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Abstract

This paper is concerned with the analysis of time series data with temporal depen-

dence through extreme events. This is achieved via a model formulation that considers

separately the central part and the tail of the distributions. A two component mix-

ture model is used for splitting the data into the extreme regime and the central part.

Extremes beyond a threshold are assumed to follow a generalized Pareto distribution

(GPD) and the parameters of the GPD are allowed to vary stochastically with time,

thus inducing temporal dependence. Temporal variation and dependence is introduced

at a latent level via the use of dynamic linear models (DLM). The central part follows

a nonparametric, mixture approach. The uncertainty about the threshold is explic-

itly considered. Posterior inference is performed through Markov Chain Monte Carlo

(MCMC) methods. A variety of scenarios can be entertained and include the possibil-

ity of alternation of presence and absence of a finite upper limit of the distribution for

different time periods. Simulations are carried out in order to analyze the performance

of our proposed model. We also apply the proposed model to financial time series: the

returns of Petrobras stocks and Bovespa index, all of which exhibit several extreme

events. Results show advantage of our proposal over currently entertained models such

as stochastic volatility, with improved estimation of high quantiles and extremes.
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1 Introduction

Extreme value theory was shown to provide a very useful tool in many areas of application

where precise knowledge of the tail behavior of a distribution is of central interest. The

areas where most impact was achieved are environmental science and finance. In financial

applications, the main concern is an accurate assessment of the probability of huge losses or

gains for any given stock. The same is valid for other financial indicators such as curren-

cies, interest rates and futures. In environmental applications, Nascimento et al. (2011a,b),

Parmesan et al. (2000) and Huerta and Sansó (2007) are just a sample of a large literature

concerned with extremes in climatological features such as rain and temperature.

One approach of modelling extreme data is to consider the distribution of exceedances over

a high threshold. Pickands (1975) showed that the limiting distribution of exceedances over

suitably large thresholds behaves in a very stable fashion, converging to a the generalized

Pareto distribution (GPD). Let x be the excess over a high threshold, say u. It is said that

x follows a generalized Pareto distribution with tail parameters ξ and σ, denoted here by

GPD(x; ξ, σ), if its cumulative distribution function (cdf) can be written as

G(x; ξ, σ) =

 1−
(
1 + ξx

σ

)−1/ξ
, if ξ 6= 0

1− exp(−x/σ), if ξ = 0
. (1)

The tail parameters ξ and σ are shape and the scale, respectively. The support of a GPD

is x ≥ 0 when ξ ≥ 0, 0 ≤ x ≤ σ/|ξ| when ξ < 0 and the data is said to exhibit heavy tail

behavior when ξ > 0. The associated probability density function (pdf) is

g(x; ξ, σ) =

 (1 + ξx/σ)
−(1+ξ)/ξ
+ /σ if ξt 6= 0

exp(−x/σ)/σ if ξt = 0
, (2)

where (a)+ denotes max{0, a}.

Traditional analysis of such a model is performed by fixing the threshold u, which is chosen
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either graphically by looking at the mean residual life plot (Coles, 2001; Embrechts et al.,

1997), or by simply setting it at some high percentile of the data (DuMouchel, 1983). Never-

theless, the literature showed how the threshold selection influences the parameter estimation

(Coles and Powell, 1996; Coles and Tawn, 1996a,b; Smith, 1984). Behrens et al. (2004) pro-

posed a model to fit extreme data where the threshold itself is one of the model unknowns.

More specifically, they proposed a parametric form to explain the data variability below

the threshold and a GPD for the data above it. More recently, Nascimento et al. (2011b)

generalized Behrens et al. (2004) allowing more flexibility below the threshold with a finite

mixture of distributions.

However, all previous models consider static GPD parameters. In many situation, the tail

behavior governing the extremes may change with the passage of time. Time trends and

seasonality are only a few of the reasons for these changes and introduce temporal dependence

in the evaluation of extremes.

We extend previous models by allowing the GPD parameters to be time dependent. These

feature will be shown to be important when modeling real datasets, such as in financial time

series data (see Section 4). Basically, this is done by embeding the extreme parameters in

a non-linear dynamic system (West and Harrison, 1997). A similar idea was proposed by

Huerta and Sansó (2007) who model daily ozone levels in the US via a generalized extreme

value (GEV) distribution whose parameters evolve both in time and in space.

The remainder of the paper is organized as follows. Section 2 introduces our proposed model.

We also discuss the prior specifications for model parameters and, in particular, introduce

the DLM in the GPD context. We carry out simulation study and discuss the performance

of our model in Section 3. In section 4 the model is applied to three financial time series

from the Brazilian stock exchange data. The relevance of the changes introduced in this

paper will be detailed here. Section 5 concludes the paper.
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2 Time-varying tail behavior

Consider a time series yt where, for a high threshold ut, it is assume that {yt|yt < ut} is

modeled by a finite mixture of distributions, while {yt|yt > u} follows a GPD with time-

varying parameters ut, ξt and σt.

