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HIERARCHICAL MODELING IN TIME SERIES: THE FACTOR
ANALYTIC APPROACH

Dani Gamerman
Departamento de Métodos Estat́ısticos, Universidade Federal do Rio de

Janeiro, Brazil

Esther Salazar
Department of Electrical and Computer Engineering, Duke University, USA

1.1 Introduction

This book is very timely, right after Professor Adrian Smith’s contributions to
Science earned him a well-deserved knighthood. And we congratulate the Editors
for compiling this tribute.

Adrian Smith’s contribution to Statistics spans over a very wide range of
topics. One can single out his relentless effort towards making the Bayesian
approach to inference applicable, in a series of computationally oriented papers
with approximating methods. This effort reached its climax with his landmark
paper [18], after which MCMC methods became famous and widespread.

Another line of contributions was more methodological in terms of proposing
new routes for exploring more elaborate data structures. It led to another land-
mark paper [29]. This JRSSB discussion paper was devoted to explaining how
information from different but related sources of information could be combined
in a regression framework with a hierarchical structure.This paper was extended
to the time-varying context in [16] with the use of dynamic models. One of us
was fortunate to interact with Adrian in [17], where hierarchical and dynamic
models were also used to combine information from different time series sources.

The idea of borrowing information from related sources is very powerful. It
proved to be very useful in the last decades where complex data structures began
to be tackled, as they required sophisticated modeling strategies. A vital element
in such structured settings is the ability to extract from the data possible simi-
larity patterns. This can be achieved in a number of ways, including hierarchical
modeling, non-parametric components and factor analysis.

This Chapter will address the issue of combining information from a possibly
large time series with a factor analytic approach. Results obtained from this ex-
ercise are a (hopefully much) smaller number of latent time series that represent
the main features of the complete dataset of time series originally available. Each
combination of a time series and a factor gives rise to a weight or loading that
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informs in which ways the different original series were combined. These load-
ings are useful quantities as they allow the identification of common features and
allow the interpretation of the relationship or correlation structure between the
different series.

These concepts will be discussed and combined in a number of forms in this
Chapter. Special attention will be devoted to the exploration of these ideas in
the area of spatial statistics. It will be shown that this area is not only an area
of application of these ideas but is one of the main beneficiaries of these devel-
opments. Spatial Statistics is devoted to the analysis of a collection of processes
that exhibit correlation due to their (geographic) location. The main goal there
is to appropriately capture the spatial dependence in order to be able to extrap-
olate information from a few data sources to the whole region of interest. This
inevitably leads to the need for parsimonious forms for representing the corre-
lation structure. This Chapter will show how the ideas behind dynamic factor
models apply in this setting via illustrative examples with real data problems.

This Chapter is organized as follows. Section 1.2 reviews the literature on fac-
tor analysis. Section 1.3 presents some basic factor model extensions for modeling
high-dimensional multivariate time series. Section 1.4 describes applications of
these ideas in the context of spatial analysis. Section 1.5 describes how regression
ideas can be incorporated into the factor model setting. This is accomplished by
enlarging the scope of the models to include explanation via covariate time series.
Section 1.6 draws some concluding remarks and points at possible directions for
further work.

1.2 A short review of factor analysis

Factor analysis is a useful statistical technique widely used for modeling mul-
tivariate data by a few unobserved set of variables called latent factors. More
specifically, the observed variables are modeled as linear combinations of the
latent factors plus an idiosyncratic error. In general, this approach is applied
for the following purposes: (i) dimension reduction, (ii) identifying underlying
structures, and (iii) modeling of sparse covariance structures. From a classical
point of view, the term was first introduced by Thurstone [49] and later discussed
in [50, 1, 22] among many others. In recent years, a fully Bayesian treatment of
factor models became feasible due to the improvements in Bayesian computation,
specially Markov chain Monte Carlo (MCMC) simulation methods. In this con-
text, the Bayesian specifications proposed by Geweke and Zhou [21], Polasek [42],
Arminger and Muthén [3] can be mentioned.

