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Abstract:

Multivariate beta regression models for jointly modeling two or more variables

whose values belong to the (0, 1) interval, such as indexes, rates or proportions

are proposed. The multivariate model can help the estimation process by

borrowing information between units and obtaining more precise estimates,

especially for small samples. Each response variable was assumed to be beta

distributed, allowing to deal with multivariate asymmetric data.

Copula functions are used to construct the joint distribution of the dependent

variables, with all the marginal distributions fixed as beta. A hierarchical beta

regression model is also proposed with correlated random effects. Both models

have shown to be useful for making small area prediction. The inference process

was conducted using full Bayesian approach.

We present an application for estimating two index of educational attainment at

school and municipality levels of a Brazilian state. Our predictions are compared

with others approaches commonly employed in practice.

Key-words: Univariate beta regression, MCMC, missing values prediction and

small domain, education evaluation.
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1 Introduction

We propose a new approach to jointly modeling indexes, rates or proportions, commonly

estimated with low accuracy in small samples. Examples of variables measured in the

range (0, 1) and related to each other are the proportion of poor people, mortality rate,

the ratio of expense with food to total expense. While the motivation of this work has

been the estimation of rates or proportions in small areas (or domains), the strategy used

to achieve this goal can be applied to a more general context.

Multivariate models are developed for modeling rates or proportions, offering the

possibility of jointly dealing with related quantities in one single model and enjoying the

benefits that this joint approach offers. The exchange of information between variables in

the multivariate models proposed here can help to obtain more precise estimates of the

quantities of interest.

In recent years, numerous applications involving the Beta distribution has been

developed due to its appropriateness for modeling rates or proportions, it is defined

in the range (0, 1), it allows for asymmetry present in these types of variables and it

assumes different forms depending on their parameters. The beta regression also allows

heteroscedastic observations. However, the most proposed use of Beta distribution in

the context of regression has been restricted to cases where there is only one dependent

variable. Furthermore, under the Bayesian approach, there are few works and applications

involving beta regression models.

This paper develops multivariate regression models where the dependent variables

marginally follow a Beta distribution. These models were developed to address data

fitting in general contexts, but application in small area estimation shows that they are

especially advantageous in this situation. In the models proposed throughout this paper,

the response variables do not add one, as in some models to proportions discussed, for

example, in Melo et al. (2009) and Fabrizi et al. (2011).

The proposed multivariate models assume that the Beta marginal distributions were

reparametrized by the mean and the dispersion, as in Ferrari and Cribari-Neto (2004).

The association between the response variables is considered through a copula function

applied to the marginal densities. Copulas are useful tools for building multivariate

distributions where the marginal distributions are given or known, allowing individual

models be analyzed together. Additionally, they allow the representation of various types

of dependence between variables. Copulation allows flexibility for handling non-linear
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relationships between the response variables, and therefore is a more general setup than

the Multivariate Normal distribution, which allows only linear relationships.

Basically, two classes of multivariate models with Beta response are proposed: a beta

regression model, where the marginal are connected by a copula function and a hierarchical

beta model with correlation between their means. Both models can be used in situations

where the researcher needs to jointly analyze data from related response variables in the

range (0, 1). They can be used to improve prediction of observations and target population

parameters in small areas estimation.

In small area estimation context where there are auxiliary variables and data from

multiple characteristics available, it is possible to propose and apply a multivariate model.

Several authors argue that this approach provides better estimates, because takes into

account the the correlations between the response variables left after conditioning on the

auxiliary variables. Fay (1987) proposed to model the joint behavior of the median income

in households of three, four and five dwellers. Datta et al. (1999) applied a multivariate

mixed linear model and concluded from a simulation study that the multivariate approach

provides better results than setting a separate model for each variable. For example, the

methods most commonly employed are based on borrowing information between neighbor

areas or related ones. The models proposed in this paper have direct application to the

small area estimation problem by providing the exchange of information between the

response variables.

The article is organized as follows. In Section 2 we propose a Multivariate Beta

Regression model by employing copula functions. In Section 3 we applied our proposed

models to the small area estimation problems, presenting two applications to Brazilian

education data. Section 4 offers some conclusions and suggestions for further research.