In this model, the parameters characterizing extremal behavior change with time. The

model will be completed below with a mixture specification below the threshold. The nature

of the mixture for the description below the threshold does not render any meaning to

its components. The non-parametric nature of this specification enables the best possible

marginal fit for this part of the model. Further dependence could be introduced in the central

part eg via copulas. This is not pursued here since the main aim of the model is to estimate

time-varying extremal behavior.

2.1 Modeling below and at the threshold

Given the lack of information below the threshold, non-parametric approximations seem a

natural choice. Wiper et al. (2001) showed that a mixture of Gamma distributions, denoted

here by MGk, provides a good approximation for distributions with positive support. Nasci-

mento et al. (2011b) used this approach with good results both in terms of density estimation

and reliable threshold estimation. The probability density function (pdf) of this mixture is

given by

h(x;µ, α, p) =
k∑
j=1

pjfG(x;µj, αj), (3)

where µ = (µ1, . . . , µk), α = (α1, . . . , αk), p = (p1, . . . , pk) is the vector of mixture component

weights and fG(x;µ, α) is the Gamma density with mean µ, variance µ/α and evaluated at

x. The means µjs and shapes αjs may take any positive value and weights pjs are positive

and add up to one. The number of components k may be known and fixed or an additional

model parameter and estimated. In this paper we compare models for different values of k

5



via the deviance information criterion (DIC) of Spiegelhalter et al. (2002). For more details

see the applications in Sections 3 and 4.

The priors for µ and α follow Wiper et al. (2001) and Nascimento et al. (2011b), and are

given by

p(µ1, . . . , µk) ∝
k∏
i=1

fIG(µi; ai/bi, bi)I(µ1 < µ2 < . . . < µk)

and

p(α1, . . . , αk) =
k∏
i=1

fIG(αi; ci/di, di),

respectively. The prior distribution for the weights p is assumed to be a Dirichlet distribution

Dk(γ1, . . . , γk), whose density is proportional to
∏k

i=1 p
γi
i . The hyperparameters of the inverse

gamma distributions, ai, bi, ci and di, for i = 1, . . . , k are chosen to characterize little prior

information regarding the µs and the αs. For the weights p, the hyperparameters in γ are

chosen such that γ1 = · · · = γk = γ a priori, where γ is large enough to induce large prior

variability. More details can be found in the simulation exercise of Section 3.

2.2 Modeling above threshold

It is well known that the Gamma distribution belongs to the maximum domain of attraction

of a Gumbel distribution. It can be easily shown that the result can be extended for mixture

of Gamma distributions based on the results of Embrechts et al. (1997), page 156, which

turns out to be a necessary condition for modeling the excess over the threshold via a GPD.

Therefore, combining the two parts of the data, the cdf of yt is

Ft(yt; Θ) =

 H(yt;µ, α, p) if yt < u

H(u;µ, α, p) + [1−H(u;µ, α, p)]G(yt − u; ξ, σ) if yt ≥ u
, (4)
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where Θt = (µ, α, p, u, ξ, σ), u = {ut}, ξ = {ξt}, σ = {σt} and H(·;µ, α, p) is the cdf

associated with the mixture of gammas pdf h(·; θ, p) in (3). Consequently, for a sample of

observations y = (y1, · · · , yT ), the full likelihood function for the model can be written as

L(y; Θ) =
∏

{t|yt<ut}

h(yt;µ, α, p)
∏

{t|yt≥ut}

(1−H(ut;µ, α, p))g(yt − ut; ξt, σt). (5)

Notice that observations yt below the threshold ut only contribute to the likelihood via the

first product on the right hand side of the above likelihood equation. In other words, learning

µ, α and p is solely based on the set of yts below ut. Similarly, learning ξt and σt is solely

based on the set of yts above ut, which is usually a much smaller set than the one below ut.

Learning about ut is based on a combination of the two likelihood components. It is exactly

the distinction between these two parts that enables the threshold estimation.

Another advantage of this class models is the case with which higher quantiles can be ob-

tained. For values beyond the threshold, It is straightforward to obtain the p-quantile, by

q = ut +
((1− p∗)−ξt − 1)σ

ξt
, (6)

where p∗ = {p − H(ut | µ, η, p)}/{1 − H(ut | µ, η, p)}, for quantiles beyond the threshold.

Typically, one is interested in high quantiles well above the threshold but similar calculations

can be performed for lower quantiles, even below the threshold.

2.3 Dynamic modeling

The model allows for time variation of the GPD parameters Ψt = (ut, ξt, σt) but this is too

general for practical purposes. These parameters are expected to be related and can be

described probabilistically in an evolution form

Ψt = g(Ψt−1, wt), (7)

7



where g is a possibly non-linear function and the wt´s are random disturbance random

vectors. The temporal relation (7) serves a number of purposes: a) it induces temporal

correlation between observations; b) it allows for information to be borrowed from successive

times thus strengthening the inference procedures; c) it establishes smoothness constraints

in the GPD parameters thus avoiding unrealistic discontinuities in their temporal evolution.