The factor model is defined as follows

yt = βft + εt, εt ∼ N(0,Σ), (1.1)

where t = 1, . . . , T , yt is a n-dimensional observational vector, β is a n × k
factor loadings matrix, ft ∼ N(0, Ik) are independent k-dimensional vectors
called latent factors such that k � n and Σ = diag(σ2

1 , . . . , σ
2
n). This model

implies that, given the factors, each yt have independent components that is
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var(yit|ft) = σ2
i and cov(yit, yjt|ft) = 0 (i 6= j). Moreover, dependence among

components is induced by marginalizing over the distribution of the factors so
yt|β,Σ ∼ N(0,Ω) where Ω = ββT + Σ. Note also that independence of the
factors and the idiosyncratic terms εt induces independence of the observations.

Two important issues have to be mentioned at this point. The first one re-
gards identifiability problems related to the non-unique decomposition of Ω and
the inference about the number of factors. Many ways to handle this problem
can found in the literature. Basically, the idea is to impose constraints on β, as,
for example the lower constraint of Geweke and Zhou [21], Aguilar and West [2]
and Lopes and West [34]. However, in some applications, identifiability of the
factor loadings is not required, especially for covariance matrix estimation, vari-
able selection and prediction (see [5] for more details). This issue will be further
discussed in the next Section where structured priors for β can be used. On the
other hand, uncertainty about the number of latent factors has been studied in
different ways. The most common approach was fitting the factor model for dif-
ferent choices of k and then using a selection criteria like AIC or BIC for model
selection. Lopes and West [34] proposed fully Bayesian inference on the number
of factors through a reversible jump MCMC (RJMCMC) [23]. Their proposal
was compared with other number of alternatives based on bridge sampling [35].
Another recent approach relies on zeroing a subset of factor loadings using vari-
able selection priors such as binary indicator δij (George and McCulloch [19]).
Based on this idea, interesting applications can be mentioned. Carvalho et al. [8]
and Frühwirth-Schnatter and Lopes [15] for gene expression and financial mod-
eling, respectively are a few examples. In this Chapter, we further discuss the
RJMCMC scheme as a tool for model selection.

1.3 Dynamic factor models

1.3.1 Basic definitions

Dynamic factor models (DFM’s) were developed in a number of ways and have
become a useful tool for modeling high-dimensional multivariate time series.
The core idea is to explain the common dynamic structure of the multivariate
time series through a set of common (time series) factors. This is achieved by
the introduction of flexible temporal correlation structures for the latent fac-
tors, previously assumed to be independent. This renders the DFM capable of
assessing the complexity of time series data. Models along these lines include
Geweke [20], Sargent and Sims [45], Molenaar [36], Engle and Watson [10], Peña
and Box [39], Forni et al. [13] and Bai and Ng [4].

Earlier approaches have been primarily concerned with modeling multivari-
ate stationary time series considering latent factors with a time-varying mean
function. In this context, [39] proposed a methodology to identify the number of
latent factors in a vector of stationary times series. Specifically, temporal correla-
tion is introduced through a k-dimensional vector that follows an autoregressive
moving average process (see [36,4] and references therein for related ideas). For
the nonstationary case, Peña and Poncela [40, 41] proposed a methodology for
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building DFM for nonstationary time series in state space form and, more re-
cently, Pan and Yao [38] introduced a new approach that allows nonstationary
factors not necessarily driven by unit roots.

In this Section we focus on DFM for both stationary and nonstationary time
series where the k-dimensional latent factor ft (state vector) follows a general
VARMA(p, q) representation

ft = Γ1ft−1 + ...+ Γpft−p + ωt + Ξ1ωt−1 + ...+ Ξqωt−q, (1.2)

where ωt ∼ N(0,Λ), ∀t. The latent nature of the factors make it difficult to
precisely estimate this full model. It what follows, we will concentrate the pre-
sentation on a simplified VAR(1) version, obtained when p = 1 and q = 0. A
number of features are more clearly understood in this setting and will be dis-
cussed below. This factor evolution is driven by the following transition equation

ft = Γft−1 + ωt, ωt ∼ N(0,Λ), (1.3)

where Γ is a symmetric k×k autoregressive coefficient matrix characterizing the
dynamic evolution of the common factors and Λ is a k × k covariance matrix
with elements λij , i, j = 1, . . . , k. Note that Γ and Λ are not necessarily diagonal
matrices so they can be defined to deal, for instance, with seasonal components
and nonstationary common factors. Equations (1.1) and (1.2) or (1.3) define the
dynamic factor model and, in a similar fashion to standard factor analysis, the
latent factors ft capture the time-varying correlation structure of the data.

