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Abstract

Many situations in practice require appropriate specification of operating characteristics
under extreme conditions. Typical examples include environmental sciences where studies
include extreme temperature, rainfall and river flow to name a few. In these cases, the ef-
fect of geographic and climatological inputs are likely to play a relevant role. This paper is
concerned with the study of extreme data in the presence of relevant auxiliary information.
The underlying model involves a mixture distribution: a generalized Pareto distribution is
assumed for the exceedances beyond a high threshold and a non-parametric approach is as-
sumed for the data below the threshold. Thus, the full likelihood including data below and
above the threshold is considered in the estimation. The main novelty is the introduction
of a regression structure to explain the variation of the exceedances through all tail parame-
ters. Estimation is performed under the Bayesian paradigm and includes model choice. This
allows for determination of higher quantiles under each covariate configuration and upper
bounds for the data, where appropriate. Simulation results show that the models are appro-
priate and identifiable. The models are applied to the study of two temperature datasets:
maxima in the U.S.A. and minima in Brazil, and compared to other related models.

Key words: Bayesian inference, generalized Pareto distribution, higher quantiles, MCMC,
mixture of distributions, regression models.

1 Introduction

Extreme data analysis has become an important tool in a variety of areas of Science over the
last decades, helping the prediction of gains and losses. The areas where this analysis is gain-
ing proeminence are Environmental Sciences and Economics (Embrechts et al., 1997, Reiss and
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Thomas, 2007). Global warming is an issue of foremost importance due to changes experienced
by the planet over the last years. These changes are inducing alterations in the occurrence of
extreme temperature events, both maxima and minima. This is of great relevance since changes
in extreme temperature are more responsible for changes in Nature than changes in mean tem-
perature (Parmesan et al., 2000). Extremely warm summers or extremely cold winters may have
strong influence in agriculture, energy consumption and health problems for the population.
Also, these events may be influenced by a number of covariates such as the specific location in
space and time where they take place. Understanding the pattern of occurrence of these effects
is important to mitigate the impact that these events may bring to the society.

1.1 Extreme value theory

Extreme value theory (EVT) was designed to describe atypical situations that induce substantial
impact when they occur, despite being rare. The classical result in this area is the theorem by
Fisher and Tippet (1928), characterizing three possible types of limiting distributions for block
maxima. These distributions were unified into the generalized extreme value (GEV) distribution
by von Mises (1954) and Jenkinson (1955). Pickands (1975) proved that if X is a random
variable whose distribution function F belong to the domain of attraction of a GEV distribution,
then the conditional distribution F (x|u) = P (X ≤ u + x|X > u), as u → ∞, comes from
a generalized Pareto distribution (GPD). The GPD depends on a scale parameter σ, a shape
parameter ξ and the threshold u. Denoting Ψ = (u, σ, ξ) and letting I be the indicator that
ξ < 0, ie, I = 1, if ξ < 0 and I = 0, if ξ ≥ 0, then the GPD density is

g(x|Ψ) =

{
σ−1 (1 + ξ(x− u)/σ)−(1+ξ)/ξ for u ≤ x ≤ u+ (−1)I

(
σ
ξ

)1/I

and ξ 6= 0

σ−1 exp{−(x− u)/σ} for u ≤ x <∞ and ξ = 0
, (1)

and g(x|Ψ) = 0 otherwise, such that the support of the GPD is (u, u − σ/ξ) when ξ < 0 and
(u,∞) when ξ ≥ 0. Smith (1985) showed that maximum likelihood estimators of the GPD
parameters do not obey regularity conditions for ξ in (−1,−0.5) and do not exist when ξ < −1.
However, it is quite uncommon that ξ < −0.5 in environmental data, as suggested by Coles and
Tawn (1996).

The GPD provides a precise specification for data beyond the limiting threshold and is thus
used in practice for inference beyond a suitably chosen large value for u. The results however
say nothing about what happens below the threshold u. Different approaches were proposed in
the literature to fill this gap. Bermudez et al. (2001), for example, consider only a frequency
based approximation for data below the threshold. Frigessi et al. (2002) consider a mixture
of a GPD and Weibull distributions, with data dependent weights. Tancredi et al. (2006) use
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mixtures of uniform distributions for data below the threshold, while Behrens et al. (2004) use
a Gamma distribution.