A number of possibilities are available through (7). The most common ones are the inclu-

sion of trend and seasonality in some model components. Obviously static parameters are

contained in this class of models as the limiting case where g is the identity function and

wt = 0, for all t.

The simplest non-degenerate form of this model is provided by the first order dynamic linear

model (DLM), as in West and Harrison (1997). It can be used to model directly the GPD

parameters across time. A simple local evolution would assume that

ξt = ξt−1 + wξ,t wξ,t ∼ N(0, 1/Wξ)

σt = σt−1 + wσ,t wσ,t ∼ N(0, 1/Wσ)

ut = ut−1 + wu,t wu,t ∼ N(0, 1/Wu)

where the precisions Wξ, Wσ and Wu drive the local evolution and degree of smoothness of

ξ, σ and u and can be user specified or estimated.

The above specification assumes that u, σ and ξ are real values. However, u and σ need to

be positive, while Smith (1984) showed that maximum likelihood estimators are inexistent

when ξ < −1. Therefore, the above model can be revised by applying a first order DLM to
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transformed parameters lut = log ut, lσt = log σt and lξt = log(ξt + 1) as in

lξt = θξ,t + vξ,t vξ,t ∼ N(0, 1/Vξ)

θξ,t = θξ,t−1 + wξ,t wξ,t ∼ N(0, 1/Wξ)

lσt = θσ,t + vσ,t vσ,t ∼ N(0, 1/Vσ)

θσ,t = θσ,t−1 + wσ,t wσ,t ∼ N(0, 1/Wσ)

lut = θu,t + vu,t vu,t ∼ N(0, 1/Vu)

θu,t = θu,t−1 + wu,t wu,t ∼ N(0, 1/Wu),

(8)

for t = 1, . . . , T and the initial information θ0,ξ ∼ N(m0,ξ, C0ξ), θ0,σ ∼ N(m0,σ, C0σ) and

θ0,u ∼ N(m0,u, C0u). The additional system disturbances vξ,t vσ,t and vu,t have proved useful

to provide further smoothing to the latent evolution of the GPD parameters and their use

was supported by the data.

The priors for Vξ, Vσ and Vu are gammas G(fξ, oξ), G(fσ, oσ) and G(fu, ou), while the priors

for Wξ, Wσ and Wu are G(lξ,mξ), G(lσ,mσ) and G(lu,mu). Similar to the hyperparameters

of the mixture components, the vector (m0,ξ, C0ξ,m0,σ, C0σ,m0,u, C0u, fξ, oξ, fσ, oσ, fu, ou, lξ,

mξ, lσ,mσ, lu,mu) are chosen to induce vague prior information. More details can be found

in the simulation exercise of Section 3.

The logarithmic transformation of the threshold was applied in (8) but is typically unneces-

sary given this is a location parameter and given the negligible amount of probability below

the lower limit of the data support, typically set at 0. So, lut can be replaced by ut with

appropriate care with the truncation below 0.

Many other possibilities are available with the broad spectrum of state space models rendered

by (7). In particular, (8) can be further simplified by allowing some of the model parameters

to be static. For example, if the threshold u is deemed to remain constant through time,

it may be dropped from the evolutions in (8). In this case, a normal distribution with

parameters (µu, σ
2
u), truncated below 0, may be assumed. The parameter µu is typically set

at a high data percentile and σ2
u may be large if one wants to represent a fairly noninformative
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prior. A normal distribution to the logarithm of the threshold is another possibility to avoid

the truncation, as in (8).

2.4 Posterior distribution

From the likelihood function and the prior distributions specified above, we use Bayes’ the-

orem to obtain the posterior distribution, up to a normalizing constant, as follows

π(Θ|y) ∝
∏

{t|yt<u}

 k∑
j=1

pjfG(yt;µj , ηj)

 ∏
{t|yt≥u}

1−
k∑
j=1

pjFG(u;µj , ηj)

 g(yt − u; ξt, σt)


×

k∏
j=1

[
η
aj−1
j e−bjηjβ

−(cj+1)
j e−dj/µj

]

× V
T/2+fξ−1
ξ exp

(
−
Vξ
2

T∑
t=1

(lξt − θξ,t)2 − oξVξ

)
exp

(
− 1

2Cξ,0
(θξ,0 −mξ,0)2

)

× W
T/2+lξ−1
ξ exp

(
−
Wξ

2

T∑
t=1

(θξ,t − θξ,t−1)2 −mξWξ

)

× V T/2+fσ−1
σ exp

(
−Vσ

2

T∑
t=1

(lσt − θσ,t)2 − oσVσ

)
exp

(
− 1

2Cσ,0
(θσ,0 −mσ,0)2

)