Working within a Bayesian framework, some important issues related to
model specification and posterior inference can be mentioned at this point:

Prior specification The prior for the latent factor is given in eqn (1.3) and
completed by f0 ∼ N(m0, C0) with known hyperparameters m0, C0. As was
mentioned before, many specifications for Γ can be considered. One possibil-
ity for the Λ matrix is a diagonal form with elements λi. In this case, a typical
choice of prior for the λi’s is independent Gamma distributions. Similar indepen-
dence assumptions can be made for the autoregressive matrix Γ. One possibility
is to consider Γ = diag(γ1, . . . , γk) such that, γj ∼ N(0, a) independent, for
j = 1, . . . , k, for some large value of a if one want to represent vague prior infor-
mation. If one is concerned with the possibility of unit roots and non-stationarity,
the mixture prior γj ∼ πN(−1,1)(0, a) + (1 − π)δ1(γj) may be assumed for the
autoregressive coefficients, where π ∈ (0, 1] and a are known hyperparameters,
N(l,u)(·, ·) denotes the normal distribution constrained to assumed values only
in (l, u), δ1(γj) = 1 if γj = 1 and δj(γj) = 0 if γj 6= 1 (see [26] for more details);
for π 6= 1, the mixture prior allows the possibility that nonstationary factors be
incorporated, if π = 1 we are in the stationary case.

Correlated factors can also be incorporated into the DFM. One example of
that is the inclusion of h seasonal common factors to capture a possibly pe-
riodic behavior of the time series. In that case, Γ could be specified as Γ =
diag(Γ0,Γ1, . . . ,Γh) where Γ0 = diag(γ0,1, . . . , γ0,k),
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Γl =

(
cos(2πl/p) sin(2πl/p)
− sin(2πl/p) cos(2πl/p)

)
, l = 1, . . . , h,

p is the seasonal period and h = p/2 is the maximum number of harmonics
needed to capture the seasonal behavior of the time series, (see [54], Chapter 8,
for more details). As a consequence Λ = diag(Λ0,Λ1, . . . ,Λh) and each Λl is no
longer diagonal with inverted Wishart distribution as a prior.

Factor loadings specification For the factor loadings one can take independent
normal priors for each element of β such that βii ∼ N(0,∞)(0, b), βij ∼ N(0, b)
only for i > j (see [34] for more details) since identifiability constraints impose
βij = 0 for i < j. However, in practice, one may be also interested in including
conditional dependencies within the elements of yt. In order to do that, the
underlying idea is to include a flexible correlation structure into the columns of
β, denoted by β(j) (j = 1, . . . , k). In the context of spatial analysis, a number
of papers have examined inducing dependencies through β(j). For example, in
[52] the columns of β are modeled as orthonormal basis functions and in [6,
44] smoothed deterministic kernels are used to built β. Alternatively, Lopes
et al. [32] introduced a spatial DFM where the columns of the factor loadings
matrix follow independent Gaussian random fields. This idea will be discussed
and illustrated in the next Section for modeling space-time data. Additional
developments on factor loadings specification include, for example, Carvalho et
al. [8] and Bhattacharya et al. [5] for sparse factor analysis, and Lopes and
Carvalho [30] for latent time-varying loadings, among others.

Posterior inference Fully Bayesian treatment of the standard and dynamic fac-
tor models via MCMC methods is described in detail in [34] and [2], respectively.
More specifically, the inference procedure is designed for two cases: known and
unknown number of factors k. Considering that the number of factor k is known,
the MCMC scheme described in [34] can be easily adapted where the common
factor are jointly sampled via the well known forward filtering backward sam-
pling (FFBS) scheme [7,14]. For the second case, model selection is performed by
computing posterior model probabilities (PMP) for different choices of k. In par-
ticular, the reversible jump MCMC algorithm, proposed/described in [34,32] for
DFM, can be used. The algorithm allows for a simple method of calculating the
PMP from preliminary MCMC runs. As mentioned in the previous references,
the Bayesian model search via RJMCMC penalizes over and under-parametrized
factor models.