Given the lack of information below the threshold, non-parametric approximations seem a
natural choice. Wiper et al. (2001) showed that mixture of Gamma distributions, denoted here
by MGk, provide good approximations for distributions with positive support. Their density is

h(x|θ, p) =
k∑
j=1

pjfG(x|µj, αj), (2)

where θ = (µ′, α′, p′)′, µ = (µ1, . . . , µk)
′, α = (α1, . . . , αk)

′, p = (p1, . . . , pk)
′ and fG is the

Gamma density

fG(x|µ, α) =
(α/µ)α

Γ(α)
xα−1 exp{−(α/µ)x} for x > 0. (3)

The parameters µ and α are the mean and shape of the Gamma distribution, respectively, and
may take any positive value, while the weights pjs are positive and sum to 1. The number
of components k may be fixed in advance, chosen according to some optimality criterion, or
assumed to be an additional model parameter and estimated.

It is not difficult to show that finite mixtures of Gamma distributions belong to the domain
of attraction of a GEV distribution (Embrechts et al., 1997), allowing values beyond a certain
threshold to be suitably modeled by a GPD distribution. This idea was used in Nascimento et al.
(2009) to generalize Behrens et al. (2004) single component gamma distribution by a mixture of
Gamma distributions below the threshold and a GPD above the threshold. This class of models,
denoted here by MGPDk, has density

f(x|θ,Ψ) =

{
h(x|θ) for x ≤ u
(1−H(u|θ))g(x|Ψ) for x > u

, (4)

where g is given in (1), h is given in (2) and H its cumulative distribution function. Nascimento
et al. (2009) showed advantages of the MGPDk class over the MGk class, as expected from
the theory.

1.2 Regression models for exceedances

The extremal behavior of a variable of interest may be related to other variables. For example,
Castellanos and Cabras (2007) showed that the GPD parameters for rainfall data vary according
to the season. In finance, extremes in stock values may be related a stock exchange index or
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interest rates or a macroeconomic indicator. In meteorological studies, an important element
of a data point is its geographical location. Latitude, longitude, altitude and distance from the
ocean may be valuable indicators of extremal behavior of climatological variables. This can be
incorporated into the model through a regression structure. Given the results associated with
the tail of the distribution and the nonparametric nature of the central part, it seems natural to
consider the possibility of building regressions over the GPD parameters.

Cabras et al. (2009) extended the work of Castellanos and Cabras (2007) by allowing for
a regression of the GPD parameters but considered only data beyond a pre-specified threshold.
They suggested the use of Jeffreys prior distribution for the regression coefficients, in the lack of
further information, and used a reparametrization suitable for this purpose. This led to a uniform
prior distribution over ξ and ν = σ(1 + ξ), which are shown to be orthogonal (see Chaves-
Demoulin and Davison, 2005). Cabras et al. (2009) suggested the link functions ξ∗ = log(ξ+1)
and ν∗ = log ν because ξ∗ and ν∗ have uniform Jeffreys prior distributions. Thus the coefficients
of linear regression of covariates over them will also have uniform Jeffreys prior distributions.
Other transformations could also be considered. One alternative is to regress directly over σ and
ξ possibly after a logarithm transformation.

These transformations are used and compared in the remainder of the paper which extends
Cabras et al. (2009) by incorporating uncertainty over the threshold. The paper also introduces
a regression structure for the threshold. Moreover, it discusses identifiability issues and provides
empirical evidence through simulation exercises that the model can be identified.