× W T/2+lσ−1
σ exp

(
−Wσ

2

T∑
t=1

(θσ,t − θσ,t−1)2 −mσWσ

)

× V T/2+fu−1
σ exp

(
−Vu

2

T∑
t=1

(lut − θu,t)2 − ouVu

)
exp

(
− 1

2Cu,0
(θu,0 −mu,0)2

)

× W T/2+lu−1
u exp

(
−Wu

2

T∑
t=1

(θu,t − θu,t−1)2 −muWu

)
, (9)

with Θ =
(
µ, α, p, u, {lξt}Tt=1, {lσt}Tt=1, {θξ,t}Tt=0, {θσ,t}Tt=0, Vξ, Vσ,Wξ,Wσ

)
. The likelihood in

the first row, while the prior for the parameters below u is in the second row. Third to sixth

rows are the priors for the DLM precisions and the latent state space variables. As expected,

posterior inference is analytically infeasible, so Bayesian inference is performed through a

customized Markov Chain Monte Carlo algorithm (Gamerman and Lopes, 2006), which is
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outlined in the appendix.

3 Simulation study

We test our model and posterior sampling algorithm on a simulated data set. The data set is

generated as follows: i) starting from the given value of θξ,0 and θσ,0, we generate an ordered

sequence of {lξt}Tt=1 and {lσt}Tt=1 using DLM equations as specified in Section 2, then ii)

we draw an ordered sequence of T observations from G(µ, α) and iii) define u as constant

in time and set at a high quantile qp from the generated sample. Let T1 be the number

of observations, out of T , that are below u. Retain these T1 observations and keep their

values and iv) replace T − T1 observations above u with draws from GPD(ξt, σt, u), with t

corresponding to the location of the observation being replaced. The parameters used in the

simulation are as follows: T ∈ {1000, 2500, 10000}, u = q80, α = 1.0, µ = 5.0, θξ,0 = 0.2 and

θσ,0 = 2.0, where q80 is the 80th percentile of the sample, Vξ = 200, Vσ = 200, Wξ = 1000

and Wσ = 1000. These correspond to standard deviations of the order of 0.071 and 0.032.

This specification is reasonable to mimic the behavior of daily data where abrupt changes are

unlikely to occur between consecutive days. The sample size T1 and p automatically define

the value of the threshold parameter u. Obviously, the average number of observations above

the threshold are in {200, 500, 2000}. We implement the MCMC algorithm detailed in the

appendix.

The priors used are as described in Section 2. More specifically, µj ∼ IG(2.1, 5.5) and

ηj ∼ G(6, 0.5), for j = 1, . . . , k. These distribution have mean around the actual parameter

value but with large variance to represent lack of information: The prior variances of µjs

and ηjs are 250 and 24, respectively. Additionally, Dk(1, . . . , 1) is the prior for the weights

p and N(u0, 10) is the prior for the threshold parameters, u, for u0 the true value. This

distribution is relatively vague with a 95% probability interval from 3.7 and 16.3 for the

threshold, covering more than half of the observations.
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The hyperparameters of the prior distributions for the parameters driving the dynamic model

are m0,ξ = m0,σ = 0.2, C0,ξ = C0,σ = 1000. The other hyperparameters (fξ, oξ, fσ, oσ, lξ,mξ,

lσ,mσ) are chosen such that the priors are centered around the true values with standard

deviations around 100. The chains are initialized from the respective prior distributions.

After a burn-in of 150,000 iterations, the remaining 50,000 iterations are used for inference.

The posterior mean and variance are computed after thinning at every 100 steps, leading

to posterior approximations based on 500 draws. Convergence was established for all model

parameters based on standard convergence diagnostic tests. Two parallel chains are run

from distinct initial values.

Table 1 gives the posterior mean and the 95% posterior credibility interval for every model

parameter except {lξt}Tt=1, {lσt}Tt=1, {θξ,t}Tt=1 and {θσ,t}Tt=1. The posterior mean of each

parameter is close to its respective true value, and the true value lies within the correspond-

ing 95% posterior credibility interval. As expected, estimates are more accurate for larger

samples sizes for both parameters below and above the threshold. Figure 1 shows the diffi-

culty in estimating tail parameters when the (tail) sample size is relatively small T = 1, 000

(T1 = 200). The results are more stable and reliable when T = 2, 500 and T = 10, 000.

In additional to posterior inference of the parameters that define the model, it is commonly

desirable to learn about the extreme quantiles. This paper adds to the literature by introduc-

ing the ability to learn the time-varying behavior of extreme events. Figure 2 shows estimates

for the 95th and 99th percentiles of the data over time, for T = 1, 000 and T = 2, 500, re-

spectively. In both examples, the estimated percentiles virtually match the actual, simulated

ones.

