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1 Introduction

Consider a population of students divided into groups (schools or classes), for which we

believe there are similarities (about a certain aspect of interest) within students in the

same group. More specifically, suppose we are interested in analyzing the proficiency in

maths of students attending to the same level at different schools, and all of them are

submitted to the same test. It is reasonable to expect that the average score obtained by

the students is not the same at every school, as characteristics of the school could possibly

be affecting this average. For this specific example, the teaching skills of the maths

teacher could be an important aspect. Other variables could also be important, such as

the average social-economic background of the parents. This problem can be expressed in

a hierarchical framework written in two hierarchical levels: firstly, a regression equation

is specified at the student level, possibly including explanatory variables such as gender

or age. The intercept and possibly some regression coefficients of this regression are

allowed to vary between schools, according to equations specified in the second level of

the hierarchy. This equations can be specified, for example, as regressions at the school

level, taking into account explanatory variables at this level. By allowing the regression

coefficients of certain explanatory variables to vary between schools, the model is taking

into account the fact that the effects of these variables in the maths score of the students
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can vary by school.

Suppose now that the scores are obtained yearly for a certain period of time. It

is reasonable to expect that the conditions of each school could be changing through

time. Therefore, a modification can be made in the model described above to allow the

regression intercept to vary between schools and also through time. In a more general

framework, all the regression coefficients can be allowed to vary within these dimensions.

Hierarchical models that consider a time variation for the parameters through dynamic

linear models (Harrison and Stevens, 1979), are denominated Dynamic Hierarchical Mod-

els. These models are well documented in Gamerman and Migon (1993).

Dynamic Hierarchical Models can be applied to data in many fields of interest. Specif-

ically, many applications are made to environmental data due to the usual need of mod-

eling their variation in time, and many times in space as well. Some motivating examples

and applications to real data-sets are presented throughout this chapter. The remainder

of the chapter is organized as follows: in Section 2, the Dynamic Hierarchical Models are

presented, and inference for these models is presented in Section 3. Section 4 presents

extensions of these models for observations in time and space. Finally Section 5 presents

some concluding remarks.

2 Dynamic Hierarchical Models for Univariate Ob-

servations

In this section, Dynamic Hierarchical Models are introduced through Example 1 below,

that illustrates the problem presented in the introduction of this chapter. After the

methodology is presented and its specific notation is introduced, two other examples will
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be given.

Example 1: maths scores of pupils from different schools over time

This example illustrates the problem presented in the introduction of this chapter,

where the interest lies in modeling the scores obtained in maths tests by students of

different schools.

Firstly, suppose we have a total J schools, with nj students being tested in the jth

school, j = 1, · · · , J. Let yij be the maths score for the ith student of the jth school,

and suppose his/her age (x1ij) and gender (x2ij) were also observed. A linear regression

model could be specified to explain the maths scores using age and gender as explanatory

variables. A possibly better specification, however, would take into consideration that

the students coming from the same school tend to have similarities. This means that

students with the same characteristics (gender and age) should not be expected to achieve

the same scores if they study at different schools. To accommodate this, one could allow

the intercept of the original regression to vary by school. Variables observed at the school

level could help explaining this variation. In this example, we suppose that the following

school related variables were also observed: years of experience of the maths teacher

(x3j), number of maths classes per week (x4j), and an indicator of whether the students

received any support from a tutor (x5j), j = 1, · · · , J . It is reasonable to expect that the

regression coefficients related to these explanatory variables will be all positive - meaning

that the scores of the students of a certain school tend to be higher if the maths teacher

is more experienced, they have higher number of maths classes and received the support

of a tutor. A possible hierarchical model for this data would be:

yij = β0,j + β1x1ij + β2x2ij + εij, εij ∼ N(0, σ2),

β0,j = β0 + β3x3j + β4x4j + β5x5j + uj, uj ∼ N(0, σ2
u).
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Now suppose tests are applied yearly to students of a certain level over a period of

T years. For simplification purposes, we suppose that the number of students tested in

each school does not vary through the years, under the hypothesis that no student will

change schools over this period, or fail an year. It is now reasonable to assume that the

intercept of the regression at the student level is changing over time, as well as by school,

if you take into account that characteristics of the schools could be changing over time.

We will also suppose that the intercept of the regression at the school level is changing

over time through an autoregressive structure. That reflects that other characteristics

of the school, which are not specified in the model, can also be affecting the scores of

the students - and these characteristics may vary smoothly in time. The proposed model

becomes:

yijt = β0,jt + β1x1ij + β2x2ij + εijt, εijt ∼ N(0, σ2), (1)

β0,jt = β0,t + β3x3jt + β4x4jt + β5x5jt + ujt, ujt ∼ N(0, σ2
u), (2)

β0,t = β0,t−1 + wt, wt ∼ N(0, σ2
w), (3)

where yijt denotes the score obtained by the ith student of the jth school at the tth year.

Note also that the variables measured at the school level are now indexed by time. The

age of the students can be considered fixed if we work, for example, with the age given

at the beginning of the experiment.

For this example, the coefficients related to gender and age are fixed. Note, however,

that they could also be varying by school, time or both. Similarly, the slope coefficients

at the second level of the hierarchy: β3, β4 and β5, could also be varying over time.
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In matrix notation, the above model can be written as

yt = X1tβ1,t + v1t, v1t ∼ Nn(0,V 1), (4)

β1,t = X2tβ2,t + v2t, v2t ∼ N3J(0,V 2), (5)

β2,t = I4β2,t−1 +wt, wt ∼ N4(0,W ), t ≥ 1, (6)

where Ik denotes a k × k identity matrix. yt is a vector of size n where the first n1

elements represent the scores of the students of the 1st school, the following n2 elements

represent the scores of the students of the 2nd school, and so on, for a fixed time t. That

way, n = n1 +n2 + · · ·+nJ . X1t is a matrix of dimension n× 3J , obtained by the direct

sum of the matrices θ1j, j = 1, · · · , J , where θ1j is a nj×3 matrix with all the elements in

the firt column being equal to one, and the ith elements of the second and third columns

being the gender and the age of the ith student of the jth school. β1,t is a vector of order

3J × 1 of coefficients, where the first n1 sequences of three elements are given by β0,1t, β1

and β2 (the coefficents corresponding to the first school); the following n2 sequences of

three elements are given by β0,2t, β1 and β2 (the coefficents corresponding to the second

school), and so forth. v1t is a vector of errors n × 1 and V 1 = Inσ
2. Analogously, X2t

is a matrix 3J × 4, obtained by the direct sum of the matrices θ2j, where θ2j is a 1× 4

matrix with unitary elements in the first column and the other three columns being the

values of the covariates at the second level of the hierarchy for school j; β2,t and v2t are

vectors of coefficients and errors, respectively, of dimension 4 × 1 and V 2 = IJσ
2
u. wt

is a vector of size 4, with the first element representing the error term in equation (3)

and the other elements being constant and equal to zero (as β3, β4 and β5 do not vary

in time). That way, W is a 4 × 4 matrix with element [1, 1] equal to σ2
w and the other

elements are equal to zero.