1.3 Outline of the paper

Section 2 presents the proposed model, using a Bayesian approach, by merging ideas from
Nascimento et al. (2009) with those from Cabras et al. (2009). Thus the complete dataset is
used in the analysis: the data below the threshold helps the identification of the threshold, while
the data above the threshold is modeled according to regressions over the GPD parameters.
This includes a regression model for the threshold. Choice of prior distributions and estimation
procedures are also described in this Section. Section 3 shows the results of simulation exercises,
highlighting the model ability to recover generated values and discussing some of the model
restrictions. Section 4 presents two applications to environmental data: maximum temperature
data over a large range of cities in the United States and minimum temperature data over cities
in the State of Rio de Janeiro, Brazil. Section 5 summarizes the main results and suggests some
potential directions for further studies.
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2 Modeling structure

2.1 Likelihood

Consider the availability of n response variables x1, . . . , xn and associated r-dimensional vectors
of covariates z1, . . . , zn. The first components these vector of covariates is 1 to allow for the
presence of an intercept. The class of model proposed in this paper, denoted by MGPDRk,
assumes a generalized regression form where responses are conditionally independents and, for
i = 1, . . . , n, xi has density f(x|θ,Ψi) given by (4), a trivariate link function t(Ψi) = ηi and a
trivariate linear preditor ηi = z′iβ.

The r × 3 matrix of regression coefficients β has columns βu, βν and βξ. The covariates are
assumed to be the same for notational simplicity but need not be so. Appropriate 0 entries into
components of β suffice to accommodate for covariates with no explanatory power for some but
not all components of Ψ. The triviate link function relates each of the 3 components of Ψ to its
linear predictor. Many possibilities are available including the identity link t(u, σ, ξ) = (u, σ, ξ)′.

Following the discussion of the previous section, we have opted for the transformation
t(u, σ, ξ) = η = (u, ν∗, ξ∗)′, where ν∗ = ξ∗ + log σ and ξ∗ = log(ξ + 1). These specifica-
tions lead to the expression for g in (1) as

g(xi|Ψi) =

 ζξi
ζνi

(
1 + (xi − z′iβu))(ζξi − 1)

ζξi
ζνi

)− ζξi
(ζξi−1)

if ζξi 6= 1

ν−1
i exp(−xi − z′iβu/ζνi), if ζξi = 1,

(5)

where ζξi = exp(z′iβξ) and ζνi = exp(z′iβν). Also, xi − z′iβu ≥ 0, for ζξi ≥ 1 and (1 + (xi −
z′iβu)(ζξi − 1)ζξi/ζνi > 0, if ζξi < 1.

Note that the above conditions imply restrictions over the parameter space for β that depend
on the values of the covariates. This nuisance must be considered during the inference process.
Other options of link include replacement of η1 = u by η1 = log u and replacement of η2 =
ν∗ by η2 = log σ, but they do not remove all the restrictions over the parameter space. The
collection of all model parameters is (θ, β). The likelihood function for (θ, β) is given by the
product of terms in (4) with g given by (5).

2.2 Prior distribution

The different model components θ and β are assumed to be independent a priori. The prior
for θ follows from Wiper et al. (2001) and Nascimento et al. (2009) and is given by π(θ) =
π(µ)π(α)π(p), for π(µ) ∝

∏k
i=1 fIG(µi|ai/bi, bi)IA(µ) and π(α) =

∏k
i=1 fIG(αi|ci/di, di),
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where IA(µ) = 1 when µ is in A and zero otherwise, A = {µ ∈ Rk : µ1 < µ2 < · · · < µk},
and fIG is the inverse Gamma density with parameters as defined in (3). The prior distribution
for the weights p is assumed to be a Dirichlet distribution Dk(γ), with γ = (γ1, . . . , γk)

′ and
density π(p) ∝

∏k
i=1 p

γi
i . The hyperparameters ai, bi, ci, di and γi, for i = 1, . . . , k, are assumed

to be known.
The only remaining prior component is the prior distribution for the regression coefficient

β. Cabras et al. (2009) assumed knowledge of the threshold and used a uniform prior for
(βν , βξ). This amounts to an assumption of independence between the βu, βν and βξ. This prior
specification is used here and completed with a Normal prior for βu, i.e. N(bu, Vu). Nascimento
et al. (2009) showed that informative prior distributions are required for the estimation of the
threshold when the sample size is small due to the lack of identification in the GPD part of the
likelihood. Similar comments are valid here for the regression setting. The first component of bu
is the mean of the intercept of the regression on the threshold u. It is typically set around a higher
data quantile. The remaining components of bu are set at 0 to represent lack of knowledge about
the relevance of the covariates. Appropriate choice are also needed for Vu, generally assumed to
be in diagonal form, with large but finite entries Vui .