2 Multivariate Beta Regression model based on copulas

The structure of dependence between two or more related response variables can be defined

in terms of their joint distribution. One way of obtaining a multivariate beta distribution

is to join the univariate beta through copulation, which is one of the most useful tools

when the marginal distributions are given or known. The use of copula functions enables

the representation of various types of dependence between variables. In practice, this

implies a more flexible assumptions about the form of the joint distribution than that

given in Olkin and Liu (2003), which assumes that the marginal distributions have the
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same parameter. For a complete study about copula function and its utilities in statistics,

see Nelsen (2006).

Let Y1, ..., YK be functions of random variables with marginal distributions

F1, ..., FK , respectively, and joint cumulative distribution function H(y1, ..., yK) =

C(F1(y1), ..., FK(yK)), where Fi ∼ U(0, 1), i = 1, ..., K and C(·) is a copula function.

Then the density function of (Y1, ..., YK) is given by:

h(y1, ..., yK) =
∂nH(y1, ..., yK)

∂y1, ..., ∂yK

=
∂nC(F1(y1), ..., FK(yK))

∂F1(y1), ..., ∂FK(yK)
× ∂F1(y1)

∂y1
× · · · × ∂FK(yK)

∂yK

= c(F1(y1), ..., FK(yK))
K∏
i=j

fj(yj) (1)

where

c(F1(y1), ..., FK(yK)) =
∂nC(F1(y1), ..., FK(yK))

∂F1(y1), ..., ∂FK(yK)
and fj(yj) =

∂Fj(yj)

∂yj
, j = 1, ..., K.

Let y = ((y11, ..., yK1), ..., (y1n, ..., yKn)) be a random sample of size n from the density

in (1). Thus, the likelihood function is given by:

L(Ψ) =
n∏
i=1

c(F1(y1i|Ψ), ..., FK(yKi|Ψ))f1(y1i|Ψ)...fK(yKi|Ψ)

where Ψ denotes the set of parameters that define the cumulative distribution functions

and the density, as well as the copula function.

We assume that each response variable is beta distributed and the structure of

dependence between them is defined by their joint distribution which is obtained by

applying a copula function. Thus, the multivariate regression model proposed is such

that:

yij|µij, φj ∼ Be(µij, φj), i = 1, ..., n, j = 1, ..., K

g(µij) = ηij =
p∑
l=1

xilβlj

where g(·) is the link function. Under the Bayesian approach, the specification of the

model is completed by assigning a prior distribution to φ = (φ1, ..., φK),

β =


β11 · · · β1K
...

...
...

βp1 · · · βpK


and to the parameters that define the copula family.
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The linear correlation coefficient is not suitable to measure the dependence between

variables in a model involving copulation. One most appropriate measure, which can be

found in Nelsen (2006), is the statistic τ of Kendall, given by

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

The measure τ of Kendall is related to the parameter θ and can be used to assign a prior

to θ. In this work, we focus on the bivariate case.

2.1 Multivariate hierarchical beta regression model

In the previous section was presented a multivariate beta regression model in which the

marginal Beta regression coefficients regression were fixed. However, there are situations

where it makes sense to assume that some or all of the coefficients are random. In these

cases, the coefficients of each observation has a common average, suffering the influence of

non-observable effects. Such models are often called mixed effects models with response

in the exponential family, with applications in several areas. Jiang (2007) discusses linear

mixed models and some inference procedures for estimating its parameters. Rao (2003)

shows some use of mixed effects models in estimation in small areas.

In this section we propose a generalization of the multivariate regression model

presented in Section 2 by assuming that some or all of the coefficients associated with the

linear predictor of each response variable can be random and correlated.

Let yijk be the observed value of the kth response variable in the jth unit of the ith

area, k = 1, ..., K, j = 1, ..., Ni and i = 1, ...,M . Furthermore, let us assume that yijk and

yi′jk are conditional independents, ∀ i 6= i′. The multivariate hierarchical beta regression

model is defined as:

yij ∼ BetaM(µij,φ,θ), j = 1, ..., Ni, i = 1, ...,M (2)

g(µijk) = xTijλik, k = 1, ..., K (3)

λilk = βlk + νilk, (4)

νil = (νil1, ..., νilK)T ∼ NK(0,Σl), l = 1, ..., p (5)

where: BetaM(µij,φ,θ) denotes an Beta multivariate distribution built by using a copula

function with parameter θ and the Beta marginal distributions; yij = (yij1, ..., yijK);
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xTij = (xij1, ..., xijp); λik = (λi1k, ..., λipk); φ = (φ1, ..., φK);

β =


β11 · · · β1K
... · · · ...