Now we are ready to present a general formulation for the Dynamic Hierarchical
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Models, as introduced by Gamerman and Migon (1993). The model is composed of

three parts: an observation equation, structural equations and a system equation. The

observation equation describes the distribution of the observations through a regression

model (as in (4)); the structural equation describes the structure of hierarchy of the

regression parameters (as in (5)); and the system equation describes the evolution of the

parameters through time (as in (6)). For a linear hierarchical model of three levels, these

equations can be written, respectively, as:

observation equation:

yt = X1tβ1,t + v1t, v1t ∼ Nn(0,V 1t), (7)

structural equation:

β1,t = X2tβ2,t + v2t, v2t ∼ Nr1(0,V 2t), (8)

β2,t = X3tβ3,t + v3t, v3t ∼ Nr2(0,V 3t), (9)

system equation:

β3,t = Gtβ3,t−1 +wt, wt ∼ Nr3(0,W t), (10)

where n is the total number of observations, v1t, v2t, v3t and wt are disturbance terms

which are independent; X1t,X2t,X3t and Gt are known matrices possibly incorporating

explanatory variables; V 1t,V 2t,V 3t and W t are variance-covariance matrices that can

be allowed to vary over time; βi is a vector of coefficients of size ri, i = 1, · · · , 3, with

r1 > r2 > r3.

Hierarchical models of higher levels can be easily obtained adding extra levels in the

structural equations. The two levels model can be obtained setting X3t to be the identity

matrix, and V 3t to be a matrix of null elements.

Other simple hypothetical examples are presented bellow to illustrate the use of these
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models.

Example 2: weight measurements in a population of patients under treatment

Suppose that the variation of weight in a population of patients under the same kind

of experimental treatment is being investigated. Since the beginning of the experiment,

a different sample of patients is selected every week from the population and weighted,

for a total of T weeks. Suppose that at the tth week, a sample of size nt is selected. To

model the variation of weight through time, we can use a simple two-stage model, given

by:

observation equation:

yit = βi,t + εit, εit ∼ N(0, σ2), i = 1, · · · , nt,

structural equations:

βi,t = µt + uit, uit ∼ N(0, σ2
u), i = 1, · · · , nt,

system equations:

µt = µt−1 + wt, wt ∼ N(0, σ2
w).

This model is a collection of the steady models of West and Harrison (1997), which are

related through similar mean levels. The βi,ts are the observation levels assumed to form

an exchangeable (with respect to index i) sample of means with common mean µt. Note

that the mean µt is allowed to vary over time - the treatment can cause average weight

loss or weight gain through time. This model can be written in the matrix notation as

in (7)-(10):

yt = X1tβ1,t + v1t, v1t ∼ Nnt(0,V 1t), (11)

β1,t = X2tβ2,t + v2t, v2t ∼ Nnt(0,V 2t), (12)

β2,t = Gtβ2,t−1 + wt, wt ∼ N(0,Wt), (13)
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where yt = (y1t, · · · , yntt)
T , β1,t = (β1,t, · · · , βnt,t)

T , X1t = Int , V 1t = Intσ
2,X2t =

1nt , β2,t = µt,V 2t = Intσ
2
u, Gt = 1 and Wt = σ2

w. 1n represents a n-dimensional vector of

ones.

Example 3: weight measurements in a population of children with malnutrition

The second example can be illustrated by the following experiment: A population

of children with malnutrition is being treated with a caloric diet. As in example 2, a

different sample (of size nt) of children is selected from the population at the tth week

of the experiment and weighted. Differently from the previous example, however,the

children are expected to gain weight through time. The model proposed in example 1

can therefore be modified to accommodate this expected growth in the average weight.

The proposed model for this example can be written as:

observation equation:

yit = βi,t + εt, εt ∼ N(0, σ2), i = 1, · · · , nt,

structural equations:

βi,t = µt + uit, uit ∼ N(0, σ2
u), i = 1, · · · , nt,

system equations:

µt = ρ1(µt−1 + δt−1) + w1t, w1t ∼ N(0, σ2
w1

),

δt = ρ2δt−1 + w2t, w2t ∼ N(0, σ2
w2

).

Note that the expected growth of the mean µt is specified by the system equations.

This model can be represented in the matrix notation as in (11)-(13), where yt and β1,t

are defined as before and X1t = Int ,V 1t = Intσ
2,β2,t = (µt, δt)

T ,X2t = (1nt ,0nt), V2t =

Intσ
2
u, Gt =

 ρ1 ρ1

0 ρ2

 and W t =

 σ2
w1

0

0 σ2
w2

. 0n denotes a n-dimensional vector of

zeros.
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3 Inference for Dynamic Hierarchical Models

Inference will be presented here from the Bayesian point of view. To do so, it will be

necessary to specify prior distributions for all the unknown parameters of the model.

More details about the Bayesian approach can be seen in Chapter 4. Our aim for this

kind of modeling is usually to obtain the posterior distribution of these parameters and

perform forecasting for future observations. In this section, some basic results which were

presented in Gamerman and Migon (1993) will be reviewed.

Let us defineDt as all the information obtained up to time t, including the observations

y = {y1, · · · ,yt} and the prior information, represented by D0. We assume therefore

that Dt = {yt, Dt−1}. We can represent the (k-stage) dynamic hierarchical model as:

yt|β1,t ∼ Nn(X1tβ1,t,V 1t), (14)

βi,t|βi+1,t ∼ Nri(X i+1,tβi+1,V i+1,t), i = 1, · · · , k − 1, (15)

βk,t|βk,t−1 ∼ Nrk(Gtβk,t−1,W t), (16)

with initial prior βk,0|D0 ∼ N(mk,0,Ck,0). Note that the matrices X it, i = 1, · · · , k − 1

and Gt are assumed known.