2.3 Posterior distribution

Given the prior and likelihood specifications of the previous subsection, the posterior distribution
can be obtained via Bayes theorem. The log posterior density can be written up to an additive
constant as

log π(θ, β|x, z) =
∑

{i:xi<z′iβu}

log

(
k∑
j=1

pjfG(xi|µj, αj)

)

+
∑

{i:xi≥z′iβu}

log

(
1−

k∑
j=1

pjFG(z′iβu|µj, αj)

)
+

∑
{i:xi≥z′iβu}

log g(xi|Ψi)

+
k∑
j=1

[
(aj − 1) log(αj)− bjαj − (cj + 1) log(µj)−

dj
µj

]

− (βu0 − a0)
2

2Vβu0

−
p−1∑
i=1

(
β2
ui

2Vβui

)
, (6)

where the support of the parameter space depends on the identifiability restrictions of parameters
and on the values of the covariates. They are given by all values satisfying

exp(2z′iβξ)− exp(z′iβξ) > −x−1
i exp(z′iβν) and z′iβξ > − log 2, (7)
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for all i = 1, . . . , n. These restrictions can only be verified numerically (Cabras et al., 2009),
and are imposed to ensure the existence of the likelihood function.

Inference is performed via approximating Markov chain Monte Carlo (MCMC) techniques,
whose details are provided in the Appendix. Sampling algorithms for the components of θ
are given by Nascimento et al. (2009). The three vectors of regression coefficients βu, βν
and βξ are sampled in block. Once the posterior distribution for model parameters is obtained,
inference can be made about other unknown quantities of interest. Special interest involve the
calculation of higher quantiles, ie, values q such that P (X ≤ q|z) is small, such as 1%, 0.1%
or 0.01%. These quantities are complicated functions of the model parameters and the values of
the covariates. They can not be obtained analytically but can be evaluated numerically. This is
particularly suitable for the sampling-based approach used here. In addition, approximations for
the posterior distribution of higher quantiles can be easily obtained.

When ξ is negative, the data distribution has an upper bound given by u−σ/ξ. Depending on
the application, this also may be a quantity of interest. For temperature data, it may be important
to determine the highest or lowest possible temperature at a given geographical location under
some given climatic conditions. Some configurations of values of the covariates may lead to a
posterior distribution for ξ entirely concentrated over negative values. This is a case where the
upper bound will exist and its distribution can be calculated. When a portion of the distribution
is above 0, a mixed posterior distribution is obtained with a lump probability associated with an
infinite bound and the remaining probability spread over a finite range.

3 Simulations

Samples generated from the model were drawn under a number of parameter configurations.
Estimation can be performed for each configuration. The results associated with parameters
and higher quantiles provide empirical evidence about the model capability to recover generated
values. This exercise provides useful information for inference in the real data sets of the next
Section.

The exercise was performed with samples of size n = 1, 000 and n = 10, 000. The central
part of the data was generated from a mixture of two Gamma distributions with parameters
µ = (2, 8), α = (4, 8) and p = (1/3, 2/3). Extreme data was generated with two covariates,
z1 and z2, drawn from U(0, 2) and U(0, 4) distributions respectively. The exceedance data is
generated as follows: if the i-th datapoint is larger than ui = β0,u + β1,uz1,i, then its value is
replaced by a value generated from a GPD with parameters ξi = exp(β0,ξ + β1,ξz1,i) − 1 and
νi = exp(β0,ν + β2,νz2,i), for i = 1, ..., n. The values assumed for the regression coefficient βu
were (6, 0.5, 0), (9, 0.5, 0), (6,−0.5, 0) and (9,−0.5, 0). The values chosen for β0,u correspond
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to higher data quantiles. The value assumed for the regression coefficient βν was (3, 0, 0.5). The
values assumed for the regression coefficient βξ were (0.2, 0.3, 0) and (0.2, 0.3, 0) so that both
positive and negative values for ξ are considered in the simulation.