βp1 · · · βpK

 ; and xTi =



xi11 · · · xi1p

xi21 · · · xi2p
... · · · ...

xiMi1 · · · xiMip

 .

From (4) and (5) follows λilk ∼ N(βlk, σ
2
lk), l = 1, ..., p, k = 1, ..., K.

As generally described in equations (2), (3) and (4), the model allows all regression

coefficients to be random, however, in many applications of hierarchical models only some

coefficients are assumed to be random, specially the intercept term. In the model (2)-(5)

all random effects in ν could be considered independent and only the correlation between

the response variables would be contemplated. However, to allow the averages of the

responses also exchange information among themselves, it is considered that within each

level i, and for each coefficient of the response variable l, the random effects concerning

the response variables are correlated, i.e: νil = (νil1, ..., νilK)T ∼ NK(0,Σl) where

Σl =



σ2
l1 σl12 · · · σl1K

σl12 σ2
l2 · · · σl2K

...
...

...
...

σl1K σl2K · · · σ2
lK

 .

In this model, the dependence of the response variables appears at two levels: at the

observations and at the linear predictors. This can be a point in favor of this model

with respect to the small area estimation problem, because it allows the exchange of

information between the means, which are interpreted as the true values of indices, rates

or proportions of interest. The logistic link function was used in all applications. The

model (2)-(5) assumes that information about K response variables and M areas, with

mi units, i = 1, ...,M are available.

The equation (3) relates the averages of the response variables in each ith area, and

considers specific area effects. Thus, the mean µijk and µijk′ also exchange information

among themselves due to the fact that they are correlated. This exchange is particularly

important in the small area estimation problem in which µijk is interpreted as the true

value of the rate or proportion of interest and information from related quantities can

produce more accurate estimators.

6



3 Application to the small area estimation

The models defined in Section 2 were developed for being applied in general applications

where there are K related variables, measured in the range (0, 1), or an interval (a, b),

which can be explained by p covariates. However, they may be also applied to the small

area estimation problem.

Missing values can be easily treated as unknown parameters and included in the

posterior distribution for being estimated when there is no observations in all the response

variables, or in just one of them. As far as the small area estimation problem is concerned,

the researcher may be interested in the estimation of functions of the response variables

for units and/or areas not selected in the sample. Even in those areas where there is

some information, the sample size may be small for the direct estimator provide reliable

estimates with acceptable accuracy. The multivariate models proposed in the previous

section can be applied for making predictions on the non-selected areas and for producing

more accurate estimates for the selected areas. The missing values here are produced by

the sampling design, and treated as unknown parameters to be estimated by the models.

Auxiliary information (covariates) must be known for all units of the level to which one

wants to make prediction. They can be obtained from a census or administrative records.

We have not considered missing values in explanatory variables. The lower is the loss of

data, the greater is the efficiency of the estimation. However, in a survey sampling where

the main objective is to provide information to a higher level, the most common scenario

is to have few selected areas, making it even difficult the estimation process.

In the following sections are presented two small area estimation application where

predictions are made for non-selected areas. For both applications, the predictions for the

small areas and for aggregation of them are provided.

3.1 Brazilian educational data

The Brazilian evaluation of the basic education is carried out by the Brazilian National

of Education Research (INEP). It aims to evaluate the performance of students from

the 4th to the 8th series of the elementary school. The tests are applied every

two years to urban public schools with more than 20 students. The evaluation of

Brazilian education combines performance on the reading and mathematics tests with

socioeconomic information.

The hierarchical structure of the data, organized into municipalities, schools and
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students, suggested the use of hierarchical modeling. Because the tests are applied to

the entire universe of schools and students, it is possible to obtain the true quantities of

interest. Therefore, it is possible to compare the estimates provided by the multivariate

hierarchical beta model with the true observed values.

The multivariate hierarchical beta model is applied to two different situations, derived

from two sampling procedures. Only schools with students of the 4th series belong to the

municipal administration in the Rio de Janeiro state were considered.

3.2 Application 1

In this application, for each municipality of Rio de Janeiro state was selected a sample

of schools with equal probabilities and all students who took the tests were selected.

