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Abstract

Multivariate beta regression models for jointly modeling two or more variables

whose values belong to the interval (0,1), such as indexes, rates and proportions

are proposed. The multivariate model can help the estimation process, borrow-

ing information between units and obtaining more precise estimates, especially

for small samples. Each response variable is assumed to be beta distributed,

allowing to deal with multivariate asymmetric data. Copula functions are used

to construct the joint distribution of the dependent variables. A simulation

study for comparing our approach with independent beta regressions is also

presented. An extension to two-level beta regression model is provided. The

hierarchical beta regression model assumes fixed and correlated random effects.

We present two real applications of our proposed approach. The first applica-

tion aims to jointly regressing two poverty indexes measured at municipality

level of a Brazilian state. The second one applies the approach to modeling two

educational attainment indexes. The inference process was conducted under a

Bayesian approach.

Key-words:Univariate beta regression, Copula, MCMC

1 Introduction

There are many practical situations involving multivariate regression analysis where the

response variables are restricted to the interval (0, 1), such as rates or ratios. Furthermore,
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these response variables might be correlated, even after conditioning on a set of explana-

tory variables. The main aim of this work is to propose multivariate regression models

for these kind of response variables, taking into account possible correlation among them.

As we show in our simulation study this is particular useful for prediction purposes.

For the case of a single response variable, Ferrari and Cribari-Neto (2004) propose

a beta regression model, where the dependent variable is continuously measured in the

interval (0.1). The density function of the response variable in their model can be written

as:

f(y|µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (1)

where 0 < µ < 1 and φ > 0, with a = µφ and b = (1− µ)φ are the usual parametrization

of the beta density function and µ = E(Y ). The parameter φ is related to the variance

of the beta distribution, since V ar(Y ) = µ(1 − µ)/(1 + φ). This parametrization allows

to associate a regression structure to the mean of the beta distribution. Their univariate

beta model could be summarized as:

yi|µi, φ ∼ Be(µi(β), φ), i = 1, ..., n (2)

g(µi) = ηi =

p∑
l=1

xilβl,

where: g(·) is a strictly monotonic function and twice differentiable which maps the

interval (0, 1) in IR; βT = (β1, ..., βp) is a vector of regression coefficients and xi1, ..., xip,

for i = 1, ..., n are the observations of the p covariates.

The link function chosen for our examples was the logistic, g(w) = log( 1
1−w ), although

there are other possibilities, such as probit functions and complementary log-log. The

parametrization used in (1) allows the data to be analyzed in its original scale without

the need of transformation, which makes easier the interpretation of the results. This

work follows the Bayesian paradigm, which requires to assign prior distributions to β and

φ. The following independent prior distributions are used for φ and β:

φ ∼ Gama(a, b) and βl ∼ N(ml, σ
2
l ), l = 1, ..., p.

For the application described in Section 2.1, we considered relative vague priors by setting

a = b = 0.001 and ml = 0 and σ2
l = 106 for l = 1, 2.

In the multivariate case, it is desirable to model the dependence between the response

variables (Y1, ..., YK). The random variables here modeled follow marginal beta distribu-

tions and its joint distribution can be obtained using different approaches. In this work,
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the joint distribution of (Y1, ..., YK) is obtained from the application of a copula func-

tion to the marginal distributions of the response variables. In addition to the regression

coefficients and precision parameters of the marginal distributions, we estimated the pa-

rameters that define the copula family and the ones related to the dependence between

the response variables. The results obtained for the multivariate model are compared to

those provided by separate beta regressions.

The paper is organized as follows. Section 2 describes the proposed multivariate beta

model and provides some important properties of the copula function. An application

to two poverty indexes is presented in Section 2.1. Section 2.2 introduces a simulation

exercise in which data are generated under the multivariate beta regression and fitted

under the univariate beta regression and vice versa. An extension to random coefficient

model is presented in Section 3, as well as an application with hierarchical educational

data in Section 3.1. Section 4 offers some conclusions and suggestions for further research.

2 Multivariate beta regression

The structure of dependence between two or more related response variables can be defined

in terms of their joint distribution. One way of obtaining a multivariate beta distribution

is joining the univariate beta through copulation, which is one of the most useful tools for

working when the marginal distributions are given or known. The use of copula functions

enables the representation of various types of dependence between variables. In practice,

this implies a more flexible assumptions about the form of the joint distribution than that

given in Olkin and Liu (2003), which assumes that the marginal distributions have the

same parameter.

Nelsen (2006) defines a copula function as a joint distribution function

C(u1, ..., uK) = P (U1 ≤ u1, ..., UK ≤ uK), 0 ≤ uj ≤ 1,

where Uj, j = 1, ..., K are uniform distributed in the interval (0, 1).

The Sklar’s theorem, stated in Theorem 1 shows how to obtain a joint distribution

using a copula.

Theorem 1 Let H be a K-dimensional distribution function with marginal distribution

functions F1, ..., FK. Then, there is a unique K-dimensional copula C such that for all

(y1, ..., yK) ∈ [−∞,∞]K,

H(y1, ..., yK) = C(F1(y1), ..., Fk(yK)). (3)
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Conversely, if C is a n-dimensional copula and F1, ..., FK are distribution functions,

then the function H defined by (3) is a distribution function with marginal distributions

F1, ..., FK. Moreover if all marginal are continuous, C is unique. Otherwise, the copula

C is unique determined in Im(F1) × ... × Im(FK), where Im(·) represents the image of

(·).