The prior distributions used for the Gamma parameters were µj ∼ IG(2.1, 5.5) with order
constraints and αj ∼ IG(6, 0.5), for j = 1, ..., k. This specification is centered around the
true values but with large variance, thus representing lack of prior information. The number of
Gamma mixture components was fixed at k = 2. Nascimento et al. (2009) provided empirical
evidence that this number is well estimated by our procedures. The prior for βu can not be en-
tirely flat, specially for small to moderate data sizes. Nevertheless, centering β0,u around higher
data quantiles and the coefficients of the regressors around 0 with reasonably large variances
suffices. In the exercises of this section, the prior distributions for β0,u and β1,u are N(7, 10)
and N(0, 5) when n = 1, 000 and N(7, 100) and N(0, 100) when n = 10, 000. The MCMC
algorithm was set with 2 parallel chains starting from different starting points. After a burn-in
period of 10,000 iterations, further 10,000 iterations were performed with thinning of 20 itera-
tions. Convergence was ascertained by visual inspection and standard convergence tests. Trace
plots are not presented for conciseness.

Table 1 presents a summary of the estimation of the tail regression parameters for n = 1, 000.
The parameter value lies inside the intervals in almost all cases. The table also shows large
variability for some estimates. The estimation is not very precise apart from the intercept β0,u

and β0,ν and does not point clearly to the significance of the effect of the covariates. It seems
to indicate lack of information for samples of size 1,000. The same table presents a summary
of the estimation of the tail regression parameters, for n = 10, 000. The parameter value lies
inside the intervals in all cases. The intervals are also smaller than those corresponding to the
case n = 1, 000. Overall, the models seem capable of accurately retrieving information from
the data. The data presents a finite upper limit in the cases where ξ is negative. This limit is
just a function of the model parameters and the covariates and its posterior distribution can be
calculated. Figure 1 shows the distribution of the data maxima for two covariate configurations.
The posterior distributions is well concentrated around the generated value with their means
very close to the true values. Results get more precise for a smaller threshold as more extreme
data is available and estimation of the extreme is more reliable.

4 Aplications

This section illustrates the methodology for real data in two applications with extreme tempera-
ture data: maxima over United States cities and minima over cities in the State of Rio de Janeiro,
Brazil. Models are compared against a few alternatives using the BIC (Schwarz, 1978) and DIC
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n = 1, 000
β1,ξ = 0.3 β1,ξ = −0.3

β0,u = 6 β0,u = 9 β0,u = 6 β0,u = 9
β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5

β0,u (5.91,6.73) (5.73,6.31) (8.42,9.32) (8.50,9.20) (5.95,6.24) (5.94,6.23) (8.46,9.15) (8.89,9.15)
β1,u (-0.16,0.57) (-0.73,-0.11) (0.09,1.46) (-0.53,-0.04) (0.31,0.57) (-0.69,-0.45) (0.38,0.97) (-0.64,-0.46)
β0,ν (2.74,3.54) (3.06,3.75) (1.96,3.54) (2.89,3.87) (2.86,3.39) (2.80,3.18) (2.75,3.52) (2.72,3.32)
β2,ν (0.21,0.58) (0.17,0.48) (0.30,0.93) (0.13,0.55) (0.34,0.59) (0.44,0.61) (0.31,0.62) (0.35,0.62)
β0,ξ (0.01,0.55) (-0.40,0.17) (-0.21,0.86) (0.12,0.81) (-0.01,0.50) (-0.08,0.51) (-0.04,0.64) (-0.18,0.44)
β1,ξ (0.02,0.51) (0.32,0.80) (-0.18,0.84) (-0.37,0.22) (-0.57,-0.10) (-0.54,-0.08) (-0.61,-0.06) (-0.46,0.12)

n = 10, 000
β1,ξ = 0.3 β1,ξ = −0.3

β0,u = 6 β0,u = 9 β0,u = 6 β0,u = 9
β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5 β1,u = 0.5 β1,u = −0.5

