s ys + R−1a

)
,

V (β̂) = C = (R−1 + X′sV
−1
s Xs)

−1.
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Applying well known properties of conditional expectations and variances, we get:

Ê [ys̄ | ys] = Xs̄β̂

V̂ [ys̄ | ys] = Vs̄ + V [Xs̄β | ys] = Vs̄ + Xs̄CX′s̄.
(3)

The general expression of BLE for the total T and its associated variance is obtained

by respectively replacing E(ys̄ | ys) and V (ys̄ | ys) in equations in (1) by their

approximations Ê [ys̄ | ys] and V̂ [ys̄ | ys]:

T̂ = 1′sys + 1′s̄Ê [ys̄ | ys]

V (T̂ ) = 1′s̄V̂ [ys̄ | ys] 1s̄
(4)

Substituting the equations in 3 into 4, we finally have:

T̂ = 1′sys + 1′s̄Xs̄β̂,

V (T̂ ) = 1′s̄ [Vs̄ + Xs̄CX′s̄] 1s̄.
(5)

For the sake of illustration, we consider some examples discussed by O’Hagan (1985)

and propose a new ratio estimator, which is one of the contributions of our work. All of

them can be treated as special cases of the linear model (2).

2.1 Revisiting some common survey designs

2.1.1 Simple random sampling: Full exchangeability

O’Hagan (1985) considered the simple case where the population has no relevant

structure, which can be done by setting up:

E(yi) = m, V (yi) = v and Cov(yi, yj) = c, i, j = 1, . . . , N, ∀i 6= j. (6)

Applying the general result established in (5) to (6) with β of dimension 1, X = 1,

a = m, R = c and V = σ2I, where σ2 = v− c, we obtain the BLE of T and its respective

associated variance:

T̂srs = nȳs + (N − n)µ̂,

V (T̂srs) = (N − n)σ2 + (N − n)2c σ2(σ2 + nc)−1, where
(7)
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ȳs = n−11′sys is the sample mean,

µ̂ = ωȳs + (1− ω)m is the expected value of the non-observed values of y,

ω =
nσ−2

c−1 + nσ−2
,where σ2 = v − c.

It should be noted that µ̂ is a weighted average of the prior mean m and the sample

mean ȳs, where ω is the ratio between two population quantities. The mean m can be

viewed as the investigator’s prior of the true population mean ȳ. The uncertainty about yi

is split into two components: the uncertainty about the overall level of the yi’s (between

variation) and the one with respect to how much each yi may vary from that overall

level (within variation). A useful measure of variability of units within the population is

given by S2 = 1
N−1

∑N
i=1 (yi − ȳ)2. It is not difficult to show that E(S2) = v − c = σ2.

Therefore, σ2 can be interpreted as a prior estimate of variability within the population.

We also obtain V (ȳ) = c+N−1σ2. In many applications, N is large and thus the constant

c could be viewed as the between variation.

Letting v →∞ and keeping σ2 fixed, that is, assuming prior ignorance, the estimates

in (7) yield:

T̂srs = Nȳs and V (T̂srs) = N2
(
1− n

N

)
σ2

n
.

These expressions are very similar to the well-known total estimate and its variance in

the designed-based context for the simple random sampling case.

2.1.2 Stratification

Denote by yhi the ith unit, i = 1, ..., Nh belonging to the h strata, h = 1, .., H.

It is assumed that the stratum sizes, Nh, are known for all strata. The second-order

exchangeability within each stratum is stated as:

E(yhi) = mh, V ar(yhi) = vh,

cov(yhi, yhj) = ch, i 6= j,

cov(yhi, ylj) = dhl, h 6= l.

The general model (2) is particularized to this case using that Xh = 1Nh
and Vh =

σ2
hINh

, ∀ h = 1, . . . , H, a = (m1, . . . ,mH)′, R is an H ×H - matrix with Rij = ci if i = j

7



and Rij = dij if i 6= j. And the BLE of T and its measure of dispersion is obtained from

(5) and these specifications.