3.1 Updating and forecasting: known variances case

At this point, let us also assume that the variances V it are known. Even though it is in

most cases an unrealistic assumption, it enables us to obtain the basic updating and fore-

casting operations. Under that assumption, Gamerman and Migon (1993) showed that

the model specified by equations (14)-(16), considering the prior βk,0|D0 ∼ N(mk,0,Ck,0),

gives the following prior, posterior and predictive distributions:
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• the prior distribution at time t is given by

βi,t|Dt−1 ∼ N(ait,Rit), i = 1, · · · , k, (17)

where ait = X i+1,tai+1,t,Rit = X i+1,tRi+1,tX
T
i+1,t + V i+1,t, i = 1, · · · , k + 1, and

akt = Gtmk,t−1 and Rkt = GtCk,t−1G
T
t +W t;

• the predictive distribution one step-ahead is given by

yt|Dt−1 ∼ N(f t,Qt), (18)

where f t = X1ta1t and Qt = X1tR1tX
T
1t + V 1t;

• the posterior distribution at time t is given by

βi,t|Dt ∼ N(mit,Cit), i = 1, · · · , k, (19)

where mit = ait + SitQ
−1
t (yt − f t),Cit = Rit − SitQ−1

t S
T
it, Sit = RitE

T
0it, Eijt =∏j

l=i+1X lt, 0 ≤ i < j ≤ k, and Eiit = Iri for 1 ≤ i < k.

Gamerman and Migon (1993) also show that h-steps-ahead forecasts, h > 1, can be

easily obtained from this result. Suppose we are interested in predicting yt+h given Dt,

or in other words, we want to obtain the distribution of yt+h|Dt. Note that

yt+h|β1,t+h ∼ N(X1,t+hβ1,t+h,V 1,t+h), and

βk,t|Dt ∼ N(mkt,Ckt).

Then, the distribution of βk,t+h|Dt ∼ N(akt(h),Rkt(h)) can be recursively obtained

(West and Harrison, 1997) with akt(h) = Gt+hakt(h − 1) and Rkt(h) = Gt+hRkt(h −

1)GT
t+h +W t+h with starting values akt(0) = mkt and Rkt(0) = Ckt. Successive integra-

tions give:

βi,t+1|Dt ∼ N(ait(h),Rit(h)), i = 1, · · · , k − 1

yt+h|Dt ∼ N(f t(h),Qt(h)),
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where f t(h) and Qt(h) are analogous to f t and Qt as defined previously, substituting ait

and Rit by ait(h) and Rit(h).

When a more accurate description of the model parameters is required, or if events in

the past are still of interest, a procedure called smoothing or filtering can be applied at

any given time point. This procedure filters back the information smoothly via a recursive

algorithm, allowing for parametric estimation of the system at previous times given all

available information at a given period of time. Thus, the smoothed distributions of state

parameters are denoted by [βi,t|Dn], as opposed to their online posterior distributions,

denoted by [βi,t|Dt]. Gamerman and Migon (1993) show that the smoothed distribution

for a dynamic hierarchical model is βi,t|Dn ∼ N(mn
it,C

n
it), t = 1, · · · , n, i = 1, · · · , k,

with moments recursively defined as

mn
it = mit +AT

itR
−1
i,t+1(m

n
i,t+1 − ai,t+1),

Cn
it = Cit −AT

itR
−1
i,t+1(Ri,t+1 −Cn

i,t+1)R
−1
i,t+1Ait,

and initialized at t = n withmn
in = min andCn

in = Cin, whereAit = Eik,t+1Gt+1Ckt{(Iri−

V ∗
iktE

T
0itV

∗−1
0kt E0it)Eikt}T , and V ∗

ijt =
∑j

l=i+1Ei,l−1,tV ltE
T
i,l−1,t.

3.2 Updating and forecasting: unknown variances case

As stated before, the hypothesis that the variances in the model are known is hardly

ever realistic in a real application. In many applications, however, is it reasonable to

suppose independence of the errors in the observation equation, such that V it = σ2
itIN ,

where N is the dimension of yt. A conjugate analysis is possible when all the variances

V it, W t and Ck0 are scaled by σ2, an unknown factor, with an Inverted Gamma prior

distribution: σ2|D0 ∼ IG(n0/2, d0/2). The model can be written as in (14)-(16) with the

variances multiplied by the factor σ2.
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The distribution of σ2 can be updated at time t by IG(nt/2, dt/2) where nt = nt−1+n

and dt = dt−1 + (yt − f t)TQ−1
t (yt − f t). The results presented by equations (13),

(14) and (15) remain valid except that all variances should be multiplied by σ2. The

predictive distribution (one-step ahead) in this case (after integrating σ2 out) is obtained

by replacing the Normal distributions by a Student T distributions with nt degrees of

freedom and substituting σ2 by its estimate dt/nt. The posterior distribution is also

obtained by substituting the Normal by a Student T distribution, but in this case with

nt−1 degrees of freedom, and the estimate for σ2 is given by dt−1/nt−1. We denote the

Student T distribution with meanm, ν degrees of freedom and variance-covariance matrix

Σ by T (m, ν,Σ).

In a more realistic approach, however, just one unknown factor σ2 is not enough to

handle all of the uncertainty at every level of the hierarchy. In general, a more realistic

representation considers at least one unknown parameter for the variance of the errors

of each hierarchical level - with the single parameter being the constant variance under

the assumption of independent errors. Models of this kind are not analytically tractable

and therefore it is necessary to make use of computational methods to simulate from

the distributions of interest (posterior and/or predictive), or make use of deterministic

approximation methods.

Numerical methods are a very important tool for applied Bayesian analysis. When

the posterior (or predictive) distribution of the unknown parameters is not analytically

tractable, samples can hardly ever be obtained directly from this distribution, and as an

alternative, simulation methods that sample indirectly from the posterior distribution can

be applied. One of the most used methods to obtain these samples is the Markov Chain

Monte Carlo (MCMC), a computer-intensive method where the idea is to sample from

12



a Markov chain whose equilibrium distribution is the posterior/predictive distribution

of interest. That way, after convergence is reached, the simulated values can be seen

as a sample of the distribution of interest, and inference can be performed based on

this sample. Different algorithms can be proposed in MCMC, with Gibbs Sampling and

Metropolis-Hastings being the most used. A broad discussion about these and others

algorithms can be found in Gamerman and Lopes (2006).