β0,u (5.98,6.02) (5.96,6.02) (8.97,9.01) (8.97,9.03) (5.99,6.06) (5.98,6.01) (8.98,9.02) (8.99,9.04)
β1,u (0.48,0.53) (-0.51,-0.45) (0.49,0.53) (-0.51,-0.47) (0.46,0.52) (-0.51,-0.48) (0.49,0.53) (-0.53,-0.48)
β0,ν (2.93,3.16) (2.93,3.16) (2.93,3.32) (2.93,3.27) (2.92,3.07) (2.90,3.03) (2.89,3.16) (2.89,3.06)
β2,ν (0.41,0.52) (0.44,0.54) (0.35,0.51) (0.41,0.56) (0.46,0.53) (0.47,0.53) (0.42,0.54) (0.46,0.54)
β0,ξ (0.14,0.31) (0.14,0.31) (0.05,0.26) (0.12,0.34) (0.07,0.23) (0.11,0.27) (0.05,0.28) (0.05,0.31)
β1,ξ (0.18,0.33) (0.22,0.36) (0.25,0.47) (0.15,0.35) (-0.33,-0.20) (-0.35,-0.22) (-0.33,-0.10) (-0.41,-0.19)

Table 1: 95% credibility intervals for regression parameters when n = 1000 (top) or n = 10, 000
(bottom), with parameters β0,ν = 3, β2,ν = 0.5 and β0,ξ = 0.2 fixed through all configurations.

Figure 1: Posterior histograms of maxima in simulations with n = 10000, β1,u = −0.5, β0,ν =
3, β1,ν = 5, β0,ξ = 0.2 and β1,ξ = −0.3: left panel: β0,u = 9 with z1,i = 1 and z2,i = 2; right
panel: β0,u = 6 with z1,i = 1.5 and z2,i = 1. Vertical lines indicate corresponding true values.

(Spiegelhalter et al., 2002) criteria.
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4.1 Maximum temperature in the United States

The dataset contains daily average temperatures, in Farenheit degrees, from 1995 to 2008 in 84
cities scattered over the continental United States (www.engr.udayton.edu/weather).
Data used in the analysis was monthly maxima, totaling 14,356 observations. Many factors
may affect temperature, specially season and location. The extensive region covered by the area
under study makes it relevant to include latitude. Data comes from cities as close to the Equator
as Miami, with latitude 25o47′ and as close to the Arctic Circle as Seattle, with latitude 47o37′.

The seasonality obviously present in temperature data is incorporated into the model through
trigonometric functions. The effect of the season is in most cases well captured by a single sine
wave. Latitude is also taken into account. This leads to a model where z = (z0, z1, z2, z3, z4),
where z0 = 1 is the intercept; z1 = cos(2πm/12) and z2 = sin(2πm/12), where m is the month
of the observation; z3 = (l − ml)/10, where l is the latitude of the observation and ml is the
average latitude over all cities considered; and z4 = z2z3 represents an interaction term between
season and latitude.

Estimation was performed with model MGPDRk for different values of k and with tail
parameters described as functions of z. The prior distribution for components of βu were inde-
pendent normals with β0,u ∼ N(40, 10000) and βi,u ∼ N(0, 1000), for i = 1, . . . , 4. The results
of this model were compared against a mixture of Gammas (Wiper et al., 2001) and against
mixture of Gammas with GPD tail parameters fixed, without covariates as in Nascimento et al.
(2009). Table 2 shows a summary of the model comparison. It shows a significant improvement
in terms of fit after inclusion of the covariates and after inclusion of a specific component to
handle exceedance data. Table 3 presents a summary of the tail parameters estimation for model
MGPDR3, indicated as the best model in Table 2.

Model pD 105DIC 105BIC
MGPDR1 19.30 0.9352 0.9371
MGPDR2 11.54 0.9169 0.9192
MGPDR3 5.16 0.9141 0.9163
MGPDR4 8.55 0.9151 0.9177
MGPD2 5.99 1.1325 1.1335
MG3 6.86 1.1321 1.1331

Table 2: Fit criteria for maximum temperature data in the U.S. MG3 and MGPD2 are the best
models in their class according to the DIC criteria.

Other parametrizations were also considered for model MGPDRk. The first one is to take
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the logarithm transformation for the threshold, ie, u = exp(z′βu). Once again, the best BIC
and DIC values were also obtained with k = 3 with respective values 0.9333 and 0.9309 ×105.
Another alternative considered was to build a regression over the original GPD parameter σ =
exp(z′βσ) instead of ν. A uniform prior was considered for βσ to represent lack of information
but not in Jeffreys’ sense. Once again, the best model in this class obtained BIC and DIC values
given respectively by 0.9243 and 0.9265 ×105. Therefore, the parametrization proposed in this
paper for the models seems to have practical support in addition to their theoretical justification.