Recall that when ξ is negative, the support of the GPD has a finite maximum, given by

u− σ/ξ. When dealing with time varying ξ, it is possible that a finite maximum exists at a

given time but not at subsequent times depending on whether ξt remains greater than zero

or not. Figure 2 shows that true maxima are well estimated by the model.
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4 Application to Brazilian stock returns

The dynamic extreme value model is now applied to the study of two well-known financial

Brazilian time series: i) Petrobrás1 returns and ii) Ibovespa returns, where Ibovespa is

the index of the Brazilian stock exchange (Bovespa). The data sets are thus chosen given

their importance to financial market and the presence of many extreme events. For each

data set, the original data, daily closing prices pt, are first converted to daily returns via

xt = pt/pt−1 − 1, and then converted into the data we use by yt = 100 × |xt − x̄|, where x̄

is the sample average of xt. The subtraction of x̄ from each xt is used to avoid zeros in the

converted data and the multiplication of 100 is introduced for convenience of presentation.

Absolute values are used since financial data sets usually exhibit clusters of high volatility,

caused by either positively or negatively large returns. Both positive and negative large

returns are important in most practical volatility evaluations by risk analysts. The analyses

reported here are based on a constant threshold with normal prior distribution and time

varying scale and form parameters of the GPD.

Petrobras. We analyzed daily absolute returns for the Petrobrás company from July 1st

2002 to June 30th 2011 or 2267 observations. Petrobrás is the state-run Brazilian oil company

and is ranked among the top 50 biggest companies in the world. This period includes the

credit crunch that affected major financial markets around the globe (Lopes and Polson,

2010). This is highlighted by the larger volatility for the second half of the observed time

series (the credit crunch of 2007-2008) as indicated by Figure 3.

The following models were entertained: i) stochastic volatility AR(1) model2, ii) mixture

of Gamma distributions, denote here by MGk, iii) mixture of gammas below threshold and

GPD beyond threshold with static parameters, denoted MGPDk, and iv) mixture of gam-

mas below threshold and GPD beyond threshold and time-varying tail parameters, denoted

1Similar results, not presented here but available upon request, were obtained when analyzing Vale do
Rio Doce, which is, along with Petrobrás, the biggest (non-banking) company in Brazil.

2See, for instance, Lopes and Polson (2010) and their references for further details on stochastic volatility
models.
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MGPDLMk. Table 2 compare these models for each time series via the deviance informa-

tion criterion (DIC) of Spiegelhalter et al. (2002). Our proposed model clearly outperforms

the existing alternatives. The bottom panels of Figure 3 presents the time-varying behavior

of both tail parameters, i.e. ξt and σt. The figure shows 2 time periods when these be-

come larger. The most prominent one corresponds to the 2nd semestre of 2008, a period

of crisis with larger returns in absolute value. The scale parameter ξt reflects the increase

in the weight of the tail, typical of more volatile market conditions. This will also impact

the estimation of higher quantiles, that will typically increase as the scale of the GPD gets

larger.

Table 2 shows that GDP with time-varying parameters fits well the data beyond the thresh-

old, better than all other models considered. As discussed earlier in the simulated example,

one of the key features of extreme value models is the possibility of computing high quantiles

of the data, which is exacerbated when dealing with financial time series data with time-

varying variance components. Figure 3 shows that both the 95th and the 99th percentiles of

Petrobras’ absolute returns follow the data pattern, specially so during the crisis in the 2nd

semester of 2008.

Ibovespa. We analyzed daily absolute returns for the Bovespa Index. The Bovespa Index,

or simply Ibovespa, is an index of about 50 stocks that are traded on the São Paulo Stock,

Mercantile and Futures Exchange. Petrobras is included in the Ibovespa. Here we analyzed

data from July 1st 2002 to June 30th 2011 or 2229 observations. Similar to the analysis of

the Petrobras dataset, Table 2 shows that a MGDP with time-varying parameters fits well

the data beyond the threshold, while a single gamma distribution is not enough for the data

below the threshold. Similarly to the simulated exercise, Figure 4 shows the estimation of

the maximum and high quantiles at any time point. It also shows that higher quantiles get

larger and the upper limit vanishes during periods of crisis. During calm market periods,

these tend to get smaller to the point of allowing for a finite upper limit to the values of the

series with probability close to 1. In these cases, the very high 99.9999% quantile and the
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upper limit become close.

5 Conclusions

In this paper we propose an extension to the mixture model used by Nascimento et al.