Let Y1, ..., YK be k random variables with marginal distributions F1, ..., FK , respectively,

and joint distribution function H(y1, ..., yK) = C(F1(y1), ..., FK(yK)), where Fj ∼ U(0, 1),

j = 1, ..., K and C(·) is a copula function. Then the density function of (Y1, ..., YK) is

given by:

h(y1, ..., yK) =
∂nH(y1, ..., yK)

∂y1, ..., ∂yK

=
∂nC(F1(y1), ..., FK(yK))

∂F1(y1), ..., ∂FK(yK)
× ∂F1(y1)

∂y1

× · · · × ∂FK(yK)

∂yK

= c(F1(y1), ..., FK(yK))
K∏
j=1

fj(yj) (4)

where

c(F1(y1), ..., FK(yK)) =
∂nC(F1(y1), ..., FK(yK))

∂F1(y1), ..., ∂FK(yK)
and fj(yj) =

∂Fj(yj)

∂yj
, j = 1, ..., K.

Let y = ((y11, ..., yK1), ..., (y1n, ..., yKn)) be a random sample of size n from the density

in (4). Thus, the likelihood function is given by:

L(Ψ) =
n∏
i=1

c(F1(y1i|Ψ), ..., FK(yKi|Ψ))f1(y1i|Ψ)...fK(yKi|Ψ)

where Ψ denotes the set of parameters that define the distribution functions and the

density, as well as the copula function.

We assume that each response variable is beta distributed and the structure of depen-

dence between them is defined by their joint distribution which is obtained by applying

a copula function. Thus, the multivariate regression model proposed is represented by:

yij|µij, φj ∼ Be(µij, φj), i = 1, ..., n, j = 1, ..., K

g(µij) = ηij =

p∑
l=1

xilβlj

(yi1, ..., yiK) ∼ BetaM(µi,φ,θ) (5)

where g(·) is the link function and BetaM(µi,φ,θ) denotes a beta multivariate distribu-

tion built by using a copula function with parameter θ and the beta marginal distributions

with their respective vector parameters given by µi and φ, i = 1, .., n. Under the Bayesian
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approach, the specification of the model is completed by assigning a prior distribution to

φ = (φ1, ..., φK),

β =


β11 · · · β1K

...
...

...

βp1 · · · βpK


and to the parameters that define the copula family. Table 1 presents the copulas used

in this work.

The linear correlation coefficient is not suitable to measure the dependence between

variables in a model involving copulation. One most appropriate measure, which can be

found in Nelsen (2006), is the statistic τ of Kendall, given by

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

The measure τ of Kendall is related to the parameter θ and can be used to assign a prior

to θ.

It is possible to obtain various types of dependence with the use of copula function.

However, there is a wide variety of copula functions. The question posed is: what copula

should be used ? It makes sense to use the one that is most appropriate for the data under

study. Silva and Lopes (2008) and Huard et al. (2006) present proposals for selection of

copulas and models. The criterion proposed by Huard et al. (2006) look for the most ap-

propriate copula to the data under analysis within a set of copulas previously established.

Silva and Lopes (2008) implemented the DIC criterion (Spiegelhalter et al., 2002), among

others, combining the choice of a copula with the marginal distributions. Let L(y|Ψi,Mi)

be the likelihood function for the model Mi, where Ψi contains the copula parameters and

the ones related to the marginal distributions. Define D(Ψi) = −2 logL(y|Ψi,Mi). The

criteria AIC, BIC and DIC are given by:

AIC(Mi) = D(E[Ψi|y,Mi]) + 2di;

BIC(Mi) = D(E[Ψi|y,Mi]) + log(n)di;

DIC(Mi) = 2E[D(Ψi)|y,Mi]−D(E[Ψi|y,Mi]).

where di denotes the number of parameters of the model Mi.

Let
{

Ψ
(1)
i , ...,Ψ

(L)
i

}
be a sample from the posterior distribution obtained via MCMC.

Then, we have the following Monte Carlo approximations:

E[D(Ψi)|y,Mi] ≈ L−1

L∑
l

D(Ψ
(l)
i ) and E[Ψi|y,Mi] ≈ L−1

L∑
l

Ψ
(l)
i .
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In what follows, we focus on the bivariate case. The copula functions used in this article

are presented in Table 1, as well as the ranges of variation of parameters θ and the

measures of dependence τ of Kendall.

Table 1: Copula functions employed

Copula C(u, v|θ) θ τ

Clayton
(
u−θ + v−θ − 1

)−1/θ (0,∞) [0, 1]\{0}

FGM uv[1 + θ(1− u)(1− v)] [−1, 1] [−2/9, 2/9]

Frank − 1
θ ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
[−1, 1]\{0} [−1, 1]\{0}

Gaussiana
∫ Φ−1(u)

−∞
∫ Φ−1(v)

−∞
1

2π
√

1−θ2 exp
{

2θst−s2−t2
2(1−θ2) dsdt

}
[−1, 1] 2

πarcsen θ

2.1 Application to poverty indexes regression

The data used in our application were obtained from the Brazilian database of the Institute

of Applied Economic Research and are available in the site www.ipeadata.gov.br. The

response variables are the proportion of poor persons (Y1) and the infant mortality rate

(Y2) in 168 municipalities in the states of Esṕırito Santo and Rio de Janeiro for the year

2000. The variables human development index (X) was the explanatory variable used.

For the set of data employed, the association dependence measure is 0.42, which implies

that the copula to be fitted to the data should allow positive dependence. We considered

relative vague priors for the parameter θ related to the four copulas fitted. We respectively

set θ ∼ Gamma(0.001, 0.001) and θ ∼ Unif(−1, 1) for the Clayton and FGM copulas

and θ ∼ N(0, 106) and θ ∼ Unif(−1, 1) for the Frank and Gaussian copulas.