β0,ξ β1,ξ β2,ξ β3,ξ β4,ξ

-0.54 -0.15 -0.10 0.10 -0.01
(-0.55,-0.53) (-0.16,-0.13) (-0.14,-0.07) (0.07,0.14) (-0.02,0.01)

β0,ν β1,ν β2,ν β3,ν β4,ν

1.77 0.15 0.18 0.15 0.21
(1.76,1.78) (0.14,0.17) (0.16,0.20) (0.12,0.18) (0.20,0.23)

β0,u β1,u β2,u β3,u β4,u

63.01 -17.37 -16.03 -4.10 -11.71
(62.99,63.02) (-17.39,-17.35) (-16.06,-15.99) (-4.14, -4.06) (-11.74,-11.69)

Table 3: Summary of the estimation results for model MGPDR3: posterior means, with 95%
credibility intervals in parentheses.

Virtually all covariates seem to have a significant effect in explaining the tail parameters.
The only exception in the interaction term in ξ. The thresholds associated with all cities along
the year can be estimated. Figure 2(a) shows an example of the maxima for each month/year
and they seems to compare well against the estimated thresholds. The maximum temperatures
are higher in July. The posterior distribution for ξ seem to be concentrated over negative values
with mean -0.27 for the same city of Little Rock. Therefore, the distribution has an upper
limit. Figure 2(b) shows the distribution of this upper limit. According to our estimation results,
about 83% of the observations were above the threshold. It is expected from theory that only a
small proportion of the data should lie above the threshold. Since the prior distribution for the
threshold was fairly vague, this result can only be attributed to the data due to the information
they provide to the likelihood.

The data distribution is not bounded from above when ξ > 0. Interesting quantities for study
in these cases are higher quantiles. They inform about the probability of rare, extreme events.
Figure 3 illustrates this point for the city of Los Angeles. It shows for example that on average
the probability of a winter temperature larger than 74 degrees is 1%, ie, it occur on average once
in a century. Likewise, a summer temperature above 101 degrees is expected once in a century.
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(a) (b)

Figure 2: (a) Monthly maxima temperature data for Little Rock, Arkansas. Full line: poste-
rior mean thresholds. (b) Posterior histogram for the temperature upper limit in Little Rock,
Arkansas, in July.

Figure 3: Posterior histogram for the 99% quantile temperature in Los Angeles, California. Left
panel: January. Right panel: June.
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One could still analyse each combination of city/month separately but then very few ob-
servations would be available. The regression structure allows combination of different cities
and months into a unified framework. This leads to a more precise and reliable procedure for
estimating extremes.

4.2 Minimum temperature in Rio de Janeiro

This second dataset consists on minimum daily temperatures, in Celsius degrees, in a few mon-
itoring stations spread over the State of Rio de Janeiro, Brazil, from 1961 to 2000. Data was
analysed using minimum monthly temperatures, resulting in 11,336 observations. The tail of the
observation now lies to the left. The transformation x = 30−y, where y is the original data, was
performed to bring the tail to the left, as considered in our models. There is substantial assur-
ance that only positive observations will be obtained because the largest minimum temperature
observed in our extensive dataset was 25.6 degrees, well below the limit of our transformation.
Figure 4 shows original and transformed data.

Figure 4: Histogram of the observations of the minimum temperature (in Celsius degrees) data
for the State of Rio de Janeiro: left panel: original data; right panel: transformed data.

The latitudes vary here only from 20o76′ to 23o36′, much less than in the previous example.
The geographical characteristic of relevance here is altitude, given the diversified topography
of the region with plains, hills and chains of mountains. Once again, the season is relevant
and enters the model as before, through a single sine wave. Thus, the covariates are the same
of the previous application but for the replacement of latitude by altitude. Thus, the vector of
covariates is z = (z0, z1, z2, z3, z4)

′, where z0 = 1 is the intercept; z1 = cos(2πm/12) and
z2 = sin(2πm/12), wherem is the month of the observation; z3 = (a−ma)/100, where a is the
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altitude of the observation and ma is the mean value of the altitudes; and z4 = z2z3 represents
an interaction term between season and altitude.