(2011b), by allowing parameters to vary across time. Dynamic linear models are introduced

to model the time-varying behavior of tail parameters of the GPD. Posterior inference is

accomplished approximately with MCMC methods are extensively applied, with particular

emphasis on the Metropolis-Hastings and Gibbs types. A simulation study was performed

and the results have shown that we obtained good estimates of the parameters and success-

fully caught the major time-varying patterns of the shape parameter. The real applications

have also been encouraging in which they all point out towards the existence of time vary-

ing tail behavior in common financial time series data, even to the point of favoring this

approach when compared against standard procedures such as stochastic volatility models

An immediate extension of our proposal, is to consider more complex dynamic structures

for ξ, σ and u. Huerta and Sansó (2007), for example, used second order dynamic to model

growth of the location parameter of a GEV distribution. Another extension involves dynamic

regression structures for ξ and/or σ, where external, possibly exogenous, information might

be combined with standard dynamic structures.

Appendix - MCMC scheme

In this section we detail the MCMC algorithm we designed to perform posterior infer-

ence regarding Θ. Following from the updated lξt{yt > u}, lσt{yt > u}, u, α, µ and p

are drawn using standard Metropolis-Hastings steps. Simultaneously, also following from

lξt{yt < u}, lσt{yt < u}, Vξ, Vσ,Wξ,Wσ, θξ and θσ are drawn via Gibbs steps. Suppose that

at iteration s, the chain is at Θ(s). Then, at iteration s + 1, the algorithm cycles through
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the following steps.

Sampling (µ, α). The components of (µ, α) are sampled separately for each mixture com-

ponent. The αj’s and µj’s must be positive. Therefore, α∗j is proposed from α∗j |α
(s)
j ∼

G(α
(s)
j , α

(s)2

j /Vαj). Note that, E(α∗j | α
(s)
j ) = α

(s)
j , and V ar(α∗j | α

(s)
j ) = Vαj , for j = 1, . . . , k.

Same procedure is adopted for the proposal for µj, given by µ∗j |µ
(s)
j ∼ G(µ

(s)
j , µ

(s)2

j /Vµj)IA,

where IA = I(µ
(s+1)
1 < . . . < µ

(s+1)
j−1 < µ

(s)
j < µ

(s)
j+1 < . . . < µ

(s)
k ) and the difference that they

must also obey the order constraint. The values α
(s+1)
j = α∗j and µ

(s+1)
j = µ∗j are accepted

with probability

min

8<:1,
π(Θ∗|y)fG(µ

(s)
j |µ

∗
j , µ

∗2
j /Vµj )fG(α

(s)
j |α

∗
j , α

∗2
j /Vαj )I(µ

(s+1)
1 < . . . < µ∗j < . . . < µ

(s)
k )

π(Θ̃|y)fG(µ∗j |µ
(s)
j , µ

(s)2
j /Vµj )fG(α∗

j |α
(s)
j , α

(s)2
j /Vαj )I(µ

(s+1)
1 < . . . < µ

(s)
j < . . . < µ

(s)
k )

9=; ,

where Θ∗ = (α
(s+1)
<j , α∗

j , α
(s)
>j , µ

(s+1)
<j , µ∗j , µ

(s)
>j , p

(s), u(s), {lξ(s)t }Tt=1, {lσ
(s)
t }Tt=1, {θ

(s)
ξ,t }

T
t=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ )

and Θ̃ = (α
(s+1)
<j , α

(s)
≥j , µ

(s+1)
<j , µ

(s)
≥j , p

(s), u(s), {lξ(s)t }Tt=1, {lσ
(s)
t }Tt=1, {θ

(s)
ξ,t }

T
t=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ), with

y<l = (y1, . . . , yl−1) and y≥l = (yl, . . . , yk), for any vector y = (y1, . . . , yk).

Sampling p. p∗ is sampled from a Dirichlet with parameters (Vpp
(s)
1 , . . . , Vpp

(s)
k ), where

Vp is a tuning constant that determines the variance of the proposal distribution. Then,

set p(s+1) = p∗ with probability min{1, π(Θ∗|y)fD(p(s)|p∗)/[π(Θ̃|y)fD(p∗|p(s))]}, where Θ∗ =

(α(s+1), µ(s+1), p∗, u(s), {lξ(s)t }Tt=1, {lσ
(s)
t }Tt=1, {θ

(s)
ξ,t }Tt=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ) and Θ̃ = (α(s+1),

µ(s+1), p(s), u(s), {lξ(s)
t }Tt=1, {lσ

(s)
t }Tt=1, {θ

(s)
ξ,t }

T
t=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ),

Sampling {lξt}Tt=1. For a value t between 1 and T , if xt < u(s), then the parameter can be

samplet by: lξ
(s+1)
t ∼ N(θ

(s)
ξ,t , 1/V

(s)
ξ ). Now, if xt ≥ u(s) its necessary sampling lξt by Metropo-

lis algorithm. The proposal distribution to lξ∗t is a truncated Normal N(lξ
(s)
t , Kξ,t)I(ξU ,∞),

where ξU = log(−σ(s)
t /(xt− u(s)) + 1), σ

(s)
t = exp(lσ

(s)
t ). Then, lξ

(s+1)
t = lξ∗t with probability

min

{
1,
π(Θ∗|y)Φ((lξ

(s)
t − ξU)/

√
Kξ,t))

π(Θ̃|y)Φ((lξ∗t − ξU)/
√
Kξ,t))

}
,
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where Θ∗ = (α(s+1), µ(s+1), p(s+1), u(s), lξ
(s+1)
<t , lξ∗t , lξ

(s)
>t , {lσ

(s)
t }Tt=1, {θ

(s)
ξ,t }

T
t=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ) and Θ̃ =

(α(s+1), µ(s+1), p(s+1), u(s), lξ
(s+1)
<t , lξ

(s)
≥t , {lσ

(s)
t }Tt=1, {θ

(s)
ξ,t }Tt=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ).