2.1.3 Clustered population

If a population is divided into H clusters, where Nh is the number of units in the

hth cluster, then N =
∑H

h=1 Nh is the total size of population. One way to introduce

exchangeability in this case is

E(yhi) = mh,

cov(yhi, ylj) =


σ2
h + ch; h = l, i = j,

ch; h = l, i 6= j,

0; h 6= l,

for i = 1, . . . , Nh, j = 1, . . . , Nl, e h, l = 1, . . . , H.

In the model (2) we use X = (1N1 , . . .1NH
)′ and V = diag(V1, . . . ,VH) is a block

diagonal matrix, with Vh = σ2
hINh

+ ch1Nh
1′Nh

.

More details about this and other models can be seen in Bolfarine and Zacks (1992)

and the BLE of all this examples can be seen in O’Hagan (1985).

3 Auxiliary information: Ratio estimator

In many practical situations, it is possible to have information about an auxiliary

variable xi, for at least all the sample units that are correlated with the variable of

interest, yi. It is assumed that the population mean X̄ (or population total) is also

known. In practice, xi is often the value of yi at some previous time when a complete

census was taken. In the BLE setup, we replace some hypotheses about the x’s with ones

about the first two moments of the rate yi/xi. To the best of our knowledge, the new

ratio estimator proposed below is a novel contribution in sampling survey theory.
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The new ratio estimator is obtained as a particular case of the model (2) and with the

hypothesis of exchangeability, used in Bayes linear approach, applied to the rate yi/xi

for all i = 1, . . . , N , as described below:

E

(
yi
xi

)
= m, V

(
yi
xi

)
= v and Cov

(
yi
xi
,
yj
xj

)
= c, i, j = 1, . . . , N, ∀i 6= j. (8)

Applying the general result established in (5) to (8) with X = (x1, . . . , xN)′, a = m,

R = c and V = σ2diag(x1, . . . , xN), where σ2 = v−c, we obtain the BLE of T as follows:

T̂ra = nȳs + (N − n)µ̂x̄s̄, where

µ̂ = ω
ȳs
x̄s

+ (1− ω)m,

ω =
σ−2nx̄s

(c−1 + σ−2nx̄s)
.

Letting v →∞ and n→∞, but keeping σ2 fixed, we recover the ratio type estimator,

found in the designed-based approach: T̂ra = NX̄(ȳs/x̄s).

4 Bayes linear method for categorical data

Often one may be interested in cases where the observed characteristic is whether or

not the population unit possesses some attribute of interest. We can define a dichotomized

variable yi = 1, if the ith unit has that attribute, and refer to this as a success, and

yi = 0, otherwise. The design-based approach uses the randomization introduced by

the sampling design to justify the distribution of the binary random quantities, see for

instance, Cochran (1977) for further explanations. On the other hand, there are many

model-based works in the literature for predicting totals or means in the categories of

interest. Malec et al. (1997) consider a logistic hierarchical model with two levels, where

the clusters are the second one. They also compared the full hierarchical Bayes estimates

with empirical Bayes estimates and standard methods. Moura and Migon (2002) present

a logistic hierarchical model approach for small area prediction of proportions, taking

into account both possible spatial and unstructured heterogeneity effects. Here again,

we do not need to make any use of full model assumptions or randomization approach,
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but we do need to make some assumptions about the first and the second moments of

the random quantities involved.

The BLE for binary data was briefly introduced by O’Hagan (1985), but here we

develop it more generally for the case where we are interested in analyzing more than one

attribute in a population. The purpose is to describe the estimation of the proportion

of successes with categorical data. Let yij be the variable that represents the unit i,

i = 1, . . . , N in the category j, j = 1, . . . , k given by

yij =

 1, if i-th unit has j-th attribute;

0, otherwise.