1.3.2 Hierarchical DFM

A common criticism in DFM is that the common latent factors are difficult to in-
terpret. In large n settings and for multi-level datasets, the dimension reduction
of the problem may involve loss of data structure. In this context, a hierarchical
construction of the model to allow a progressive reduction in the dimensional-
ity as the levels becomes higher may be desired. For example, the hierarchical
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construction for dynamic linear models (DLM’s) proposed by Gamerman and
Migon [16] provides a general framework for analysis of multivariate time se-
ries. In accordance with this idea and following the same notation introduced in
Subsection 1.3.1, the 3-level hierarchical dynamic factor models (HDFM) can be
written as

yt = β1f1t + ε1t, ε1t ∼ N(0,Σ1), (1.4)

f1t = β2f2t + ε2t, ε2t ∼ N(0,Σ2), (1.5)

f2t = β3f3t + ε3t, ε3t ∼ N(0,Σ3), (1.6)

f3t = Γf3,t−1 + ωt, ωt ∼ N(0,Λ), (1.7)

where fit, i = 1, 2, 3, are ki-dimensional vectors satisfying k1 > k2 > k2, β1 is a
n×k1 matrix, β2 and β3 are k1×k2 and k2×k3 matrices respectively, and Γ is a
k3 × k3 matrix. More specifically, eqn (1.4) represents the observation equation,
eqns (1.5) and (1.6) the structural equations and eqn (1.7) the system equation.
As mentioned in [16], the previous HDFM can be reduced to considering only
two level/stages of hierarchy by setting β3 = Ik3 and Σ3 = 0, a zero matrix.
Again, further levels are easily induced but this would rarely be required.

1.3.3 Generalized DFM

The DFM can also be extended to allow for non Gaussian observations. More
specifically, the generalized DFM (GDFM) is a hierarchical model where the first
level equation (observation equation) is given by

p(yti|ηti, ψ) = exp{ψ(ytiηti − b(ηti)) + c(yti, ψ)}, (1.8)

where ηti is the natural parameter and ψ is the dispersion parameter. The natural
parameter ηti is related to the temporal components through the link function
v such that ηti = v(θti). Consequently, the model is completed by specifying the
following two levels of hierarchy

θt = µt + βft, (1.9)

ft = Γft−1 + ωt, ωt ∼ N(0,Λ), (1.10)

where θt = (θt1, . . . , θtn)T , µt is the mean level, and β, Γ and Λ have the same
specifications as the SDFM. See [53] for more details in the context of generalized
DLM’s.

Full Bayesian treatment for this new class is more challenging, specifically
for MCMC sampling the common factor. In the previous cases, the full condi-
tional distribution for joint sampling this component was normal and thus easily
sampled from using for example the FFBS. This is no longer valid here and ef-
ficient proposal are very difficult to obtain, specially for large time series with
large T . Componentwise sampling is also very inefficient. The solution here is a
compromise with this component sampled in blocks. To this end, a block sam-
pling scheme that combines techniques such as extended Kalman filter and block
sampling was proposed in [31] with good performance in the applications.
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1.4 Applications to spatial statistics

In this Section, we discuss some applications of the above mentioned approaches
for spatial and spatio-temporal processes.

The use of factor analysis to model multivariate spatial data has been treated
in a number of ways. Here, we focus on the case in which factor analysis is used
to identify cluster or groups of locations/regions (spatial dependence) whose
temporal behavior is driven by a set of common dynamic latent factors (tem-
poral dependence). In previous works, either common dynamic factors or factor
loadings matrices are restricted to be deterministic functions. Specifically, when
the common factors are non-stochastic the space-time dynamic model proposed
by [48] is obtained. On the other hand, when β is defined as a deterministic
function the structure proposed by [52,6] is obtained.

Lopes et al. [32] introduced a new class of models called spatial dynamic factor
model (SDFM) derived from the standard DFM. More specifically, the temporal
dependence is modeled by the latent common factors and the spatial dependence
is also modeled stochastically by the columns of the factor loadings β(j). These
are assumed to follow independent Gaussian processes. The role played by the
stochastic structure is to allow further flexibility to the deterministic specifica-
tion, that is restrictive by definition.