Because the posterior densities of β, φ and θ as well as their full conditional distribu-

tions have not closed form, we use the Metropolis-Hastings algorithm for sampling from

these parameters. For all the models with copulas, the convergence of parameters φ and

θ is quickly reached, showing low autocorrelation, while for the parameter β, the conver-

gence is slow. In all cases, it was generated two parallels chains with 300000 iterations

each and a burn-in of 150000.

Table 2 shows some descriptive statistics of the samples from the posterior of the

parameters for the models that used Clayton and FGM copulas. The values of θ for

these two copulas can not be directly compared. It should be observed the value of the

statistic τ of Kendall provided for each θ to evaluate the degree of dependence created

by the copulas. For the Clayton copula, the posterior mean of θ is 0.05, which implies

that τ = 0.02, while for the FGM copula, θ = −0.45 yields to τ = −0.10. The 95 %

6



credible intervals for τ are respectively [0, 0.08] and [−0.19, 0.00], for the Clayton and

FGM copulas.

Table 2: 95% Credible intervals, posterior means and posterior standard deviations for β, φ and θ

obtained for the models which used Clayton and FGM copulas

Parameter Clayton FGM

2.5% 97.5% Mean Std. 2.5% 97.5% Mean Std.

β11 6.60 7.97 7.28 0.35 6.56 7.95 7.26 0.35

β21 -11.82 -9.97 -10.89 0.47 -11.79 -9.92 -10.87 0.48

β12 4.08 5.84 4.98 0.44 4.10 5.84 4.96 0.45

β22 -9.37 -7.00 -8.20 0.60 -9.37 -7.02 -8.18 0.61

φ1 77.28 118.65 96.83 10.58 78.11 119.54 97.73 10.68

φ2 55.45 85.39 69.65 7.62 56.22 86.24 70.15 7.77

θ 0.00 0.18 0.05 0.05 -0.84 -0.01 -0.45 0.21

τ 0.00 0.08 0.02 0.02 -0.19 0.00 -0.10 0.05

Table 3: 95% Credible intervals, median, mean and standard deviation of the posterior for the parameters

β, φ and θ using the FGM and Gaussian copulas

Parameter Frank Gaussian

2.50% 97.50% Mean Std. 2.50% 97.50% Mean Std.

β11 6.59 7.97 7.27 0.35 6.57 7.95 7.27 0.35

β21 -11.81 -9.96 -10.87 0.48 -11.79 -9.94 -10.87 0.48

β12 4.08 5.81 4.96 0.44 4.06 5.85 4.95 0.45

β22 -9.32 -7.00 -8.18 0.59 -9.38 -6.96 -8.16 0.61

φ1 78.33 120.31 97.91 10.66 77.19 119.41 97.27 10.77

φ2 56.14 85.73 70.08 7.55 55.91 85.70 69.77 7.73

θ -1.84 0.10 -0.85 0.49 -0.24 0.06 -0.09 0.08

τ -0.20 0.01 -0.09 0.00 -0.15 0.04 -0.05 0.05

The results obtained for the Frank and Gaussian copulas can be seen in Table 3. In the

case of the Frank copula, we have θ = −0.85 corresponding to τ = −0.09, with credible

interval [−0.20, 0.01]\0. For the model with Gaussian copula, θ = −0.09 witch results in

τ = −0.05. The credible interval to τ is [−0.15, 0.04].

The measure of association τ estimated by each copula is lower than that found before

adjustments of the models. Moreover, its value changes sign. This is because, in a

multivariate regression analysis, measures of dependence between the response variables

are affected by the explanatory variables. In a linear regression analysis, the partial

correlation coefficient measures the association between two response variables Y1 and Y2
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after eliminating the effects of the explanatory variables X1,...,Xp. Because the response

variables follow a beta distribution, a transformation should be applied to use the partial

correlation measure. Applying a logit transformation to the response variables, we obtain

partial correlation of −0.097, which is consistent with the estimated values of the statistic

τ for the models that allow negative values of this measure.

Regarding to the beta regressions parameters, we find that the regression coefficients

have the same sign for all copulas, which means that the relationship between response

variables and explanatory ones were captured in the same way by all models. The compar-

ison with the results of the separate regressions shows that the use of the copula function

did not affect the sign of the regression coefficients. Moreover, the credible intervals of the

regression coefficients have interception, showing that their magnitudes are also similar

for all models.

We carried out an analysis of the residuals. We define the standardized residual as:

r
(l)
ij =

yij − µ(l)
ij√

V ar(yij)(l)

where i denotes the ith observation of the jth variable in the lth sample of the posterior

distribution obtained by the MCMC method after convergence, with

µ
(l)
ij = g−1(xi1β

(l)
1j + ...+ xipβ

(l)
pj )

and

V ar(yij)
(l) =

µ
(l)
ij (1− µ(l)

ij )

1 + φ
(l)
j

.

Figure 1 shows the distribution of standardized residuals against the predicted values

for the two response variables when uses the Frank copula. Figure 1 do not show any

systematic pattern. The residuals obtained by others copulas show similar behavior and

they are not displayed.