The interest is to estimate a vector p = (p1, . . . , pk)
′, where pj = N−1

∑N
i=1 yi j,

j = 1, . . . , k, is the proportion of success in the category j, given ys, a vector of dimension

nk, defined as ys = (y11, y21, · · · , yn1, · · · , y1k, y2k, · · · , ynk)′. As we are dealing with

situations in which for each unit it is only possible to associate a unique attribute, we

have
∑k

j=1 pj = 1. Thus, we only need to estimate k − 1 parameters, since it follows

that p̂k = 1 −
∑k−1

j=1 p̂j and the variance estimate is also analogously obtained by this

relation. Often, we do not have all the data ys, but some statistics, such as the sample

proportion. The BLE estimator of p and its variance can be obtained by developing the

general formula in 4 and arriving at:

p̂ = nȳs+(N−n)Ê(ȳs̄|ȳs)
N

,

V (p̂) = (N−n)2V̂ (ȳs̄|ȳs)
N2 ,

(9)

where ȳs is a k-vector whose j-th position is given by the sample mean for category j,

and analogously we have ȳs̄. Moreover, Ê(ȳs̄ | ȳs) and V̂ (ȳs̄ | ȳs) are similar to the

estimators obtained in (3), but instead of the complete vectors we consider ȳs̄ and ȳs.

In the absence of any other structural information, we suppose that the units in any

given category are second-order exchangeable, but we do not assume any exchangeability

between units of different categories. Our prior beliefs are expressed for i = 1, . . . , N ,

j = 1, . . . , k − 1, as follows:

mj = E(yij) = P (yij = 1), vj = V ar(yij) = mj(1−mj),

cov(yij, yi′j) = mj(mjj −mj) = cj, ∀i 6= i′ and σ2
j = vj − cj = mj(1−mjj),
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where mjj = P (yi′j = 1 | yij = 1), for all i 6= i′.

For j 6= j′, we define the covariance between these categories as

cov(yij, yi′j′) =

 mj(mj′j −mj′), if i 6= i′,

−mjmj′ , if i = i′.

By the general notation in (2), we have β, a vector of dimension k − 1, Xs = Is and

using that

E(ȳs) = Xsa,

V ar(ȳs) = XsRX′s + Vs = Q,

we get a = (m1, . . . ,mk−1)′, Qjj = cj + σ2
j/n and Qjj′ = mj(mj′j − mj′) − mjmj′j/n.

Therefore, the matrix R = {rjj′}, j, j′ = 1, .., k−1 with rjj = cj and rjj′ = mj(mj′j−mj′)

and Vs = 1
n
{vjj′}, j, j′ = 1, .., k− 1 with vjj = σ2

j and vjj′ = −mjmj′j. Analogously, we

get Vs̄ = n/(N − n)Vs and Xs̄ = Is̄.

So, the estimator is a k− 1-vector described in (9) with the corresponding quantities

defined above.

4.1 Prior elicitation

Elicitation is the process of formulating a person’s knowledge and beliefs about one or

more uncertain quantities into a probability distribution for those quantities. According

to Garthwaite et al. (2005) it is convenient to think of the elicitation task as involving a

facilitator, who helps the expert formulate the expert’s knowledge in probabilistic form.

In the context of eliciting a prior distribution for a Bayesian analysis, it is the expert’s

prior knowledge that is being elicited, but in general the objective is to express the

expert’s current knowledge in probabilistic form. If the expert is a statistician, or is very

familiar with statistical concepts, then there may be no formal need for a facilitator, but

this is rare in practice.

Garthwaite et al. (2005) presents the process in four stages: the setup stage, which

prepare the elicitation, training the experts, identifying what aspects of the problem to

elicit, and so on. The stage of eliciting specific summaries of the experts’ distributions for

those aspects, where psychologists have contributed at least as much to the methodology
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as statisticians. The next stage is to fit a probability distribution to those summaries.

In practice, this stage often blurs with the previous stage, in the sense that the choice

of what summaries to elicit is often influenced by choice of what distributional form the

facilitator intends to fit. The last stage involves assessing the adequacy of the elicitation,

with the option then of returning to the second stage and eliciting more summaries from

the experts.

But, for the estimators proposed in this article, prior beliefs needed to be elicited

about very many quantities, but only in the form of prior means, variances and

covariances. Garthwaite et al. (2005) presents an example of elicitation of engineers’ prior

beliefs about quantities relating to the future capital investment need of a water company.

An example with full probability specification is also described and contrasted with that.

This second describes an elicitation of the beliefs of hydrologists about properties of

certain rocks. One of the conclusions is that the engineers were more comfortable with

the concepts involved in the first example than the hydrologists.