More recently, a promising alternative to inference via MCMC in latent Gaussian

models - the Integrated Nested Laplace Approximations (INLA) - was proposed by Rue

et. al. (2009). INLA is an approximation method for the posterior/predictive distri-

butions of interest, that unlike the empirical Bayes approaches (Fahrmeir et al. 2004),

incorporates posterior uncertainty with respect to hyperparameters. Other alternative

methods that have been successfully used for inference in problems of this kind are the

Particle Filters, which are sequential Monte Carlo methods based on point masses (or

“particles”) representations of probability densities, and are very attractive computa-

tionally. Examples of the use of these methods can be found in Liu and West (2001),

Johannes and Polson (2007) and Carvalho et. al. (2010), amongst others. Both these

methods (INLA and Particle Filters) can be applied to the Hierarchical Dynamic Models

presented here and extensions of these models that will be presented in chapter 5.

4 Model Extensions

In this section, extensions to the Dynamic Hierarchical Models will be presented, includ-

ing examples illustrating applications to real data-sets. In Section 4.1, the Matrix-variate

Dynamic Hierarchical Models will be presented as a multivariate extension to the uni-

variate case already introduced. In Section 4.2, a particular case of this model will be
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considered, imposing a parametric structure to account for the spatial correlation be-

tween observations made in different locations in space. In Section 4.3, an extension to

observations in the exponential family will be presented.

4.1 Matrix-variate Dynamic Hierarchical Models

Suppose q observations are made through time in r different locations in space such

that y1t, · · · ,yqt represent q vectors of observations of dimension r × 1. Data with this

structure can be easily found in the literature for the study of environmental processes.

As an example, in many locations around the world, monitoring stations are implemented

to monitor the air quality, measuring concentrations of all kinds of pollutants at a certain

periodicity. q observations of certain pollutants made through time, and registered at

r different locations, can be seen as q vectors of observations of dimension r × 1. In

this section, the Hierarchical Dynamic Models for univariate responses will be extended

to responses of this kind, leading to the Matrix-variate Hierarchical Dynamic Models.

To introduce the notation, Section 4.1.1 presents the Matrix-variate Dynamic models.

The Matrix-variate Hierarchical Dynamic Models are then presented in Section 4.1.2 as

a simple extension. Inference to these models is presented in Section 4.1.3, and finally

Section 4.1.4 presents an application.

4.1.1 Matrix-variate Dynamic Models

Let y1t, · · · ,yqt represent q vectors of observations of dimension r×1, with the ith element

of each vector representing an observation made at location i. If we denote

yt = [y1t, · · · ,yqt],
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we have a matrix of observations through time. West and Harrison (1989) define a

Matrix-variate Dynamic Model by the equations:

yt = X tβt + vt,

βt = Gtβt−1 +wt,

where

• yt is the r × q observations matrix in time t;

• X t is a known matrix of regressors r × p;

• βt is the matrix of unknown parameters;

• vt is a matrix of errors;

• Gt is a known evolution matrix p× p;

• wt is the matrix of evolutions of errors p× q;

It is assumed that βt and vt are independent, βt−1 and wt are independent, and

vt and wt are independent. Under the hypotheses of normality, the errors vt and wt,

which are matrices, will follow a matrix-variate normal distribution. If Z is a random

matrix of dimension r × q, we say that Z has a matrix-variate normal distribution with

right covariance matrix Σ and left covariance matrix C, denoted by Z ∼ N(M ,C,Σ), if

vec(Z) ∼ Nrq(vec(M),Σ⊗C), where vec(Z) represents the vectorization of the matrix

Z in columns.

As an example, suppose that q types of pollutants are observed in r different locations

in space, resulting in a r × q matrix of observations, for a fixed period of time t. If this

matrix follows a N(M ,C,Σ) distribution, then M is a r × q matrix of means, the left
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matrix C is r × r, and represents the correlation of the observations in space, and the

right matrix Σ is q × q and represents the correlation between the different kinds of

pollutants. Note that in this model, C and Σ are not identifiable, and N(M ,C,Σ) is

equivalent to N(M ,C/k, kΣ), k ∈ <. If the observations of each variable of interest are

not correlated in space at a given period of time t, then C = Ir. If the observations are

independent at a fixed period of time and fixed location in space, then Σ = Iq.

4.1.2 Hierarchical Formulation of the Model

The Matrix-variate Hierarchical Dynamic Models are an extension of the model described

above, and it is an extension of the Hierarchical Dynamic Models, where for each period

of time, we observe a matrix of observations instead of a vector. This model can be

written, as defined by Landim and Gamerman (2000), as follows:

yt = X1tβ1,t + v1t, v1t|Σ ∼ N(0,V 1,Σ), (20)

β1,t = X2tβ2,t + v2t, v2t|Σ ∼ N(0,V 2,Σ), (21)

...

βk−1,t = Xktβk,t + vkt, vkt|Σ ∼ N(0,V k,Σ), (22)

βk,t = Gtβk,t−1 +wt, wt|Σ ∼ N(0,W ,Σ), (23)

where, for a fixed period of time t,

• yt is the r × q observations matrix;

• βi,t, i = 1, · · · , k are regression coefficients matrixes of order ri × q;

• X it are known matrices of regressors of order ri−1 × ri, with r0 = r, i = 1, · · · , k;

• Gt is the known evolution matrix rk × rk;
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• wt is the matrix of evolutions of errors p× q.

We assume that βi,t and vit are independent, i = 1, · · · , k, βk,t−1 and wt are inde-

pendent, and v1t,v2t, · · · ,vkt and wt are independent. Matrices V 1,V 2, · · · ,V k and W

are considered to be known, and for simplicity, are considered to be fixed over time.

Note that a restriction is made, stating that part of the conditional covariance between

elements of yt, which account for the different responses, is specified in Σ. The same

restriction is imposed to the conditional covariances of β1,t,β2,t, · · · ,βk,t, with all sharing

the same structure Σ to account for the covariance between elements coming from differ-

ent responses. This assumption is usually made in multivariate dynamic models (see, for

example, West and Harrison (1997, ch. 16) and Quintana (1987)), and it is reasonable

since the magnitude of the covariance between elements at different hierarchical levels are

not imposed to be the same. The models above could be specified and operated without

this restriction but that would substantially increase parameter dimensionality.