The SDFM is defined by eqns (1.1) and (1.3) where yt = (y1t, . . . , ynt)
T such

that yit is a observation measured at time t and location si ∈ Rd. Each column
β(j) = (βj(s1), . . . , βj(sn))T is defined as

β(j) ∼ N(θj , τ
2
jRφj

), for j = 1, .., k, (1.11)

where θj is the n-dimensional mean vector, τ2j is the common variance of the
spatial process, Rφj

is the matrix correlation function with (l,m)-element given
by {Rφj

}l,m = ρφj
(‖sl − sm‖), l,m = 1, . . . , n and ρφ(·) represents a spatial

correlation function like exponential or Matérn specified by the parameter φ.
As an illustration, Fig. 1.1 shows a simulated SDFM with k = 2 common

latent factors. Note that the surfaces for yt are driven by the spatial behavior of
the β(j)’s (j = 1, 2) weighted by the values of the common factors. It is important
to mention that the SDFM implies nonseparable forms of the covariance function
when k > 2. In fact, if Γ and Λ are diagonal matrices, the covariance between
two different sites at two different time indexes is given by

cov(yit, yj,t+h) =

k∑
l=1

λlγ
h
l (1− γ2k)(τ2j ρφj + θilθjl).

That characteristic implies that the SDFM is able to model complex space-time
interactions. In contrast, when k = 1 spatial and temporal covariance functions
are separately identified.

Example 1.1 The SDFM is used to examine the spatio-temporal variation in
weekly concentration levels of nitrate (NO3) across 22 monitoring stations lo-
cated in eastern US for T = 312 weeks (1st week of 1998 – 52nd week of 2003).
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β(1) β(2) ft = (f1t, f2t)
T
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Fig. 1.1. Simulated spatial dynamic 2-factor model. First row : Gaussian pro-
cesses for the two columns of β and simulated dynamic factors (time series)
ft = (f1t, f2t)

T for t = 1, . . . , 36. The first factor (dashed line) has a seasonal
behavior with period p = 12. The second factor (solid line) follows an AR
process with autoregressive parameter γ22 = 0.9. Second row : yt processes
following eqn (1.1) for t = 6, 12, 18, 24.

The logarithm transformation was used to normalize the data and a seasonal
common factor was considered to capture the yearly periodic behavior repeated
every 52 weeks (seasonal period). The SDFM with k = 3 regular factors and 1
seasonal factor was compared against other models and selected for fit to the
data. Also, a Matérn correlation function is used to specify the spatial correla-
tion structure of each β(j) (j = 1, . . . , 4) with smoothness parameter equal to
1.

Fig. 1.2 shows some posterior results of the fitted model. The four maps of the
factor loadings (estimated via Bayesian interpolation) show distinct spatial pat-
terns across the study area. Note that the temporal behavior of the time series is
directly related with the higher values of the interpolated surfaces (white areas).
The loadings for the second factor are higher in the western region, specifically
in some areas of Indiana, Ohio and Kentucky. This factor mimics, roughly, the
spatial pattern of the NO3 across time. Also, the results indicated that this fac-
tor is nonstationary. In addition, Fig 1.3, panel (a) shows a plot of observed vs.
fitted values (considering the original scale). The points roughly follow a straight
line indicating good predictions. Panel (b) presents interpolation results for one
of the out-of-sample monitoring stations (SPD station). The NO3 interpolated
values are very close to the real values indicating the good interpolated perfor-
mance of the model. Finally, panels (c) and (d) show forecast values for the 1st
and 12th weeks of 2004. Note that the spatial pattern is almost preserved but
with lowest values for the entire region for the 12th week. That behavior is ex-
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Fig. 1.2. First row : Bayesian interpolation of the factor loadings. Values rep-
resent the range of the posterior means. Second row : Posterior means of the
factors. Solid lines represent the posterior means and dashed lines the 95%
credible intervals.

pected since high concentration levels of nitrate are expected in the first weeks
of the year. ‖

The SDFM can also be extended to allow for non Gaussian observations.
Lopes et al. [31] introduced a new class of spatio-temporal models for multivari-
ate exponential family data, called the generalized spatial dynamic factor model
(GSDFM). In this formulation, the spatial and temporal components are mod-
eled via a latent factor analysis of the canonical transformation of the mean
function. The model is given by (1.8)–(1.10) with the addition of the Gaussian
prior (1.11) for the loadings. Note that this class of model also leads to a nonsepa-
rable spatio-temporal covariance structure. This characteristic is associated with
the linear predictor θt where, for k > 1, both spatial and temporal covariance
structures can not be separately identified.