Therefore, for each selected school, the proportions of correct answers in Portuguese and

Mathematics are not estimates, but actual values.

The aim for this application is to estimate the proportions of correct answers in

Portuguese Language and Mathematics for non-sampled schools. Let yijk be the average

proportion of corrected answers observed in kth subject for the jth selected school in the

ith municipality and suppose that yijk ∼ Beta(µijk, φk). The assumption that the true

value follows a distribution is reasonable because yijk represents the proportion obtained

in a single test. However, if it were applied others equivalent tests, we would expect that

the average of corrected answers was µijk. Thus, it justifies to modeling the observed

average school yijk by a probability distribution.

The information available about the characteristics of school are provided by the

questionnaires applied to schools directors and teachers. Schools where there were

no answers for at least one of these questionnaires were excluded from the analysis.

Municipalities where there was only one public school, after the first mentioned dropout

were also eliminated, leaving 82 municipalities. For each one of these 82 municipalities,

random sample of 20% of the schools were selected, with a minimum sample size of two

schools per municipality. In 11 municipalities, all schools were selected. From the total

of 1787 schools belong to the 82 municipalities, only 421 were selected.

It is assumed that there is information for all schools on the following chosen covariates:

existence of the program to avoid school abandonment (x2) and the percentage of teachers

who teach less than 60% of the program of their disciplines (x3).

The multivariate beta hierarchical model with and without a copula function were fitted
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to the data. In each selected schools, all students were investigated, and the proportion

of correct answers in each school correspond to the value observed by the survey. For

both models, we have M = 82 municipalities. Let denote by Ni and ni, the total number

of schools and the number of schools sampled in the municipality i, thus
∑M
i=1Ni = 1787

and
∑M
i=1mi = 421. Only the intercepts were considered random. The fitted models were:

Model 1:

yijk ∼ Beta(µijk, φk), j = 1, ...,Mi, i = 1, ...,M

g(µijk) = λi1k + xij2β2k + xij3β3k, k = 1, 2

λi1k = β1k + νi1k

(νi11, νi12)
T ∼ N2(0,Σ).

Model 2:

yij ∼ BetaM(µij,φ, θ), j = 1, ...,Mi, i = 1, ...,M

g(µijk) = λi1k + xij2β2k + xij3β3k, k = 1, 2

λi1k = β1k + νi1k

(νi11, νi12)
T ∼ N2(0,Σ),

where BetaM(µij,φ, θ) denotes a Beta bivariate distribution built by employing a

Gaussian copula with parameter θ and beta marginal distributions parametrized by

µij = (µij1, µij2)
T and φ = (φ1, φ2). The Gaussian copula were use in this application

because is quite flexible, since the statistics τ of Kendall is on the interval [−1, 1] and it

is so applied in many situations.

3.2.1 Inference

For both models, it is assumed that the population model holds for the sample, i.e., sample

selection bias is absent, see Pfeffermann et al. (2006).

Let yo and yf be, the matrices of the response variables for the sampled and non-

sampled schools, respectively, and W = Σ−1. The posterior density for the model 2 of

all unknown quantities, including yf is given by:

p(yf ,β,φ, θ,λ,W|yo) ∝ p(yo|β,φ, θ,λ,W,yf )p(yf |β,φ, θ,λ,W)

× p(λ|β,φ, θ,W)p(β)p(φ)p(θ)p(W),
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Assuming independent priors for β, φ, θ and W, we have:

p(yo|β,φ, θ,λ,W,yf ) =
M∏
i=1

mi∏
j=1

c (F1(yij1), ..., FK(yijK)|λ,β,θ,φ)

×
K∏
k=1

p(yijk|λi1k, β2k, β3k, φk)

and

p(yf |β,φ, θ,λ,W) =
M∏
i=1

Mi−mi∏
j=1

c (F1(yij1), ..., FK(yijK)|λ,β,θ,φ)

×
K∏
k=1

p(yijk|λi1k, β2k, β3k, φk).

The posterior distribution of all unknown parameters has no close form and thus

MCMC simulation might be applied. Assigning a Wishart prior to W and a Normal to

the components of β, provide full conditional with known forms for these parameters.