To complete the specification of the model presented above, it is necessary to specify

prior distributions for the unknown parameters of the model. Usual choices of priors,

used by West and Harrison (1997), Quintana (1987) and Landim and Gamerman (2000),

are the following:

βk,0|Σ, D0 ∼ N(M k,0,Ck,0,Σ), and

Σ|D0 ∼ WI(n0,S0).

4.1.3 Inference

As in the beginning of Section 3, we will start this section presenting results of inference

based on the assumption that V 1,V 2, · · · ,V k and W are known. Conditionally on the

value of Σ, it is possible to obtain the distributions of βi,t|Dt−1, yt|Dt−1 and βi,t|Dt
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analytically. These results are given below, and the demonstration can be found in

Landim and Gamerman (2000). For t = 1, 2, · · · and i = 1, · · · , k,

a) βi,t|Dt−1 ∼ N(ait,Rit,Σ),

ait = X i+1ai+1,t, i = 1, · · · , k − 1, akt = GtM k,t−1,

Rit = X i+1,tRi+1,tX
T
i+1,t + V i+1,t, 1 = 1, · · · , k, Rkt = GtCk,t−1G

T
t +W t;

b) yt|Dt−1 ∼ N(f t,Qt,Σ),

f t = X1ta1t, Qt = X1tR1tF
T
1t + V 1t;

c) θi,t|Dt ∼ N(M it,Cit,Σ),

M it = ait + SitQ
−1
t Et, Sit = RitE0R

T
it,

Et = yt − f t,

Cit = Rit − SitQ−1
t S

T
it.

The posterior distribution of Σ can also be obtained analytically, and it is given by:

Σ|Dt ∼ WI(nt,St),

with nt = nt−1 +N and St = St−1 +ET
t Q

−1
t Et. Unconditionally on Σ, the distributions

of Θit|Dt−1, yt|Dt−1 and βi,t|Dt become Student T, given by:

a) βi,t|Dt−1 ∼ T (ait,Rit, nt,St),

b) yt|Dt−1 ∼ T (f t,Qt, nt,St),

c) βi,t|Dt ∼ T (M it,Cit, nt,St),
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where T (a,R, n,S) denote the Matrix Variate Student T distribution with mean a, left

side covariance matrix R, n degrees of freedom and right side covariance matrix S. If Z

is a random matrix such that Z ∼ T (a,R, n,S) then vec(X) ∼ T (vec(a), n,R⊗ S).

Equivalently to the case of Univariate Hierarchical Dynamic Linear Models, forecasts

h-steps-ahead, or the distribution of (yt+h|Dt,Σ), can be obtained.

When the variance matrices V 1,V 2, · · · ,V k,W and Σ are unknown, it is not possible

to obtain the distributions of βi,t|Dt−1,yt|Dt−1 and βi,t|Dt analytically. In that case,

numerical methods can help obtaining approximations for these distributions.

Under the Bayesian point of view, prior distributions must be specified for these

quantities. Landim and Gamerman (2000) considered independent Inverted Wishart prior

distributions for all of the variance-covariance matrices, and a Normal prior distribution

for βk,0|Σ, D0, given by βk,0|Σ, D0 ∼ N(M k0,Ck0,Σ).

The joint posterior distribution of ({β1}, · · · , {βk},V 1, · · · ,V k,W ,Σ) is given by

p({β1}, · · · , {βk},V 1, · · · ,V k,W ,Σ|y) ∝
T∏
t=1

p(yt|β1,t,V 1,Σ)

× p(W )p(Σ)p(βk,0)|Σ)
k∏
i=1

p(V i)
T∏
t=1

k−1∏
i=1

p(βi,t|βi+1,t,V i+1,Σ)
T∏
t=2

p(βk,t|βk,t−1,W ,Σ).

Even though it is not possible to obtain the posterior distribution of the model pa-

rameters analytically, it is possible to obtain their full conditional distributions. Landim

and Gamerman (2000) showed that the full conditional distribution for each of the pa-

rameters βi,t, t = 1, · · · , n, i = 1, · · · , k is Normal and the full conditional distribution

for the variance parameters V 1,V 2, · · · ,V k,W and Σ is Inverted Wishart. That is, it

is possible to obtain samples from the posterior distribution of these parameters using

Gibbs Sampling, which is an MCMC algorithm. Details of how to obtain the full condi-

tional distributions and the proposed algorithm can be seen in Landim and Gamerman
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(2000).

4.1.4 Application to the occupied population and average salary in Brazil

Landim and Gamerman (2000) presented an application to jointly model the popula-

tion at work and the average salary for the biggest Metropolitan regions in Brazil: Rio

de Janeiro (RJ), Salvador (SAL), São Paulo (SP), Belo Horizonte (BH), Porto Alegre

(PA) and Recife (RE). The data was made available by Instituto de Pesquisa Econômica

Apliacada (IPEA), in Brazil.

Observations were monthly made from May, 1982 to December, 1996. Preliminary

analysis showed a seasonal pattern for both variables in time. Landim and Gamerman

(2000) worked with the series aggregated at every three months, having a total of T = 56

periods of time of observation.

The original data was transformed via a logarithm transformation which made the

observations closer to those coming from a Normal distribution. Also, the series of salaries

was transformed using the INPC index, which is a National Index of prices for Consumer,

using December 1996 as a base. That way, the salaries were all in the same scale of reais

(R$) of December 1996. Figure 1 shows the aggregated series of the logarithm of people

at work and average salary for the six Metropolitan regions, showing that both variables

change significantly and smoothly in time. Note that this example concerns two response

variables which are varying not only in time but also in space. Preliminary analysis

showed that it is reasonable to consider that the observations follow an autoregressive

model in time and that the coefficients of this model vary in time and space.

Let yt be a 6×2 matrix with element [i, 1] representing the logarithm of the population

size in the ith region, and [i, 2] representing the logarithm of the average salary in the ith
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(a)

(b)

Figure 1: (a) logarithm of people at work; and (b) logarithm of average salary, for each

one of the six regions through time.

region for a fixed period of time t. That way, the response variable in the model can be

represented by

yt =


y11t y12t

...

y61t y62t

 .
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Landim and Gamerman (2000) suggest a dynamic autoregressive model of order 1 to

model this response matrix, where the observation equation for the element [i, j] of yt is

given by:

yijt = β1,ijt + β2,ijtyi1,t−1 + β3,ijtyi2,t−1 + εijt,

i = 1, · · · , 6, j = 1, 2 and t = 1, · · · , 56. In matrix notation, we can write:

yt = X1tβ1,t + v1t, v1t|Σ ∼ N(0,V 1,Σ),

where X1t is given by:

X1t =


1 y11,t−1 y12,t−1 0 · · · 0 0 0

...