For the BLE for categorical data presented in (9) there are a rather large number of

quantities in the form of probabilities representing prior information. In this section will

be presented some restrictions about the prior quantities and some alternative elicitation

that may facilitate the process to an expert.

First, as mj and mjj′ are probabilities, and R and Vs are the covariance matrices in

the model (2), the following restrictions need to be satisfied:

1. 0 < mj < 1 and 0 ≤ mjj′ ≤ 1, j, j′ = 1, . . . , k − 1;

2. R and Vs need to be positive-definite symmetric matrices.

Note in the first condition that mj 6= 0 and mj 6= 1, otherwise it would results in a prior

variance for the units, vj, equals to 0, what makes nonsense.

When eliciting mj and mjj′ , j, j
′ = 1, . . . , k − 1, one way to verify if condition (2) is

satisfied, is following the next steps:

(i) verify if R and Vs is symmetric, that is if mjmjj′ = mj′mj′j.
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(ii) Given (i), to verify if R and Vs are positive-definite matrices, just calculate the

eigenvalues of R and Vs. If the eigenvalues are positive, so the matrices are positive-

definite.

The eigenvalues are the roots of the characteristic polynomial. If this polynomial

is of degree n, n ≤ 4, it is possible to get analytically the roots by Bhaskara, Cardan

or Ferrari formulas for example, but if n ≥ 5 in some cases we can only get those by

iterative methods. Anyway, until for matrices higher than 2× 2, those restrictions based

on eigenvalues will not be trivial to get analytically.

On the other hand, if an expert have difficulties in specifying some of these conditional

probabilities mjj′ , the prior correlation may simplify this task. Define ρjj′ as the prior

correlation between two different units in categories j and j′, that is

ρjj′ = corr(yij, yi′j′) =


mjj−mj

1−mj
, j = j′,

mj(mj′j−mj′ )√
mj(1−mj)mj′ (1−mj′ )

, j 6= j′.
,

for i, i′ = 1, . . . , n, i 6= i′, j, j′ = 1, . . . , k − 1.

Therefore, given ρjj′ , j, j
′ = 1, . . . , k − 1, we get

mjj′ =



mj + ρjj(1−mj) j = j′,

mjmj′+ρj′j
√
mj(1−mj)mj′ (1−mj′ )

mj′
, j > j′,

mj′jmj

mj′
, j < j′;

(10)

The next theorem presents the conditions satisfied by mj and mjj′ to get the prior

restrictions for a BLE for data with three categories.

Theorem 1. For the BLE for three categorical data, described in (9) for k = 3, it

is possible to elicit the prior quantities mj and mjj′, for j, j
′ = 1, 2, with the following

steps:

1. elicit m1 and m2, such that 0 < mj < 1, j = 1, 2;

2. given ρ12, we get m11, m12, m21 and m22 by (10);
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3. verify if the quantities elicited satisfy:

m11 > m1 and m22 > m2,

m11m22 −m11 −m22 + 1 > m12m21,

m11m22 −m11m2 −m1m22 > m12m21 − 2m2m12.

For cases with more than three categories we propose to substitute the third step by

verifying if mj and mjj′ , j = 1, . . . , k − 1 elicited results in R and Vs positive-definite

matrices.

4.2 Prior sensitivity analysis

It is interesting to check how inferences change when we vary the prior quantities.

First, it will be treated in a simpler case, the BLE for data with two categories. As a

particular case of the estimator obtained in (9), we get the BLE for proportion for binary

data as

p̂1 =
nȳ1 + (N − n)µ̂

N
,

where

µ̂ = ωȳ1 + (1− ω)m1 is the expected value of the un-observed values in category 1,

ω =
nσ−2

1

nσ1
−2 + c1

−1
,

and p̂2 = 1− p̂1. Note that σ2
1 and c1 depend on m11 = m1 + ρ11(1−m1). So we will find

how the estimates are affected by ρ11.

1. If ρ11 → 0, ω → 0 and µ̂→ m1. So the estimator for the un-observed values depend

a lot on the prior mean.

2. If ρ11 → 1, ω → 1 and µ̂→ ȳ1. So the estimator for the un-observed values do not

depend on the prior.