Sampling {lσt}Tt=1. For a value t between 1 and T , if xt < u(s), then the parameter

can be samplet by: lσ
(s+1)
t ∼ N(θ

(s)
σ,t , 1/V

(s)
σ ). Now, if xt ≥ u(s) its necessary sampling lσt

by Metropolis algorithm. If ξ
(s+1)
t = exp(lξ

(s+1)
t ) − 1 > 0, sampling lσ∗t by N(lσ

(s)
t , Kσ,t).

Then, lσ
(s+1)
t = lσ∗t with probability min{1, π(Θ∗|x)/π(Θ̃|x)}. If ξ

(s+1)
t < 0, the proposal

distribution to lσ∗t é is a truncated Normal N(lσ
(s)
t , Kσ,t)I(σU ,∞), where σU = log(−ξ(s)

t ) +

log(xt − u(s)). Then, lσ
(s+1)
t = lσ∗t with probability

min

{
1,
π(Θ∗|y)Φ((lσ

(s)
t − σU)/

√
Kσ,t))

π(Θ̃|y)Φ((lσ∗t − σU)/
√
Kσ,t))

}
,

where Θ∗ = (α(s+1), µ(s+1), p(s+1), u(s), {lξ(s+1)
t }Tt=1, lσ

(s+1)
<t , lσ∗

t , lσ
(s)
>t , {θ

(s)
ξ,t }

T
t=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ) and

Θ̃ = (α(s+1), µ(s+1), p(s+1), u(s), {lξ(s+1)
t }Tt=1, lσ

(s+1)
<t , lσ

(s)
≥t , {θ

(s)
ξ,t }Tt=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ).

Sampling u. The proposal threshold u∗ is sampled from a N(u(s), Vu)I(u
(s)
L ,∞), where

u
(s)
L = max

{
min(x1, . . . , xT ), max

{t:ξ(s+1)
t <0,xt>u(s)}

(xt + σ(s+1)/(ξ
(s+1)
t (1 + ξ

(s+1)
t )))

}
,

Vu is the proposal variance distribution to the threshold. The value u(s+1) = u∗ is accept

with probability

min

{
1,
π(Θ∗|x)Φ((u(s) − u(s)

L )/
√
Vu)

π(Θ̃|x)Φ((u∗ − u(s)
L )/
√
Vu)

}
,

where Θ∗ = (α(s+1), µ(s+1), p(s+1), u(s), {lξ(s+1)
t }Tt=1, {lσ

(s+1)
t }Tt=1, {θ

(s)
ξ,t }Tt=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ )

and Θ̃ = (α(s+1), µ(s+1), p(s+1), u∗, {lξ(s+1)
t }Tt=1, {lσ

(s+1)
t }Tt=1, {θ

(s)
ξ,t }Tt=0, {θ

(s)
σ,t}Tt=0, V

(s)
ξ , V

(s)
σ ,W

(s)
ξ ,W

(s)
σ ).
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Gibbs steps for the parameters of the dynamic linear models. It is relatively simple

to show that Vξ, Wξ, θξ,t, Vσ, Wσ and θσ,t can be updated via Gibbs steps

V
(s+1)
ξ ∼ G

(
fξ + T

2

oξ +
∑T

t=1(lξ
(s+1)
t − θ(s)

ξ,t )
2
, fξ +

T

2

)
,

W
(s+1)
ξ ∼ G

(
lξ + T

2

mξ +
∑T

t=1(θ
(s)
ξ,t − θ

(s)
ξ,t−1)2

, lξ +
T

2

)
,

θ
(s+1)
ξ,0 ∼ N

(
W

(s+1)
ξ θ

(s)
ξ,1 +mξ,0/Cξ,0

W
(s+1)
ξ + 1/Cξ,0

,
1

W
(s+1)
ξ + 1/Cξ,0

)
,

θ
(s+1)
ξ,t ∼ N

(
V

(s+1)
ξ lξ

(s+1)
t +W

(s+1)
ξ (θ

(s)
ξ,t+1 − θ

(s+1)
ξ,t−1 )