0 0 0 0 · · · 1 y61,t−1 y62,t−1

 ,

and the matrix of autoregressive coefficients is given by:

βT1,t =

 β1,11t β2,11t β3,11t · · · β1,61t β2,61t β3,61t

β1,12t β2,12t β3,12t · · · β1,62t β2,62t β3,62t

 .
For each j = 1, 2, and fixed period of time t, the parameters β1, β2 and β3 are supposed

to have the same mean for every location i, as specified by the equations bellow:

β1,ijt = β1,jt + v21,ijt,

β2,ijt = β2,jt + v22,ijt,

β3,ijt = β3,jt + v23,ijt,

where i = 1, · · · , 6. That way, we can write the matrix β1,t in the form:

β1,t = X2tβ2,t + v2t, v2t|Σ ∼ N(0,V 2,Σ),
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where X2t is 18× 3 and it is given by

XT
2t =


1 0 0 · · · 1 0 0

0 1 0 · · · 0 1 0

0 0 1 · · · 0 0 1

 = 1T6 ⊗ I3,

the hyperparameters matrix is given by

β2,t =


β1,1t β1,1t

β2,1t β2,2t

β3,1t β3,2t

 ,

and

vT2t =

 v21,11t v22,11t v23,11t · · · v21,61t v22,61t v23,61t

v21,12t v22,12t v23,12t · · · v21,62t v22,62t v23,62t

 .
The evolution matrix is given by:

β2,t = β2,t−1 +wt, wt ∼ N(0,W ,Σ).

To complete the model, Inverted Wishart distributions were set as the prior distribu-

tions for the parameters V 1, V 2, W and Σ, and a Normal distribution was set as the

prior distribution for β2,0|Σ.

Landim and Gamerman (2000) used an MCMC algorithm to obtain samples from

the posterior distribution of the unknown model parameters. After 59500 iterations,

convergence was achieved and the last 5000 iterations were used as samples of the pos-

terior distribution. They obtained credibility intervals for each unknown parameter of

the model. One important finding was that the correlations in matrix V 1 were not sig-

nificantly different from zero, which indicates independence between observations made

in different regions. Besides that, there is a strong indication that matrix V 2 could be
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written as a block diagonal matrix. These hypothesis were incorporated into the model,

and it was re-estimated. Convergence for this case was faster. The posterior distributions

of coefficients β2 showed that past observations of population size are a good explanatory

variable for the present population size, but do not explain much of the average salary.

The same way, past observations of average salary can explain part of the variability of

the present average salary, but do not explain much of the population size. Matrix Σ

showed small but positive correlation between the response variables.

4.2 Spatially Structured Matrix-variate Dynamic Hierarchical

Models

In this section we describe a class of models proposed by Paez et al. (2008) which

are a particular case of the Matrix-variate Dynamic Hierarchical Models of Landim and

Gamerman (2000), but impose a parametric structure to account for the spatial correla-

tion between observations made in different locations in space. With that restriction, the

spatial correlation can be captured without the need of estimating completely unknown

covariance matrices. A spatially structured matrix can be specified with a small number

of parameters, and as a consequence, interpolation of the response variable can be made

for any fixed period of time, to any set of non-observed locations in space.

Gelfand et al. (2005) use a similar approach to deal with this same kind of prob-

lem, where the temporal variance is described by dynamic components which capture

the association between measurements made for a fixed location in space and period of

time, as well as the dependence between space and time themselves. The multivariate

space processes described in that paper were developed through the use of corregion-

alization techniques and non-separable space-time covariance structures. They applied
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the proposed methodology to model the variation of monthly maximum temperature in

the State of Colorado, U.S.A., using the monthly mean precipitation as an explanatory

variable.

Other applications of multilevel modeling taking spatial structures into consideration

can be seen in Chapter 33.

4.2.1 General model Framework

The model presented in this section is a special case of the model described by equations

(20) to (23). Without loss of generality, the model will be described for a two-level

hierarchical dynamic model. A simple extension can be made to obtain models of higher

hierarchical levels. Suppose we observe q (q > 1) response variables in a discrete set

of periods of time t = 1, ..., T and set of locations {s1, ..., sr} in a continuous space S.

Analogously to equations (20) to (23), the matrix-variate hierarchical dynamic space-time

model can be written as:

yt = X1tβ1,t + v1t, v1t ∼ N(0,V 1,Σ), (24)

β1,t = X2tβ2,t + v2t, v2t ∼ N(0,V 2,Σ), (25)

β2,t = Gtβ2,t−1 +wt, wt ∼ N(0,W ,Σ), (26)

for t = 1, ..., T . We assume that the matrices X1t, X2t and Gt are known, with X1t

and X2t possibly incorporating the values of explanatory variables. The dimensions of

the matrices in equation (24)-(26) are the same as specified previously for the equations

(20)-(23).

A spatial structure can be incorporated in the variance matrices V 1 and V 2, being

specified through parametric structures describing spatial dependency. In particular, one

can define V i = C⊗V , which corresponds to vit ∼ N(0,V iρi(λi, ·),Σi), where C is the
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matrix specified through the correlation function ρi(λi, ·), i = 1, 2. For a fixed period of

time t and given the parameter λi, the correlation function ρi(λi, ·) gives the correlation

between the elements of vit, i = 1, 2. This function can be appropriately specified in

order to model spatial dependency, giving higher correlation between elements which

correspond to observations made closer in space.

Paez et al. (2008) suggest independent Inverted Wishart prior distributions for the

covariance matrices and matrix-variate Normal prior distribution for (β2,0|Σ). A prior

distribution must also be specified for the parameters λi, i = 1, 2, which define the spatial

correlation matrices. Inference for this model, including the estimation of the model

parameters, time forecasting and spatial interpolation, can be performed using MCMC

methods as described in Paez et al. (2008).