Example 1.2 We are interested in modeling daily rainfall occurrences (over 1
mm) in northern Oceania in 2001. The data contains T = 365 binary observa-
tions measured at 19 meteorological stations, 14 of them located in the Feder-
ated States of Micronesia and 5 in the Marshall Islands. Fig. 1.4(a) shows the
study area as well as the geographic location of the stations. We aim to identify
microclimates over the study region and also fit rain probability maps for the
whole area and across time. The model considered is given by eqns (1.8)–(1.10)
such that yti ∼ Bernoulli(pti), logistic link function θti = log(pti/(1 − pti)), a
Matérn correlation function for the specification of the factor loadings matrix
and θ(j) = µj117. The GSDFM was fitted considering k = 1, 2, 3, 4 common
factors. Comparison between models are based on the PMP. In this application,
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Fig. 1.3. (a) Plot of fitted vs. observed values of NO3 for the whole period and
for the 22 stations. (b) Interpolated values at SPD station left out from the
sample used for fitting. Dashed lines represent the 95% credible intervals and
the symbol × the observed NO3 concentration level. (c)-(d) Forecast values
for two different weeks in 2004.

the model with 3 common factor shows the best results with PMP equal to 0.46.
Fig. 1.5 shows the interpolated loading associated with the first, second and

third factor as well as the estimated temporal behavior of the common factors.
The spatial loadings, interpolated via Bayesian kriging, indicate a smooth vari-
ation in different directions, specially for the first factor. These findings allow
the recognition of microclimates, more specifically in the eastern part (around
Marshall Islands), as showed in the map for β(3). In addition, the results indicate
the presence of one nonstationary factor (2nd factor) with posterior probability
pr(γ2 = 1|y1:T ) = 0.89. Other interesting results of the model are the rain prob-
ability time series for observed and interpolated stations, the latter interpolated
via Bayesian kriging. Fig. 1.4(b) shows those time series for two stations, FSM13
(included in the analysis) and MI5 (left out of the analysis). The posterior prob-
abilities of rainfall occurrence seem to follow the general trend of the observed
binary time series. Also, for station MI5, we tested the capability of the model
in handling missing data, specifically for the days 121–170 (delimited by the ver-
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Fig. 1.4. (a) Location of the monitoring stations. (b) Daily posterior probability
of rainfall occurrence at FSM13 station (above) and MI5 station(below). The
latter shows the results of the spatial interpolation since station MI5 was
left out of the analysis for interpolation purposes. Dots are rain indicators,
solid lines are rain mean probabilities and dashed lines are 95% credibility
intervals.

tical dashed lines). Note that the temporal behavior of the probability is mainly
driven by the third factor, which is expected given the location of the station. ‖

An alternative specification for the factor loadings matrix can be considered
for the SDFM. For example, the discrete process convolution approach proposed
by Higdon [25], or (more recently) the spatial model considering compact support
kernels as proposed in Lemos and Sansó [28]. Here, we discuss a related approach
that uses an approximate Gaussian processes for β(j)’s instead of deterministic
kernels. This new model specification was recently proposed by Salazar et al. [43]
for comparing and blending regional climate model predictions. See the cited
paper for more details related to the fully Bayesian treatment of the model.

More specifically, for each yt(s) measured at time t and location s we have
that

yt(s) = µt(s) + ωt(s) + εt(s), εt(s) ∼ N(0, σ2), (1.12)

where µt(s) may represent a regression component and ωt(s) is the space-time
component that follows a Gaussian process. Many specifications can be con-
sidered for ωt(s). Here we opted to use the modified predictive process (see
[11] and the references therein), letting ωt(s) = ω̃t(s) + ε̃t(s), where ε̃t(s) ∼
N(0, τ2 − v(s)TH−1v(s)) and ω̃t(s) is represented on a set of k basis func-
tions Bl(s) = [v(s)TH−1]l where v(s) = τ2(ρφ(s, s∗1), . . . , ρφ(s, s∗k)), {H}lm =
τ2ρφ(s∗l , s

∗
m) for l,m = 1, . . . , k and {s∗l ; l = 1, . . . , k} a set of selected knots and

is given by ω̃t(s) =
∑k
l=1Bl(s)γt,l = B(s)Tγt.
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Fig. 1.5. First row : Bayesian interpolation of the three columns of the factor
loadings matrix. Values represent the range of the posterior means. Second
row : Daily posterior means of the first, second and third dynamic factors.
Solid lines represent the posterior means and dashed lines the 95% credible
intervals.

The temporal evolution of γt is specified as γt ∼ N(ψγt−1,H). After a SVD
decomposition of H = PΛP T and letting γt = Pft we can rewrite ω̃t(s) as
ω̃t(s) = B(s)TPft = β(s)Tft and therefore ft ∼ N(ψft−1,Λ) (with indepen-
dent elements given that Λ is a diagonal matrix).