V
(s+1)
ξ + 2W

(s+1)
ξ

,
1

V
(s+1)
ξ + 2W

(s+1)
ξ

)
,

t = 1, . . . , T − 1,

θ
(s+1)
ξ,T ∼ N

(
V

(s+1)
ξ lξ

(s+1)
T +W

(s+1)
ξ θ

(s+1)
ξ,T−1

V
(s+1)
ξ +W

(s+1)
ξ

,
1

V
(s+1)
ξ +W

(s+1)
ξ

)
,

V (s+1)
σ ∼ G

(
fσ + T

2

oσ +
∑T

t=1(lσ
(s+1)
t − θ(s)

σ,t)
2
, fσ +

T

2

)
,

W (s+1)
σ ∼ G

(
lσ + T

2

mσ +
∑T

t=1(θ
(s)
σ,t − θ

(s)
σ,t−1)2

, lσ +
T

2

)
,

θ
(s+1)
σ,0 ∼ N

(
W

(s+1)
σ θ

(s)
σ,1 +mσ,0/Cσ,0

W
(s+1)
σ + 1/Cσ,0

,
1

W
(s+1)
σ + 1/Cσ,0

)
,

θ
(s+1)
σ,t ∼ N

(
V

(s+1)
σ lσ

(s+1)
t +W

(s+1)
σ (θ

(s)
σ,t+1 − θ

(s+1)
σ,t−1)

V
(s+1)
σ + 2W

(s+1)
σ

,
1

V
(s+1)
σ + 2W

(s+1)
σ

)
,

t = 1, . . . , T − 1,

θ
(s+1)
σ,T ∼ N

(
V

(s+1)
σ lσ

(s+1)
T +W

(s+1)
σ θ

(s+1)
σ,T−1

V
(s+1)
σ +W

(s+1)
σ

,
1

V
(s+1)
σ +W

(s+1)
σ

)
.
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T=1,000 T=2,500 T=10,000
True Mean 95% C. I. True Mean 95% C. I. True Mean 95% C. I.

µ 5.0 4.8 (4.4,5.1) 5.0 4.8 (4.7,5.0) 5.0 4.94 (4.82,5.05)
α 1.0 1.0 (0.96,1.14) 1.0 1.02 (0.97,1.08) 1.0 1.01 (0.98,1.03)
u 7.5 7.6 (7.5,8.1) 7.8 7.8 (7.7,7.9) 7.9 7.9 (7.8,8.0)

θξ,0 0.2 0.26 (0.1,0.4) 0.2 0.20 (0.0,0.4) 0.2 0.16 (0.0,0.4)
θσ,0 2.0 2.0 (1.9,2.2) 2.0 2.0 (1.8,2.2) 2.0 2.0 (1.8,2.1)
Vξ 200 184 (34, 434) 200 214 (79,442) 200 228 (74,473)
Vσ 200 196 (46,402) 200 193 (74,404) 200 155 (53,390)
Wξ 1000 998 (814,1189) 1000 1025 (847,1220) 1000 1006 (841,1178)
Wσ 1000 997 (810,1199) 1000 1020 (839,1219) 1000 1017 (840,1216)

Table 1: Simulated data: True values, posterior means and 95% posterior credibility intervals
of model parameters.
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Model
Time series MGPDLM1 MGPDLM2 MG2∗ MGPD1∗ SV
Petrobras 3061 2996 3106 3008 3165
Ibovespa 6563 6495 6684 6683 6808

Table 2: Real data: Deviance information criterion for Petrobras and Ibovespa. MGk∗ and
MGPDk∗ are the models within each class with the smallest deviance. SV is the standard
stochastic volatility model with AR(1) dynamics for log-volatilities.
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Figure 1: Simulated data: Posterior means and 95% credibility intervals for ξt, σt, θξ,t and
θσ,t. Sample size T = 1, 000 (top two rows) and T = 2, 500 (bottom two rows). True values
are the solid lines.
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Figure 2: Simulated data: Simulated data along with simulated (solid line) and posterior
mean (dotted line) for extreme quantiles. Top frame: T = 1, 000 observations and 95th
quantiles. Bottom frame: T = 2, 500 observations and 99th quantiles.
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Figure 3: Petrobras time series: Top frame: Time series of absolute returns along with 95th
and 99th percentiles (left panel) and along with 99.9999th quantiles and maximum when the
posterior median of ξ < 0 (right panel). The grey area represents the posterior probability
of existence of a finite maximum, P (ξt < 0|y), for all t. Bottom frame: Posterior means and
95% credibility intervals for σt (left panel) and ξt (right panel).
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Figure 4: Ibovespa time series: Top frame: Time series of absolute returns along with 95th
and 99th percentiles (left panel) and along with 99.9999th quantiles and maximum when the
posterior median of ξ < 0 (right panel). The grey area represents the posterior probability
of existence of a finite maximum, P (ξt < 0|y), for all t. Bottom frame: Posterior means and
95% credibility intervals for σt (left panel) and ξt (right panel).
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