Note that these are the only interesting cases because 0 < ρ11 < 1. It happens because

R is the prior variance of the regression parameter, in this case a scalar, so r11 have to

be greater than zero, then m11 > m1.
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Moreover, it is trivial to see that if n/N → 1, p̂1 → ȳ1.

To illustrate this results we created a artificial data with the true proportion p =

(0.2380, 0.7620)′ and we fixed ȳ = (0.2614, 0.7386)′ and testes how values of m1, N ,

f = n/N and ρ11 change the estimator p̂. In Figure 4.2 there are the two-dimensional

plot of the relative bias |p̂1 − p1|/p̂1 versus ρ11 for some particular cases. Note that, as

f increases the relative bias decreases and when ρ11 → 0 the bias increases, principally

when m1 differs a lot of the true p1.
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(d) N = 15288 e f = 10%

Figure 1: |p̂1 − p1|/p̂1 for fixed m1 ∈ {0.1, 0.4, 0.7, 0.9}, N ∈ {1500, 15288} and f ∈

{1%, 10%} and varying |ρ11| ∈ {0.01, 0.25, 0.5, 0.75, 0.9}.
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5 Conclusions

To elicit a complete joint prior distribution in many dimensions would be an enormous

task. The Bayes linear methods only require the elicitation of prior means, variances

and covariances for the parameters. This can be easier when a statistical expert is not

available to conduct the elicitation. An example of a successful elicitation using this

estimator is in O’Hagan (1998).

We derived the well-known designed-based estimators using the structure of the

BLE applied to a general regression model approach. We extended the estimator to

categorical data and concluded that even if this estimator has many quantities to elicit,

it is possible to re-parameterize them or work with non-informative priors. The numerical

example illustrated the behavior of the estimates as a function of the sample size and the

specifications of the prior parameters.
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A Appendix: Bayes linear approach

The Bayes approach has been found to be successful in many applications, particularly

when the data analysis has been improved by expert judgements. However, Goldstein

and Wooff (2007) argues that as the complexity of the problem increases, our actual

ability to fully specify the prior and/ or the sampling model in detail is impaired. He

concludes that in such situations, there is a need to develop methods based on partial

belief specification. One of this methodologies, termed Bayes linear, is fully employed in

this article and is briefly described in this appendix.
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Let ys be the vector with observations and θ the parameter to be estimated. For

each value of θ and each possible estimate d, belonging to the parametric space Θ, we

associate a quadratic loss function L(θ,d) = (θ − d)′(θ − d) = tr(θ − d)(θ − d)′. The

main interest is to find the value of d that minimizes r(d) = E[L(θ,d)|ys].

Suppose that the joint distribution of θ and ys is partially specified by only their first

two moments:  θ

ys

 ∼
 a

f

 ,

 R AQ

QA′ Q

 , (11)

where a and f respectively denote mean vectors and R, AQ, QA′ and Q the covariance

matrix elements of θ and ys.

The BLE of θ is the value of d that minimizes the expected value of this quadratic

function within the class of all linear estimates of the form d = d(ys) = h + Hys, for

some vector h and matrix H. Thus, the BLE of θ, d̂, and its associated risk matrix,

V (d̂), are respectively given by:

d̂ = a + A (ys − f) ,

V (d̂) = R−AQA′.
(12)

Now, if we come back to the model (2), the first step is to adapt the structure (11) and

use the results in (12) to obtain the BLE of β and its measure of dispersion, respectively

given by:

β̂ = a + RX′s (XsRX′s + Vs)
−1 (ys −Xsa) ,

V (β̂) = C = R−RX′s (XsRX′s + Vs)
−1 XsR.

(13)

From the following equations: C−1 = R−1 + X′sV
−1
s Xs and A = RX′sQ

−1 = CX′sV
−1
s ,

where Q = XsRX′s + Vs, we rewrite (13) as:

β̂ = C
(
X′sV

−1
s ys + R−1a

)
.

It should be noted that if we place a vague prior distribution on β, taking R−1 → 0, we

obtain the minimum least square estimator of β, given by β̂LS = (X′sV
−1
s Xs)

−1
X′sV

−1
s ys.
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