4.2.2 Pollution in the Northeast of the United States

This example was presented in Paez et al. (2008), and refers to a data-set made available

by the Clean Air Status and Trends Network (CASTNet) at the web site www.epa.gov/castnet.

CASTNet is the primary source for data on dry acidic deposition and rural ground-level

ozone in the United States. It consists of over 70 sites across the eastern and western

United States and is cooperatively operated and funded by the United States Environ-

mental Protection Agency (EPA) with the National Park Service.

When dealing with pollutants (and most environmental data-sets), the main interest

is usually to be able to explain some possible causes of variation as well as to be able

to perform predictions. In this particular example, the interest is to model and make

predictions of levels of two pollutants: SO2 and NO3, which were measured in micrograms

per cubic meter of air (µg/m3). In this example, Paez et al. (2008) work with observations
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Figure 2: Map of the 24 monitoring stations in the northeast United States. The coordi-

nates Latitude and Longitude are expressed in decimal degrees.

made in 24 monitoring stations from the 1st of January 1998 to the 30th of December

2004, in a total of 342 periods of time. The data, however, is not completely available, and

about 4% of it is missing. Under the Bayesian approach, handling missing observations

is straightforward, as they can be considered as unknown parameters of the model and

can be estimated if needed.

Figure 2 shows a map of the 24 monitoring stations in the northeast United States

and Figure 3 shows the trajectory of the time series observed at five randomly selected

locations in space, after a logarithmic transformation. No explanatory variables are

available to explain the variation of these pollutants. However, it is clear by Figure 3

that part of the time variation can be explained by seasonal components, such as sine and

co-sine waves. ] Exploratory analysis clearly show that the levels of the time series vary

with the location where they were measured. Also, it can be noticed that the amplitude

of their oscillation varies as well. The mean level of the series is also varying in time
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Figure 3: Series of log(SO2) and log(NO3) through time for five randomly selected mon-

itoring stations.

(it is slowly decreasing), as well as their amplitude (which is slowly increasing). These

variations suggest the use of a hierarchical model with varying intercept and also varying

coefficients of sine and co-sine waves. It is intuitive, however, that these coefficients are

not independent for each period of time or location in space, but rather vary smoothly

in these dimensions. This should also be considered in the model spacification.

A logarithmic transformation was applied to the observed levels of both pollutants.

Preliminary analysis showed strong correlation between the transformed response vari-

ables log(SO2) and log(NO3). Paez et al. (2008) worked with observations of 22 moni-

toring stations and left the other 2 to validate the models (stations LRL and SPD, which

can be seen in Figure 2).

The authors compared the interpolation performance between two univariate models
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(one for each response variable) and one bivariate model (where the two response variables

are jointly modeled). They showed an advantage of working under the multivariate model,

which was described by the authors through the following equations:

yt = X1tβ1,t + v1t, v1t ∼ N(0, Ir,Σ),

β1,t = β2,t + v2t, v2t ∼ N(0,C ⊗ V ,Σ),

β2,t = β2,t−1 +wt, wt ∼ N(0,W ,Σ),

where yt = (y1t,y2t), with y1t = log(SO2)t and y2t = log(NO3)t. Sinuses and co-

sinuses waves were used as explanatory variables to explain the seasonality present in

the observations, so for each location si, X1t(si) = (1, sin(2πt/52), cos(2πt/52)), i =

1, · · · , 22, with X1t = (X1t(s1), · · · ,X1t(sr))
T . Note that this model is a special case of

the model specified by equations (24)-(26), where V 1 = Ir, V 2 = C ⊗V , X2t = I3 and

Gt = I3. The spatial structure is specified through a spatial correlation function which

defines matrix C.

In this application, the spatial correlation function was specified in the Matérn family

(Matérn, 1986; Handcock and Stein, 1993), which is given by

C(i, j) =
1

2κ−1Γ(κ)

(
dij
φ

)κ
Kκ

(
dij
φ

)
, φ, κ > 0,

where Kκ is the modified Bessel function of order κ. This is a flexible family, containing

the exponential function (φ = 0.5), and the squared exponential function, which is the

limiting case when κ→∞. κ is a range parameter that controls how fast the correlation

decays with distance, and φ is a smoothness (or roughness) parameter that controls

geometrical properties of the random field. dij is a measure of distance between the

locations of observation.

As the scale and range parameters in the Matérn family cannot be estimated consis-
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Figure 4: Posterior median and 95% credibility intervals for the elements of matrix β2

through time.

tently (Zhang, 2004), Paez et al. (2008) worked with a fixed value of κ = 2.5, and gave

to φ a prior distribution based on the reference prior of Berger, de Oliveira and Sansó

(2001). The choice of κ = 2.5 was made based on forecast performances comparing a set

of different values for this parameter. Non-informative priors were specified for the other

unknown parameters of the model.

Samples from the posterior distributions of the parameters were obtained through an

MCMC algorithm. The elements of matrix β2 were shown to change significantly in time,

as can be seen in Figure 4, for both log(SO2) and log(NO3). Thus, the use of temporally

varying coefficients seems to be justified in this application. An interpolation of β1 was

performed at an equally spaced grid of points, for a fixed period of time t = 342. Figure 5

shows a significant spatial variation of the elements of β1, which supports the importance
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Figure 5: Posterior median of the elements of matrix β1 through space.

of allowing these parameters to vary in this dimension. Thus, the use of spatially varying

coefficients also seems to be justified in this application. The variation of these elements

is smooth in space, specially for the coefficients of sine and co-sine of log(NO3). Based on

the interpolated coefficients β1, the response process yt is also interpolated at t = 342.

Each value sampled from y1,342 and y2,342 received an exponential transformation, so that

a sample of values in the original scale of the pollutants SO2 and NO3 were obtained.

The spatial variation of the posterior median of these pollutants is shown, in the original

scale, in Figure 6. Finally, Figures 7 and 8 show the predictions (95% credibility intervals

and median of the posterior distribution) made for SO2 (Figure 7) and NO3 (figure 8),

for the two stations (SPD and LRL) which were used for validation. The true observed
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Figure 6: Predicted surface of SO2 and NO3 levels (µ/m3) for t = 342.

trajectories are also shown, for comparison. It can be seen that the obtained predictions

are good, with most of the real observations following inside the posterior credibility

intervals.

4.3 Dynamic Hierarchical Models: Exponential Family Obser-

vations

The methodology which will be introduced here was presented by Hansen (2009) and it

is an extension of the previous models to observations in the exponential family.