Ferrari and Cribari-Neto (2004) define an overall measure of variation explained by

univariate regression beta, called pseudo R2, defined by the root of the correlation coef-

ficient between sample g(y) and η̂. Thus, 0 ≤ R2 ≤ 1 and the more it is closed to 1,

the better the fit is considered. One way of adapting the measure R2 for the multivariate

case is to separately calculate it for each variable. In order to do this, we need to find an

estimate of the linear predictor ηij associated to ith observation of the jth variable. Since

we have a sample from the posterior distribution of the β, we could obtain the following
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(b) Infant mortality rate

Figure 1: Residuals against the predicted values for the variables (a) proportion of poor persons and (b)

infant mortality rate in the model that uses Frank copula.

estimate:

η̂ij =
1

M

M∑
l=1

xi1β
(l)
1j + ...+ xipβ

(l)
pj .

Thus, for each response variable, the R2 adapted to the Bayesian context is the root of

the sample correlation between the vector η̂j and the vector corresponding to the values

of the link function g(.) evaluated at the observed points. Table 4 presents the statistical

values of R2 for the employed models. All models have values of R2 close to 1, indicating

that the models successfully explain much of the total variation and there is no difference

between them with respect to their power explanation.

Table 4: R2 for the fitted models.
Variable Clay FGM Frank Gaussian Individual

Proportion of poor 0.9216006 0.9215963 0.9215837 0.9215823 0.9215903

Infant mortality rate 0.9320647 0.9320788 0.9320779 0.9320771 0.9320935

It can be seen in Table 5 that all selection criteria proposed in Silva and Lopes (2008)

point to the choice of the Frank copula. This copula is used in the simulation section

below. It should be noted the considerable difference between the EPD values for the two

separate regressions. The variable proportion of poor has great contribution in the total

EPD amount and practically decides what is the best model. Ways to avoid contamination

of the criterion caused by the use of variables measured in different scales are still under

study.
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Table 5: Model selection criteria for the copulas analyzed together plus the separated regressions model

Criteria Clayton FGM Frank Gaussian Poor Infant Mortality

pD 6.13 7 6.98 7.15 2.91 2.76

DIC -1083.46 -1086.17 -1086.24 -1084.04 -560.11 -525.54

AIC -1085.73 -1090.17 -1090.19 -1088.34 -555.94 -521.05

BIC -1070.11 -1074.55 -1074.57 -1072.72 -540.32 -505.43

EAIC -1079.59 -1083.17 -1083.21 -1081.19 -553.03 -518.29

EBIC -1063.98 -1067.55 -1067.59 -1065.57 -537.41 -502.67

EPD 1.61 1.6 1.6 1.61 0.72 0.89

log p(Ψ) 544.8 546.59 546.61 545.59 281.51 264.15

2.2 A Simulation Study

The purpose of the simulation study is to evaluate the efficiency of proposed model.

Besides, we intend to compare the results of the bivariate model with those provided

by fitting separate regression for each response variable, which ignores the correlations

structure between them.

Having as motivation the real data analyzed above, we simulate samples from the

bivariate model and the univariate model, assuming the existence of a single explanatory

variable. The true values of the parameters were set as β1 = (7.26,−10.86) and φ1 =

99.04, for the first response variable and β2 = (4.95,−8.16) and φ2 = 70.97, for the

second. These values were obtained by fitting univariate beta regression models for the

proportion of poor and infant mortality rate and using the human development index

(HDI) as the covariate for both models.

We simulated data sets with n = 50 and n = 100 observations. We use the Frank

copula for simulating from the bivariate case. The package “R” was used to generate

observations from this copula. We fix the dependence measure tau of Kendall between

the response variables at τ = 0.1, τ = 0.5 and τ = 0.8, which correspond to the values

of the parameter of the Frank copula θ = 0.91, θ = 5.74 and θ = 18.10, respectively.

It is expected that as the correlation between the responses increases, the better is the

fit of the bivariate model compared to the separate beta regressions. For each situation

considered, we simulated 200 samples. The priors used in this simulation study are the

same as the ones described in Section 2.1, for the Frank copula fit.

In order to compare the various models, we used the relative absolute bias, the root

of mean square error. The relative absolute bias (RAB) and the root mean square error
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Table 6: Relative absolute bias and Mean square error obtained for the bivariate model with τ = 0.1

Simulated Model: Bivariate, τ = 0.1

Fitted Model: Bivariate Fitted Model:Univariate

n = 50 n = 100 n = 50 n = 100

Parameter RMSE RAB RMSE RAB RMSE RAB RMSE RAB

β11 0.291 3.159 0.183 2.009 0.307 3.351 0.187 2.058

β21 0.424 3.059 0.261 1.915 0.447 3.228 0.268 1.963

β12 0.294 4.761 0.246 3.893 0.301 4.799 0.254 3.978

β22 0.425 4.130 0.357 3.425 0.435 4.182 0.369 3.498

φ1 20.180 15.921 13.379 10.931 22.364 17.385 14.056 11.340

φ2 15.034 16.675 9.551 10.303 16.531 17.908 9.857 10.509

θ 0.936 82.203 0.630 56.163 - - - -

(RMSE), are respectively defined as:

RAB =
1

200

200∑
r=1

|Û r − U |/U

RMSE =

[
200∑
r=1

(Û r − U)2/200

]1/2

(6)

where U denotes the true value of the parameter and U r its estimate value for the rth

simulation. Table 6 compares the fit of the bivariate and univariate models, when the

responses exhibit dependence τ = 0.1.