Therefore, we can use Gibbs for sampling from them. The other parameters are

sampled via Metropolis-Hastings algorithm. The full conditional yf depends only on

p(yf |β,φ, θ,λ,W). Therefore, for simulating values from the distribution of yf , given

the other parameters, is sufficient to simulate the pair (y
(l)
ij1,y

(l)
ij2) from the Gaussian copula

with Beta marginal distributions, for each l iteration of the algorithm, with β(l), φ(l), θ(l),

λ(l) and W(l) for j /∈ s, where s represents the selected sample.

The sampling process for the parameters of the model 1 is analogous. For simulating

from y
(l)
ijk, for j /∈ s, we sampled from a Beta distribution with parameters µijk and φk,

where µijk depends on λi1k, β2k and β3k.

3.2.2 Bayes Estimators

In this section are derived the Bayes estimators of the small area quantities of interest for

the first application. The MCMC procedures provides a sample of size L of the predictive

distribution of yijk, j /∈ s. Therefore, it is possible to calculate point estimates (means

or median) of any function of interest which involves yijk, j /∈ s, as well as, a measure of

variability of it, such as the posterior variances. Credibility intervals can also be provided.

The proportion of the correct answers for the kth response variable in the ith

municipality can be written as:

Ȳik =
1∑Mi

j=1Nij

∑
j∈s

Nijyijk +
∑
j /∈s

Nijyijk

 ,
where Nij is the number os students in the jth school belong to the ith municipality.
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If the aim is to predict the mean Ȳik, from the MCMC results, we can obtain L samples

from the posterior distribution of Ȳik: l = 1, ..., L:

Ȳ
(l)
ik =

1∑Mi
j=1Nij

∑
j∈S

Nijyijk +
∑
j /∈S

Nijy
(l)
ijk

 .
Thus the Bayes estimate of Ȳik under square loss is given by:

ˆ̄Y ik =
1

L

L∑
l=1

Ȳ
(l)
ik ,

k = 1, 2 and i = 1, ...,M .

To access the accuracy of the estimates provided by each model, the observed

proportion of corrected answers for each subject k = 1, 2 was compared with the respective

prediction of yijk, j /∈ s for both models.

3.2.3 Some Results

Models 1 and 2 were fitted, as well as the hierarchical beta regression with uncorrelated

random effects. Table 1 contains a summary of the posterior distribution of the parameters

for Model 2, with Gaussian copula fit. It should be noted that the posterior mean

τ is quite high (0.629), indicating a high degree of association between the disciplines

within the schools. The same is true regarding to the correlation of variables within the

municipalities, represented by ρ12: 0.693. These values show that the subjects should be

jointly modeling. None of the credible intervals of coefficients regression contains zero,

thus the auxiliary variables used are important for explanation of the responses and help

to improve the predictions of the proportions of correct answers for both disciplines.

Table 2 contains the values of DIC, and its components for the two models and for

each response variable for the univariate models. The individual models have better

performance than the joint ones, because they have lower DIC and greater predictive

likelihood. We compare only the estimates provided by the three models with the ”true”

proportions, because the schools were considered units and we have no direct estimates

derived from the sampling design. The following quantities were used to compare the

estimates provided for non-sampled schools:

• The absolute relative error (ARE), given by AREijk = |ŷijk − pijk|/pijk;

• The coefficient of variation, given by CVijk =
√
σ̂ijk/ŷijk, where σ̂ijk is the posterior

variance of yijk.
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Table 1: Summary of the posterior distribution of the parameters of Model 2.

Parameter 2.5% 50% 97.5% Mean Std.

β11 -0.227 -0.147 -0.049 -0.144 0.046

β21 -0.245 -0.159 -0.107 -0.164 0.035

β31 0.112 0.185 0.253 0.183 0.036

β12 -0.439 -0.327 -0.213 -0.327 0.060

β22 -0.209 -0.127 -0.067 -0.130 0.037

β32 0.104 0.177 0.245 0.176 0.036

φ1 57.928 66.787 76.409 66.891 4.902

φ2 54.109 62.307 71.302 62.569 4.495

σ2
1 0.041 0.057 0.084 0.058 0.011

σ12 0.039 0.062 0.099 0.064 0.016

σ2
2 0.101 0.146 0.218 0.149 0.031

ρ12 0.547 0.693 0.806 0.689 0.067

θ 0.798 0.835 0.865 0.834 0.017

τ 0.588 0.629 0.665 0.628 0.019

Table 2: DIC comparison criteria, penalized function associate with the number of parameters (pD) and

the logarithm of the predictive likelihood function (log p(Ψ)) obtained by fitting the Hierarchical models

without copula (Mod.1), with Gaussian copula (Mod.2) and the Univariate models (Mod. Univ.) for