If we conveniently rewrite eqn (1.12) in vector notation and by considering
the previous specification we have

yt = µt + βft + ε̃t + εt,

ft ∼ N(ψft−1,Λ).

The previous specification resembles the SDFM where β is a n× k matrix with
k is the number of pre-selected knots (fixed), Λ = diag(λ1, . . . , λk) with λ1 >
. . . > λk, therefore β(1) describes the main model of spatial variability, β(2) the
second, and so on.

Finally, in the following example we describe a spatial hierarchical dynamic
factor model (SHDFM) for socio-economic multi-level measurements. The idea
is to build a model-based vulnerability index that account for the different levels
of hierarchy (for example, census tracts and capitals). The spatial version of this
model was proposed by Lopes et al. [33] to build Uruguayan vulnerability index
at different geographical resolutions.

Example 1.3 Consider the p-dimensional vector of socio-economical variables
yijt = (yijt,1, . . . , yijt,p) at capital i (i = 1, . . . , I), census tract j (j = 1, . . . , ni)
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and time t. We aim to infer vulnerability indexes at two levels of resolution: cap-
itals (coarse level) and census tracts (fine level). The proposed two level SHDFM
can be written as

yijt = µ+ βf
(1)
ijt + ε

(1)
ijt , ε

(1)
ijt ∼ N(0,Σ),

f
(1)
ijt = θit + f

(2)
ijt + ε

(2)
ijt , ε

(2)
ijt ∼ N(0, ψ),

f
(2)
it = f

(2)
i,t−1 +wit, wit ∼ N(0, τ2i Pi)

θt = θt−1 + vt, vt ∼ N(0, δ2H)

where β = (1, β2, . . . , βp)
T (that implies a 1-factor model for the first level),

Σ = diag(σ2
1 , . . . , σ

2
p). Within capital i, the one dimensional factor f

(1)
ijt is decom-

posed as the sum of two spatial components: θit (capital-level) and f
(2)
ijt (census

tract-level). Note that the f
(2)
ijt ’s are conditionally independent and the joint

vector f
(2)
it = (f

(2)
i1t , . . . , f

(2)
init

)T follows a Markovian evolution where the system
innovation wit follows a proper Gaussian Markov random field. More specifically,

Pi = (Ini
+φMi)

−1 where {Mi}lk = m
(i)
k if l = k and {Mi}lk = −1/d

(i)
lk if sites

l and k are neighbors (denoted by l ∼ k) and zero otherwise, m
(i)
k =

∑
l∼k 1/d

(i)
lk

and d
(i)
lk is the Euclidean distance between centroids of regions l and k (see [51] for

more details about this construction). An additional assumption is that the θit’s
are conditionally independent so the joint vector θt = (θ1t, . . . , θnit)

T follows
a Markovian evolution where the innovation vt follows a zero mean Gaussian
process with covariance structure H driven by the Euclidean distances between

the centroids of the capitals. In this multi-level factor model, f
(1)
ijt represents the

vulnerability index at the census tract level of the capital i (fine level) and θit
is the capital vulnerability index (coarse level). Note that the SHDFM takes full
advantage of the multi-level data structure through the hierarchical specification
of the common factor. ‖

1.5 Regression with dynamic factor models

The ideas so far have been restricted to a single collection of time series. Even
though any time series problem can be cast in a single collection of time series, the
collections usually considered have a unified framework relating them. Typically
they are measurements in a variety of settings of the same quantity. As such,
they behave like a (random) sample of time series.

This Section extends the scope of DFM beyond random samples by consid-
ering regression. The general idea of a regression is to explain a variable by a
set of covariates. In time series context, this means explaining the behavior of
a (possibly multivariate) time series by a number of related explanatory time
series. Although the approach is quite general, it is better explained without
much loss of generality in the context of simple regression.

So from now on, we will restrict our attention to the situation where a col-
lection of time series forming a multivariate time series yt of a given variable is
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explained by another collection of time series forming a multivariate time series
xt of another given variable. This is a well known set-up in time series, some-
times referred to as transfer response models, covered in many standard time
series books.