As expected, the bias and the RMSE statistics are lower in samples with size equal

to n = 100 than those with sample size n = 50. The bias and the mean square error are

slightly lower than the corresponding values obtained for the univariate model for both

sample sizes, ie, the correct model (bivariate) comes close to the true values than the

simpler model. When the data were simulated from the bivariate model with τ = 0.5, the

conclusions are quite similar.

The comparison between Tables 6 and 8 shows that differences between the bias and

the mean square errors are higher for the case that we fit the univariate model when

the data has considerable dependence. Thus, the greater the dependence of the response

variables, the more serious is the problem of fitting the simpler model to data with complex

structure.

In the situation where the responses were generated independently, the bias and mean

square errors were smaller for bivariate fit, although this is not the correct model. This

suggests that the bivariate model can be fitted even when there is no dependence or very
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Table 7: Relative absolute bias and Mean square error obtained for the Bivariate model with τ = 0.5

Simulated Model: Bivariate, τ = 0.5

Fitted Model: Bivariate Fitted Model: Univariate

n = 50 n = 100 n = 50 n = 100

Parameter RMSE RAB RMSE RAB RMSE RAB RMSE RAB

β11 0.299 3.269 0.218 2.400 0.300 3.357 0.237 2.629

β21 0.429 3.161 0.311 2.278 0.431 3.221 0.337 2.494

β12 0.336 5.385 0.228 3.659 0.337 5.382 0.253 4.201

β22 0.484 4.713 0.330 3.202 0.489 4.739 0.364 3.644

φ1 19.927 16.277 13.266 10.736 22.858 18.301 14.074 11.211

φ2 12.531 13.877 10.423 11.862 13.288 14.568 11.099 12.325

θ 1.250 16.980 0.771 10.644 - - - -

Table 8: Relative absolute bias and Mean square error obtained for the Bivariate model with τ = 0.8

Simulated Model: Bivariate, τ = 0.8

Fitted Model: Bivariate Fitted Model: Univariate

n = 50 n = 100 n = 50 n = 100

Parameter RMSE RAB RMSE RAB RMSE RAB RMSE RAB

β11 0.245 2.707 0.176 1.969 0.301 3.259 0.205 2.237

β21 0.346 2.551 0.255 1.901 0.426 3.087 0.292 2.129

β12 0.278 4.482 0.209 3.363 0.336 5.493 0.225 3.602

β22 0.397 3.878 0.304 2.963 0.480 4.726 0.325 3.185

φ1 18.410 14.810 12.994 10.405 22.319 17.295 15.218 12.095

φ2 12.292 13.490 9.870 10.904 14.888 15.968 10.670 11.705

θ 2.677 11.421 2.062 8.684 - - - -
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Table 9: Relative absolute bias and Mean square error obtained for the Univariate model

Simulated Model: Univariate

Fitted Model: Univariate Fitted Model: Bivariate

n = 50 n = 100 n = 50 n = 100

Parameter RMSE RAB RMSE RAB RMSE RAB RMSE RAB

β11 0.300 3.416 0.208 2.301 0.293 3.321 0.202 2.232

β21 0.426 3.228 0.301 2.230 0.417 3.142 0.294 2.153

β12 0.290 4.608 0.203 3.232 0.297 4.753 0.204 3.255

β22 0.420 4.031 0.296 2.874 0.430 4.138 0.297 2.898

φ1 20.605 16.511 14.825 11.247 18.562 15.182 14.078 10.804

φ2 16.661 17.041 9.400 10.781 15.255 16.146 9.105 10.648

low one.

3 Multivariate hierarchical beta regression model

In the previous section was presented a multivariate beta regression model in which the

marginal beta regression coefficients were fixed. However, there are situations that are

reasonable to assume that some or all of the coefficients are random. In these cases, the

coefficients of each observation have a common average, suffering the influence of non-

observable effects. Such models are often called mixed effects models with response in

the exponential family, with applications in several areas. Jiang (2007) discusses linear

mixed models and some inference procedures for estimating its parameters.

In this section we propose a generalization of the multivariate regression model pre-

sented in Section 2 by assuming that some or all of the coefficients associated with the

linear predictor of each response variable can be random and correlated. Let yijk be the

observed value of the kth response variable in the jth first unit level of the ith second unit

level, k = 1, ..., K, j = 1, ..., ni and i = 1, ...,m. Furthermore, let us assume that yijk and

yi′jk are conditional independents, ∀ i 6= i′. The multivariate hierarchical beta regression

model is defined as:

yij ∼ BetaM(µij,φ,θ), j = 1, ..., ni, i = 1, ...,m (7)

g(µijk) = xTijλik, k = 1, ..., K (8)

λilk = βlk + νilk, (9)

νil = (νil1, ..., νilK)T ∼ NK(0,Σl), l = 1, ..., p (10)
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where: BetaM(µij,φ,θ) denotes a beta multivariate distribution built by using a copula

function with parameter θ and the beta marginal distributions; yij = (yij1, ..., yijK)T ;

xTij = (xij1, ..., xijp)
T ; λik = (λi1k, ..., λipk)

T ; φ = (φ1, ..., φK)T and

xTi =


xi11 · · · xi1p

xi21 · · · xi2p
... · · · ...

xini1 · · · xinip

 .