Portuguese and Mathematics tests

Model DIC pD log p(Ψ)

Model 1 -2067.39 131.81 1099.60

Model 2 -1869.44 263.76 1066.60

Univ. Portuguese -1115.99 48.54 582.27

Univ. Mathematics -1049.28 66.12 557.70

The values of the quantities described above and presented in all charts bellow were

multiplied by 100. Only those measures calculated for non-selected schools are presented

in the graphs. Figure 1 compares the relative absolute errors. The results obtained from

models 1 and 2 are quite similar. For the majority of the schools the ARE are less than

20 %. This can be considered as good performance of the models, since it can estimate

the proportions with small relative errors.

As can be seen in Figure 2, the coefficients of variation provided by the Model 2 are

bit smaller for the proportions of correct answers of mathematics test than the others two

models.

The Figures above show that by taking into account only the point estimates, the

univariate models produce separate estimates close to what was observed and they could
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(b) Mathematics

Figure 1: Box-plots of the ARE for (a) Portuguese test and (b) Mathematics using the Hierarchical

models without copula (Mod.1), with Gaussian copula (Mod.2) and Univariate models (Univ. Mod.).
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Figure 2: Boxplots of the Coefficient of variation for (a) Portuguese and (b) Mathematics using the

Hierarchical models without copula (Mod.1), with Gaussian copula (Mod.2) and Univariate models (Univ.

Mod. ).
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be preferred because they are easier to fit than the others. However, the coefficients of

variation produced by Model 2 are smaller than those obtained by other models for the

proportion of correct answers in mathematics and close to what was found by the others

in the Portuguese, i.e, as far as variability is concerned, the hierarchical model with copula

would be a good adjustment option. The credibility intervals of all fitted models contain

about 95% of the observations.

3.3 Application 2

The design sampling considered in this second application are more complex than the

one considered in the first application. In each municipality of Rio de Janeiro State was

selected a sample of schools with equal probability, and within schools was selected a

sample of students. We suppose that only the sampled students do the Portuguese and

Mathematics tests.

In this exercise, the average proportions of correct answers in both disciplines for each

selected school are direct estimates, based on a small sample of students. The main aim

is to estimate these proportions for the non-sampled schools and to reduce the errors for

the sampled schools. Thus, the school is considered the small areas and it is applied a

multivariate hierarchical beta area model, containing two parts: one relates the direct

estimates with parameters of area, the other relates these parameters to the auxiliary

variables.

Unlike the first application, the response variables have sample error that may be

related to the area sample size. To consider this feature, a modification in the multivariate

hierarchical model is proposed in the equation of the observations. Because it is natural

to think that the variance of the estimate increases when sample size decreases, it is

proposed the following two-level model:

yijk ∼ beta(µijk, φijk),

where yijk is the direct estimate (based on the sampling design) of the expected proportion

of the correct answers of the discipline kth, of the jth school in the ith municipality, for

j = 1, ...,mi, i = 1, ...,M , k = 1, ..., K. Thus, the parameter of dispersion φijk assumes

different value for each sampled school, and its value depends on the sample size through

the following function:

φijk = γk(nij − 1),

where nij is the size of the jth school for the ith municipality.
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For the condition φijk > 0 be satisfied, we must have nij ≥ 2 and γk > 0. The common

factor γk ensures that if two schools have the same proportion of correct answers and

equal sampling fraction, their variances will be different and that with smaller sample

size will have higher variance. Moreover, when yijk is a proportion and γk = 1, it follows

that V ar(yijk) =
µijk(1−µijk)

nij
, which is the variance of the proportion under simple random

sampling.

Thus, the following model can be considered for the selected schools:

yijk ∼ Beta(µijk, φijk), j = 1, ...,mi, i = 1, ...,M

g(µijk) = λi1k + xij2β2k + xij3β3k, k = 1, ..., K (6)

λi1k = β1k + νi1k, νi1k ∼ N(0, σ2
k),

where only the intercepts are assumed to be random, mi is the number of selected schools

for the ith municipality, φijk = γk(nij − 1), and nij is the sample size of the students for

the jth school in the ith municipality.