The motivation for this extension is that, sometimes, it is not possible to work under

the hypothesis of normality of the observations that otherwise could be modeled through

the Hierarchical Dynamic Models with structure in space proposed by Paez et al. (2008).

Measurements of rainfall are an example of observations that could benefit from this

new approach, as they cannot be assumed to be normally distributed. It is reasonable,

however, to assume that they come from another distribution belonging to the exponential
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Figure 7: SO2 levels (µ/m3) observed at stations SPD and LRL, for t = 1, · · · , 342, and

the posterior median and 95% credibility intervals obtained for SO2. The true trajectory

is in gray.

family.

4.3.1 General Model Framework

Consider a set of discrete periods of time: t = 1, · · · , T , where for every t, q variables

are observed in r different locations in space s1, · · · , sr. Let yt be the r × q observation

matrix. Suppose that the distribution of yt belongs to the exponential family. A family of

distributions is said to belong to the exponential family if the probability density function

(or probability mass function, for discrete distributions) can be written as:

f(x|λ) = h(x)exp

(
s∑
i=1

ηi(λ)Ti(x)− A(λ)

)
,

where h(x), A(λ), Ti(x) and ηi(λ), i = 1, · · · , s are known functions. We will use the

notation X ∼ EF (µ) to denote that the random variable (either a scalar, vector or
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Figure 8: NO3 levels (µ/m3) observed at stations SPD and LRL, for t = 1, · · · , 342, and

the posterior median and 95% credibility intervals obtained for NO3. The true trajectory

is in gray.

matrix) X follows a distribution coming from the exponential family with mean µ.

Suppose that yt has mean φt and that φt can be modeled through a function of a

regression equation in which the covariate effects vary smoothly through time and space.

This function is called link function and it links the linear predictor to the mean of

the distribution function as in the Generalized Linear Models (Nelder and Weddenburn,

1972). The model can be specified as bellow:

yt ∼ EF (µt), (27)

g(µt) = X1tβ1,t + v1t, v1t ∼ N(0,V 1t,Σ), (28)

β1,t = X2tβ2,t + v2t, v2t ∼ N(0,V 2t,Σ), (29)

β2,t = GtΘ2,t−1 +wt, wt ∼ N(0,W ,Σ), (30)

where g(µt) is a known link function and the other quantities are defined as in (24)-(26).
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4.3.2 Application: Rainfall data-set in Australia

In this section we present an application of the models presented above to a single response

variable consisting of measurements of rainfall in r = 15 monitoring stations in Australia

(Hansen, 2009). Here the observations can be assumed as coming from a Gamma distribu-

tion, which belongs to the exponential family. We denote by yt(si) the amount of rainfall

observed in time t and location si. We assume that yt(si) follows a Gamma distribution

with mean φt(si) and coefficient of variation η denoted by yt(si) ∼ G(φt(si), η).

Exploratory analysis showed that the observations present a clear seasonal cycle of

one year. Hansen (2009) worked with rainfall amounts aggregated by year to eliminate

the seasonal effect. No explanatory variables were considered in the model. Another

possibility would be to consider seasonal covariates. To model the rainfall observations,

capturing time and space dependencies, Hansen (2009) proposed the use of a particular

case of the model in (27)-(30) for a univariate response, where X1t = Ir, X2t = 1r,

Gt = 1, V 1t = 0×Ir, V 2t = C and W = σ2
w. A spatial structure is incorporated through

the specification of the elements of matrix C. In this application, these elements are

specified by the exponential family, where C[i, j] = ρ exp{−λdi,j}. Note that this is an

isotropic covariance function, which depends on the locations of observation si and sj

only through the distance between them (di,j), and depends on two unknown parameters

ρ and λ. Hansen (2009) also works with a logarithmic link function. The model can be
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written as follows:

yt(si) ∼ G(φt(si), η), (31)

log(φt(si)) = β1,t(si), (32)

β1,t = β2,t + v2t, v2t ∼ N(0,C), (33)

β2,t = β2,t−1 + wt, wt ∼ N(0, σ2
w), (34)

where β1,t = (β1,t(s1), · · · , β1,t(sr)). To complete the model specifications, prior distribu-

tions for the unknown model parameters must be specified. Hansen (2009) works with

vaguely informative priors. As in the previous applications, β2,0 follows a Normal dis-

tribution and W follows an Inverted Gamma distribution. The prior distribution for ρ,

which is also a variance parameter, was set to be an Inverted Gamma as well. Gamma

priors were specified for η and λ. Samples of the posterior distribution of the unknown pa-

rameters were obtained through MCMC, using Gibbs Sampling and Metropolis-Hastings.

Table 1 shows statistics of the posterior distribution of the fixed parameters of the model.

parameter mean 2.5% median 97.5%

η 0. 0.09 0.18 0.22

ρ 0.80 0.67 0.79 0.94

λ 0.08 0.07 0.08 0.10

σ2
w 0.08 0.05 0.08 0.14

Table 1: Statistics from the posterior samples obtained for the fixed parameters.

It can be noticed that λ is centered around 0.08 and ρ is centered around 0.8. Taking

into account the distances between the monitoring stations, these estimated values define

a covariance matrix C with values that vary from 0.16 to 0.70. That way we conclude

that the model captured some high correlations between observations made in different

locations in space. The posterior samples obtained for σ2
w show high probability density
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around 0.08, meaning that the parameters β2,t do not vary much in time. The spatial

variation of these parameters, however, is higher, with the estimated value for the spatial

variance parameter ρ being around ten times larger than the estimated value for σ2
w.

5 Concluding Remarks

In this chapter we presented a methodological review on hierarchical dynamic models and

generalizations of these models to accommodate multivariate responses, spatial variation

of regression coefficients and observations in the exponential family.

The models presented here are very flexible, permitting the smooth variation of re-

gression coefficients in time and/or space, and they can be applied to model data in

many areas of interest. In this chapter we presented examples and applications made

with real data-sets focusing mainly on environmental problems. The interest in this kind

of application is usually to do time forecasting and interpolation in space, which can be

easily done under the proposed methodology.

Inference is made under the Bayesian point of view. Usually for models like the

ones presented in this chapter, the posterior distributions of the unknown parameters are

not analytically tractable, and numerical methods must be used to approximate these

distributions. In the applications presented here, MCMC methods were used.
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