From (9) and (10) follows λil ∼ N(βl,Σl), l = 1, ..., p. This parametrization was proposed

by Gelfand et al. (1995) to improve convergence of mixed linear models. The authors show

that this parametrization is able to reduce the autocorrelation of the Gibbs sampling

chains, speeding up the convergence of the model parameters. The implementation of

their approach for fitting multivariate beta regression also improves convergence when

Gibbs sampling and Metropolis-Hastings algorithms are used. See Appendix 1 for details.

The model described from (7) to (10) requires that observations within each ith level

are available. This assumption is necessary in order to avoid some difficulties in estimating

the matrix Σ. The Multivariate hierarchical beta regression model allows for interesting

particular cases. If we regard the responses to be conditional independents given their

means and their precision parameters, we have univariate beta regression with random

regression coefficients. Two beta regressions with random intercepts were used in the

application described in Section 3.1.

As generally described in equations (7), (8) and (9), the model allows all regression

coefficients to be random, however, in many applications of hierarchical models only some

coefficients are assumed to be random, specially the intercept term. In the model (7)-(10)

all random effects in ν could be considered independent and only the correlation between

the response variables would be contemplated. However, to allow the averages of the

responses also exchange information among themselves, it is considered that within each

level i, and for each coefficient of the response variable l, the random effects concerning

the response variables are correlated, i.e: νil = (νil1, ..., νilK)T ∼ NK(0,Σl) where

Σl =


σ2
l1 σl12 · · · σl1K

σl12 σ2
l2 · · · σl2K

...
...

...
...

σl1K σl2K · · · σ2
lK

 .

In this model, the dependence of the response variables appears at two levels: at the
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observations and at the linear predictors. This can be a point in favor of it, because

it allows the exchange of information between the means, which are interpreted as the

true values of indices, rates or proportions of interest. The model (7)-(10) assumes that

information about K response variables and m second level units, with ni first level units,

i = 1, ...,m are available.

The equation (8) relates the averages of the response variables in each ith second level

units, and considers specific second level unit effects. Thus, the mean µijk and µijk′ also

exchange information among themselves due to the fact that they are correlated.

3.1 Application to educational data

The data used to illustrate the application of the multivariate beta regression with random

coefficients were extracted from the Second International Science Survey. This survey was

carried out in 1984 by the International Association for the Evaluation of Educational

Achievement. The data is described in Goldstein (2003) and it is available on the site of

MLWin package, version 2.13. The data contain the results of six tests applied to 2439

Hungarian students in 99 schools. The number of students per school varies from 12 to

34, with mean 25. In order to reduce each test score to the same scale, Goldstein (2003)

divided each test score by the total number of items in the test. Goldstein (2003) fitted

a multivariate hierarchical normal model to the data. Here, we compare the goodness of

fit of multivariate hierarchical model with the multivariate hierarchical beta model with

and without copula. The two response variables used in all models were the scale scores

in Biology and Physics, respectively denoted by Y1 and Y2. The variable gender of the

student (X) was the single covariate employed. The indexes i, j and k respectively refer

to school, student and the response variable. Because some values of the scores were found

to be 0 or 1, we modified them by applying the transformation proposed by Smithson and

Verkuilen (2006). Another alternative is to assign positive probabilities to 0 and 1, see

Ospina and Ferrari (2010) for details.

The following three models were fit to the data:

Model 1: Two-level model proposed by Goldstein (2003), which assumes bivariate normal

distribution for the response variables. It can be written as:

yijk ∼ N(µijk, σ
2
k), i = 1, ..., 99, j = 1, ..., ni, k = 1, 2

µijk = β1k + xijβ2k + νik

νi = (νi1, νi2) ∼ N2(0,Σν).
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Goldstein (2003) uses classical approach to make inference about the model parameters.

Here we employed a Bayesian approach and assigned the following prior distribution to

the model parameters: βlk ∼ N(0, 10−6), σ−2
k ∼ Gama(0.001; 0.001), l = 1, 2, k = 1, 2,

and Σ−1
ν ∼ Wishart(2, I2), where I2 is the 2× 2 identity matrix.

Model 2: Multivariate beta hierarchical model without copula:

yijk ∼ Beta(µijk, φk), i = 1, ..., 99, j = 1, ..., ni, k = 1, 2

g(µijk) = β1k + xijβ2k + νik

νi = (νi1, νi2) ∼ N2(0,Σν),

with βlk ∼ N(0, 10−6), φk ∼ Gama(0.001; 0.001), l = 1, 2, k = 1, 2, and Σ−1 ∼

Wishart(2, I2).

Model 3: Multivariate beta hierarchical model with Gaussian copula

yij ∼ BetaM(µij,φ, θ), i = 1, ..., 99, j = 1, ..., ni, k = 1, 2

g(µijk) = β1k + xijβ2k + νik

νi1 = (νi1, νi2) ∼ N2(0,Σν),

with θ ∼ U(−1, 1), βlk ∼ N(0, 10−6), φk ∼ Gama(0.001; 0.001), l = 1, 2, k = 1, 2, and

Σ−1 ∼ Wishart(2, I2).

A special program made in Ox 5.10 was used to fit models 2 and 3, while to fit model

1 we used Winbugs 1.4.3. The three models were compared by using the following criteria

measure: AIC, BIC, DIC and predictive likelihood
(

(L(Ψ̂)
)

.