As the information of all students and schools is available on the Brazilian micro-data

test, it is possible to calculate the true observed proportions of the selected schools and

compare them with the direct estimates and those provided by the hierarchical model.

This proposed model can only be applied to the selected schools because we must have

information on the sample size. In the following section is presented the inference process

on the parameters of the model (6) and the indirect estimators of the sampled and not

sampled areas.

3.3.1 Inference

Let W = Σ−1. The posterior density of all model parameters, assuming independent

priors for the parameters of the model (6), can be written as:

p(β,γ,λ,W|y) ∝ p(y|β,γ,λ,W)p(λ|β,W,γ)p(β)p(γ)p(W)

∝ p(β)p(W)p(y|λ,γ)p(λ|β,W)×
{

K∏
k=1

p(γk)

}

where

p(y|β,γ,λ,W) = p(y|β,γ,λ) ∝
M∏
i=1

mi∏
j=1

K∏
k=1

p(yijk|λi1k, β2k, β3k, γk),

and

p(λ|β,W,γ) = p(λ|β,W) =
M∏
i=1

p(λi1|β1,W)
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∝
M∏
i=1

|W|1/2 exp
{
−1

2
(λi1 − β1)

TW(λi1 − β1)
}
,

Analogously to what was discussed in the first application, the posterior distribution

above has no close form. As in the hierarchical model, the full conditional of W and

β1 have close forms with the assumption that these parameters respectively follow the

bivariate normal and Wishart distributions. The process of obtaining the full conditional

will be omitted because it is analogous to the ones previously presented.

To sample from the parameters W and β1 was used the Gibbs sampler, while the

others was employed the Metropolis-Hastings algorithm.

The more general model which makes use of copulas, had convergence problems and

because of that its results are not shown.

3.3.2 Small area Estimators

The process of modeling and inference presented below is with only respect to the sampled

schools, for which the indirect estimates provided by the model are given by y
(l)
ijk, j ∈ s,

k = 1, 2, i = 1, ...,M . This is obtained by jointly simulating the pairs (y
(l)
ij1, y

(l)
ij2) from

the Beta distributions (µ
(l)
ijk, φ

(l)
ijk), where µ

(l)
ijk = g−1

(
λ
(l)
i1k + β

(l)
2kxij2 + β

(l)
3kxij3

)
and φ

(l)
ijk =

γ
(l)
k (nij−1) for k = 1, 2, i = 1, ...,M and j = 1, ...,mi. The quantity µ

(l)
ijk can be also used

as estimator. The choice between µ
(l)
ijk and y

(l)
ijk depends on the researcher’s interest: if we

want to estimate what would be predicted by the survey, we should use y
(l)
ijk, if you want

to know how much, on average, the students of the jth school scores in each discipline, we

should use µ
(l)
ijk.

No model was assumed for the non-selected schools, nevertheless it is also necessary

define the estimators for these schools. If there is information on the auxiliary variables

for these schools, the estimate of expected proportion in each non-selected school at each

(l) sample point of the posterior distribution is given by:

µ
(l)
ijk = g−1

(
λ
(l)
i1k + β

(l)
2kxij2 + β

(l)
3kxij3

)
.

Since we have L sample points from the posterior distribution of µijk, we can obtain

the point estimates and the credibility intervals for µijk; j /∈ s. Therefore, L samples from

the posterior distribution of µik for the kth discipline in the ith municipality is given by:

µ
(l)
ik =

1∑Mi
j=1Nij

∑
j∈S

Nijµ
(l)
ijk +

∑
j /∈S

Nijµ
(l)
ijk

 , l = 1, ..., L.
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Thus, the Bayes estimators of µijk under square loss is given by:

µ̂ik =
1

L

L∑
l=1

µ
(l)
ik .

3.3.3 Some Results

The main aims of modeling the proportions of correct answers are to reduce variability

of direct estimates derived from the sampling design and to obtain estimates for non-

sampled schools with good accuracy. The direct estimators can be only obtained for

selected schools. The multivariate model is able to provide estimates for all schools, but

we need to check its model adequacy.

The 95% credible intervals of the predictive proportions by the replica y
(l)
ijk, j ∈

S, respectively contains 98.1% and 95.7% of the observed values for Portuguese and

Mathematics disciplines.