The idea of dimensionality reduction via factor models in the regression con-
text is also not new and is also related to the basic factor model set-up, as
expected. Considering a set of multivariate observations yt related to another
collection of observations xt at a latent level gives rise to the structural equation
model (SEM)

yt = βygt + εyt, εyt ∼ N(0,Σy),

xt = βxft + εxt, εxt ∼ N(0,Σx),

gt = ∆ygt + ∆ft + εt, εgt ∼ N(0,Σg).

The loading matrices βx and βy play exactly the same role as in factor models.
The novelty here is the introduction of the relational matrices ∆ and ∆y, es-
tablishing a regression relation between the set of variables xt and yt at a latent
level. This basic SEM set-up is described in detail by [46]. The Bayesian approach
to SEM is described in [37]. It is worth pointing out that the standard factor
model (1.1) is recovered after suitable concatenation of observables (xt,yt) and
factors (ft, gt), respectively.

The extension towards time series problems is not difficult to obtain follow-
ing the standard recipe of the previous sections of this Chapter. Just like (1.2)
establishes the dynamic of the factors for the time series settings, [9] proposed
the dynamics of the two sets of factors as

g(t) =

p∑
i=0

∆yigt−i +

q∑
j=0

∆jft−j + εgt, εgt ∼ N(0,Σg)

f(t) =

s∑
j=1

∆xjft−j + εft, εft ∼ N(0,Σf ).

He refer to this model as dynamic SEM. [12] cast the dynamic SEM in state
space form and applied it to the analysis of environmental problems. Once again,
the DFM given in (1.1)–(1.2) can be recovered by appropriate concatenation of
observables (xt,yt) and factors (ft, gt). Even more so than in DFM, it is very
hard to estimate this model in its full expression for typical applications. The
more natural simplifications can be obtained by restricting the order p, q, s of the
auto- and cross-regressions to small values, say 1 or 2. Once again, the model
can be written in state-space form by appropriately enlarging the state vector
according to the order of lagged dependence of the latent factors.

These ideas were applied to the Spatial Statistics context by [27]. Once again,
the columns of the loading matrices were assumed to follow independent Gaus-
sian processes in order to impose stochastic similarity between neighboring sites.
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The presence of two sets of variables introduces further possibilities beyond stan-
dard DFM. In particular, relationships between the loading matrices βx and βy
may be introduced. For example, [27] use βx as a (latent) design matrix for the
mean of βy. Illustrative examples and further discussion about model specifica-
tion and evaluation in provided in [27].

1.6 Concluding remarks

This Chapter was concerned with the discussion on the use of factor models
in the time series context via state space formulation. The key element of the
approach is its ability to reduce the dimensionality in the multivariate time series
context and at the same time shed some light on the structure of the relationship
between the different time series. Our presentation has focused exclusively on the
discussion about model building. As a result, a number of other issues were not
addressed. We will briefly comment upon them now.

By far the most important item not yet discussed is prediction. Time series is
primarily concerned with forecasting into the future. The model-based approach
of state space models followed here enables easy calculation of the predictive
distributions p(yT+h|yT ) where yt = (y1, ...,yt), for all t, h. This is available
approximately after obtaining the predictive distribution p(fT+h|yT ) for the
latent factors and predictions can be approximated by samples. This exercise
was made in examples 1.2 and 1.3. Note also that the prediction exercise is very
similar to the kriging exercise required for spatial extrapolation and that was
also illustrated in the examples above. Details are provided in [32].

Another important issue is generated by the large amount of possibilities
rendered by these classes of models. There are a number of options provided by
the choice of the number of regular and seasonal factors and the orders of the
factors dynamics. There are a few options available for model selection including
AIC, BIC and DIC. These are mostly based on model fit after some penalization
for complexity. One may also consider the estimation of the number of factors
in a RJMCMC algorithm. In this time series, we feel that model comparison
should be more heavily based on predictions rather than fit. Even more so than
in the other areas of Statistics, given the relevance of prediction for the time
series context. Standard practice in this area is based on cross-validation, where
a portion of the data is left out of the fit. This portion typically consist on the
last observed points to mimic the real exercise of forecasting into the future.

The description above illustrate some of the many possibilities for the use of
factor models in the time series context. The presentation of the spatial applica-
tions was entirely on data collected under continuous spatial variation. Similar
ideas were applied to the context of discrete spatial variation or areal data by [47].
There are a number of extensions that can be envisaged by appropriately combin-
ing some of the model components described in this Chapter. We are currently
working on some of them and will be reporting it in the near future.
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