Table 10 shows the values of AIC, BIC, DIC (with the contribution pD) and the pre-

dictive likelihood (L(Ψ̂)), where Ψ denotes the vector of parameters of the corresponding

model. For the model 3, the effective number of parameters estimated by pD is well above

others, because it is a more complex model. However, the values of other statistics are

quite lower than those of the other two models, indicating that it has the best adjustment.

It is worth noting that the DIC for the normal model is much larger than the ones that

assume beta distribution. According to DIC criterion, the most appropriate model is the

more complex model. The predictive likelihood criterion leads to the same conclusion.

Table 11 shows summary measures of the posterior for the parameters of the three

models. It should be noted that no 95% credible interval contains the zero. The sex

of the student is an important factor for explaining both responses. The 95% credible

interval for the degree of the association τ between the responses at the student level is
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Table 10: DIC, AIC, BIC, number of effective parameters and the logarithm of predictive likelihood

for the three models
Model DIC AIC BIC pD log p(Ψ)

1 -3314.22 -3682.50 -3614.51 189.14 1982.06

2 -5350.87 -5529.13 -5516.16 188.26 2769.57

3 -5667.59 -5851.15 -5838.18 193.57 2930.58

given by (0.199, 0.245), indicating that there is some association, even being low. For θ,

we have (0.308, 0.376). The analysis of DIC and the predicted values showed that it is

important to include this parameter in the model. The correlation at the school level is

high with an average of 0.756 and 0.77 for the models 2 and 3, respectively.

Table 11: Summary measures of the posterior for models 2 and 3

Parameter
Model 2 Model 3

2.5% 50% 97.5% Mean Std. 2.5% 50% 97.5% Mean Std.

β11 0.896 1.018 1.141 1.018 0.063 0.906 1.031 1.156 1.031 0.064

β21 -0.156 -0.087 -0.018 -0.087 0.035 -0.148 -0.076 -0.003 -0.076 0.038

β12 1.174 1.323 1.469 1.322 0.074 1.204 1.350 1.500 1.350 0.076

β22 -0.500 -0.418 -0.329 -0.418 0.044 -0.505 -0.420 -0.338 -0.420 0.043

φ1 4.169 4.408 4.654 4.408 0.122 4.200 4.439 4.684 4.440 0.123

φ2 2.939 3.107 3.290 3.111 0.089 2.986 3.154 3.333 3.156 0.089

σ2
1 0.244 0.330 0.454 0.335 0.053 0.237 0.321 0.443 0.326 0.052

σ1 0.494 0.574 0.673 0.577 0.046 0.486 0.566 0.665 0.569 0.045

σ2
2 0.337 0.455 0.628 0.462 0.075 0.342 0.459 0.634 0.466 0.075

σ2 0.580 0.675 0.792 0.678 0.054 0.584 0.677 0.796 0.681 0.054

σ12 0.207 0.292 0.413 0.297 0.052 0.211 0.297 0.422 0.302 0.054

ρ12 0.644 0.759 0.846 0.756 0.052 0.663 0.778 0.859 0.773 0.050

θ - - - - - 0.308 0.343 0.376 0.342 0.017

τ - - - - - 0.199 0.223 0.245 0.223 0.012
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Figure 2 shows the graphics of the statistics rijk = P (yijk < y∗ijk), where y∗ijk is the

random predict value of yijk, for both response variables and the three models compared.

The ideal situation is that the value of rijk be near to 0.5, indicating that there is neither

underestimation or overestimation. It can be seen from Figure 2 that the multivariate

beta models have quite similar performance with respect to the r measure and on average

perform better than the multivariate normal model.
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2
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0
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(a) Biology
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0
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0.

4
0.

6
0.

8
1.

0

r statistics

(b) Physics

Figure 2: Boxplots of the r statistics, considering the hierarchical models with normal responses, beta

responses and beta responses with Gaussian copula for the (a) Biology and (b) Physics scores.

4 Final Remarks and future work

The models proposed have the advantage of keeping the response variables in their orig-

inal scale. Another advantage refers to the use of copulas which are marginal-free, i.e,

the degree of association of variables is preserved whatever the marginal distributions are.

Thus, if two indexes are correlated whatever the marginal adopted, the measure of de-

pendence is the same. The use of copula functions in beta marginal regressions allows to

jointly analyze the response variables, by taking advantage of their dependency structure

and keeping the variables in their original scale. The application of multivariate models

with Beta responses is an appealing alternative to models that require transforming the

original variables. The choice between the proposed models and its competitors in the

literature should be guided by the goals of the researcher, who must observe the predictive

power and the goodness of fit of them. The disadvantage of models that uses copulas is

their time consuming for simulating samples from the posterior distributions of the model

parameters or functions of them.
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The application with the poverty indexes data show that there is no much difference

between the univariate and multivariate models with respect to the estimation of their

common parameters. However, the criteria for model selection, pointed to the choice of

the model that makes use of Frank copula, suggesting that this copula fit better to the

data used in our application. Estimates of the parameters and predictions were similar

for all models, which makes us to conclude that the choice of the copula function is

not too relevant for this application. The dependence between the response variables

in the application data set was low and thus bivariate fit has not get any improvement

when compared with the univariate fit. However, as shown in the simulation study, as

the measure of dependence between the response variables increases, the greater is the

improvement of the bivariate model over the univariate one. In situations where the

dependence is high, the use of the bivariate model might be quite worth.

The analysis of the results obtained for the second application shows that the the

use of beta distribution for fitting response variables on the interval (0, 1) is likely to

yield better fitting than the customary normal model. Moreover, the introduction of the

random coefficient model for the beta regression seems to be useful for modeling intra-

class correlation within nested level units. However, the parametrization of the random

coefficient used for making inference of the hierarchical model parameters, seems to be

essential for achieving fast convergence when MCMC is employed.