We can also compare the observed value with y
(l)
ijk, j ∈ S to access the adequacy of the

model, as presented in Figure 3.
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Figure 3: Plot of the proportions of corrected answers against the posterior means of yijk: (a) Portuguese;

(b) Mathematics

Analyzing the figures above, we can conclude that the multivariate hierarchical beta

model produced reasonable estimates for the sampled schools.

The reduction of the variability of direct estimates by application of the model can be

verified by assessing the coefficients of variation (CV) provided by the direct estimator and

by the estimator obtained by employing the model. Figure 4 summarizes the distribution

of the coefficients of variation obtained from the two estimators. Clearly the CV’s
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generated by model are much lower than those obtained by the direct estimation.
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Figure 4: Coefficients of variation of the direct estimator and the posterior mean of the quantity of

interest for the sampled schools (a) Portuguese and (b) Matemathics.

4 Concluding Remarks and Suggestions for Future Work

The models proposed have the advantage of keeping the response variables in their

original scale. Another advantage refers to the use of copulas which are marginal-free,

i.e, the degree of association of variables is preserved whatever the marginal distributions

are. Thus, if two indexes are correlated whatever the marginal adopted, the measure of

dependence is the same. The use of copula functions in beta marginal regressions allows to

jointly analyze the response variables, by taking advantage of their dependency structure

and keeping the variables in their original scale. The application of multivariate models

with Beta responses is an appealing alternative to models that require transforming the

original variables. The choice between the proposed models and its competitors in the

literature should be guided by the goals of the researcher, who must observe the predictive

power and the goodness of fit of them. The disadvantage of models that uses copulas is

their time consuming for simulating samples from the posterior distributions of the model

parameters or functions of them.

In Section 2, we propose a multivariate hierarchical model with two levels where the

variables are correlated in the first level with the aid of a copula function. Despite being

applicable in general situations, this model has been developed especially for the small
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area estimation problem to allow exchange of information between the areas or small

domains of interest. It is assumed that the random effects of the same area are correlated

and the random effects of different areas has the same variance-covariance matrix.

In the first application, using the DIC and predictive likelihood criteria, the

multivariate model performs worse than the separate beta models. The Gaussian copula

model tends to overestimate the proportions of interest. This model must be investigated

and it is worth note that only the Gaussian copula was used and this may not be

adequate for these data. In Application 2, the multivariate hierarchical model was able to

estimate the expected proportions for non-sampled schools and also presented a significant

reduction of the coefficients of variance when compare to the direct estimates.

Sample household surveys are important sources of potential applications of the models

proposed in this work. Examples of variables measured in the range (0, 1) are the

occupancy rate and the poverty gap, which is a ratio between the total incomes of

individuals below the line of poverty and the sum of all incomes of the population. These

variables are important measures for planning and knowledge of the population conditions,

but are rarely available for small geographic levels or population subgroups for intercensus

periods. The prediction of these poverty index could be done by employing the models

proposed in this paper.

It is important to note that this work focuses on building multivariate regression

models in which the marginal distributions are Beta. It points out its advantages

over corresponding univariate models and the difficulties of estimating their parameters.

However, the theory of copula functions can be applied to any multivariate models that can

be built for any known marginal distributions, allowing that the distributions of response

variables involved be different. We can even have continuous and discrete variables in

the same model. To build a model for others distributions is straightforward, but each

model has a peculiar and practical feature, and the estimation process should always be

taken into account when we propose a new model. In the specific case of the Beta model,

has been adopted the mean and the dispersion as the model parameters, where the latter

parameter controls the variance. Other parameterizations are possible, but could lead to

additional difficulties. Various strategies can be defined by the researcher, according to

the available database, some important ones are: first fixe the marginal and then obtain

the more appropriate copulas; estimate models with different copulas and marginal and

decide what is ”the best” model by applying a model comparison approach.
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Another worth point to be mentioned is that in practical situations where the response

variables can have zeros or ones values, the Beta distribution will not be adequate. One

possible way of circumventing this problem is to use a mixture of distributions, so that

the zeros and ones can be accommodated. Ospina and Ferrari (2010) proposes inflated

beta regression models to fit data with such feature. We have not considered omission

in the explanatory variables in our model formulation, which could be another possible

extension of the models proposed here.
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