It is important to note that this work focuses on building multivariate regression models

in which the marginal distributions are Beta. It points out its advantages over correspond-

ing univariate models and the difficulties of estimating their parameters. However, the

theory of copula functions can be applied to any multivariate models that can be built

for any known marginal distributions, allowing that the distributions of response vari-

ables involved be different. We can even have continuous and discrete variables in the

same model. To build a model for others distributions is straightforward, but each model

has a peculiar and practical feature, and the estimation process should always be taken

into account when we propose a new model. In the specific case of the Beta model, has

been adopted the mean and the dispersion as the model parameters, where the latter

parameter controls the variance. Other parameterizations are possible, but could lead to

additional difficulties. Various strategies can be defined by the researcher, according to

the available database, some important ones are: first fixe the marginal and then obtain

the more appropriate copulas; estimate models with different copulas and marginal and
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decide what is ”the best” model by applying a model comparison approach.

We have not considered omission in the explanatory variables in our model formula-

tion, which could be another possible extension of the models proposed here. Further

work should also be done for obtaining objective priors for the univariate and bivariate

models.
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Appendix 1: Computational issues

This appendix describes the computational details for sampling from the posterior

distributions of the Multivariate hierarchical beta regression model (MHBR) via MCMC.

Let denote Wl = Σ−1
l and W1:p = {W1, ...,Wp} . Thus, the likelihood of the MHBR

model is given by:

L(β,φ,ν,θ,W1:p) = p(ν|W1:p)p(y|φ,β,ν,θ).

Developing the two terms of it, we have:

p(y|β,φ,θ,λ,W1:p) =
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ)
K∏
k=1

p(yijk|φk, µijk)

=
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ)

×
m∏
i=1

ni∏
j=1

K∏
k=1

Γ(φk)
y
φkµijk−1

ijk (1− yijk)φk(1−µijk)−1

Γ(φkµijk)Γ(φk(1− µijk))

∝
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ)

×Γ(φk)
∑
ni

m∏
i=1

ni∏
j=1

K∏
k=1

y
φkµijk

ijk (1− yijk)φk(1−µijk)

Γ(φkµijk)Γ(φk(1− µijk))
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and

p(λ|β,W1:p,φ,θ) =

p∏
l=1

p(λl|Wl,βl·) =

p∏
l=1

m∏
i=1

p(λil·|Wl,βl·)

= ∝
m∏
i=1

|Wl|1/2 exp

{
−1

2
(λil· − βl·)

TWl(λil· − βl·)

}
,

where λil· = (λil1, ..., λilK)T , i = 1, ...,M and βl· = (βl1, ..., βlK) is the lth raw of β,

l = 1, ..., p. Thus, the posterior density of all model parameters are:

p(β,φ,θ,λ,W1:p|y) ∝ p(y|β,φ,θ,λ,W1:p)p(λ|β,W1:p,φ,θ)p(β)p(φ)p(θ)p(W1:p)

∝ p(y|λ,φ,θ)p(λ|β,W1:p)p(θ)

{
K∏
k=1

p(φk)

}{
p∏
l=1

p(βl·)p(Wl)

}
,

The posterior distribution above has no close form. However some of its full condi-

tional have, provided that are assigned independent normal priors to βl· and independent

Wishart priors to Wl = Σ−1
l , l = 1, ..., p:

p(βl·|β(−l),φ,θ,λ,W1:p,y) ∝ p(βl·)
m∏
i=1

p(λil·|βl·,Wl)

∝ exp

{
−1

2

[
βT
l·
(
mWl + B−1

l

)
βl·

−2βT
l·

(
Wl

m∑
i=1

λil· + B−1
l bl

)]}
;

p(Wl|β,φ,θ,λ,W(−l),y) ∝ p(Wl)
m∏
i=1

p(λil·|βl·,Wl)

∝ |Wl|(dl−K−1)/2 exp

{
−1

2
tr(DlWl)

}
×

×
m∏
i=1

|Wl|1/2 exp

{
−1

2

m∑
i=1

(λil· − βl·)
TWl(λil· − βl·)

}
.

Thus, the full conditional of βl· is bivariate normal distributed with mean b∗l and

variance-covariance matrix B∗l where

B∗−1
l = mWl + B−1

l e b∗l = B∗l

(
B−1
l bl + Wl

m∑
i=1

λil·

)
.

The full conditional of Wl is Wishart distributed with parameters dl + m and Dl +∑m
i=1(λil· − βl·)(λil· − βl·)

T .

The remaining conditional distributions have no close forms and the Metropolis-Hastings

algorithm is employed to sample from them. The kernels of these distributions are given
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bellow:

p(θ|β,φ,λ,W1:p,y) ∝
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ) ,

p(λ|β,φ,θ,W1:p,y) ∝

{
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ)

×
K∏
k=1

p(yijk|φk, µijk)

}
m∏
i=1

p∏
l=1

p(λil·|βl·,Wl),

p(φk|β,φ(−k),θ,λ,W1:p,y) ∝ p(φk)
m∏
i=1

ni∏
j=1

c (F1(yij1), ..., FK(yijK)|φ,µ,θ)

×
m∏
i=1

ni∏
j=1

K∏
k=1

p(yijk|φk, µijk),

k = 1, ..., K.
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