Prior distributions used for the regression parameters βν and βξ were assumed to be propor-
tional to a constant. Prior distributions used for the components of the regression parameter βu
were independent β0,u ∼ N(10, 50) and βi,u ∼ N(0, 30), i = 1, . . . , 4. Models MGPDRk

were compared against models MGk and MGPDk. Table 4 shows a summary of the model
comparison. It shows a significant improvement in terms of fit after inclusion of the covariates
and after inclusion of a specific component to handle exceedance data, as in the previous ap-
plication. This can be observed more closely at Table 5 that shows relevance of virtually all
covariates for all three GPD parameters.

Model pD 105DIC 105BIC
MGPDR1 6.54 0.4253 0.4249
MGPDR2 9.78 0.4230 0.4250
MGPDR3 18.26 0.4222 0.4248
MGPDR4 11.03 0.4227 0.4253
MGPD2 1.70 0.5866 0.5874
MG4 8.13 0.5863 0.5876

Table 4: Fit criteria for minimum temperature data in the State of Rio de Janeiro. MG4 and
MGPD2 are the best models in their class according to the DIC criteria.

β0,ξ β1,ξ β2,ξ β3,ξ β4,ξ

-0.293 0.011 -0.017 -0.012 -0.016
(-0.301,-0.284) (-0.001,0.023) (-0.022,-0.010) (-0.020,-0.005) (-0.039,0.007)

β0,ν β1,ν β2,ν β3,ν β4,ν

0.577 -0.147 -0.022 -0.008 0.018
(0.562,0.589) (-0.165,-0.131) (-0.028,-0.018) (-0.014,-0.002) (-0.005,0.040)

β0,u β1,u β2,u β3,u β4,u

5.752 -2.260 0.705 -0.104 -2.083
(5.750,5.753) (-2.262,-2.256) (0.704,0.706) (-0.105, -0.103) (-2.085,-2.082)

Table 5: Summary of the estimation results for model MGPDR3: posterior means, with 95%
credibility intervals in parentheses.

Figure 5 shows the results for two specific stations: Ilha Guaı́ba and Nova Friburgo. The

14



first one is located at sea level, on an island, while the second is in the mountainous region,
at 857 meters high. The model seems to capture their relatively different patterns well. For the
station Ilha Guaı́ba, for example, the posterior means of the minimum temperature and of the 5%
quantile are 10.4 and 14.6 degrees. This means a temperature as low as 14.6 degrees is expected
on average only once in every 20 years. The figure also informs that two May observations
were very close to the posterior mean of the 0.1% quantile, being therefore extremely rare, and
expected to occur once every milenium For the Nova Friburgo station, the posterior mean for
the lower limit is 5.4 degrees while the posterior mean for the 5% quantile is 8.7 degrees. There
were also four observations below the posterior mean of the lower limits.

(a) Ilha Guaı́ba station (b) Nova Friburgo station

Figure 5: Monthly minima temperature data for Ilha Guaı́ba and Nova Friburgo stations. Full
lines: posterior mean thresholds (above) and posterior mean of the data lower limit. Dotted
lines: posterior means for the 0.05, 0.01, 0.0001 and 0.000001 quantiles.

5 Final remarks

This paper is concerned with the study of variation of extremal behaviour in the presence of rel-
evant external information. Simulation studies show that true values can be recovered with great
precision for large datasets. Special care must be exercised when specifying prior vagueness for
moderate or small datasets. Important parametric functions such as the data upper limits can
also be recovered.

Simulation and results from real data analysis shows the improvement obtained with the
incorporation of the different model components and the need for all of them. Vague prior
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information was dominated by the likelihood information and led to reliable estimates of the
regression coefficients.

Models can be extended into a number of directions. The most proeminent ones are those re-
lated to the incorporation of spatial and/or temporal heterogeneity. This can be achieved through
some form of stochastic dependence. This dependence that can be added to the regression struc-
ture, in cases were the covariates were not capable of handling all the sources of data variation.

Appendix: MCMC algorithm

The MCMC algorithm consist on iterations over the parameter space, performed over blocks of
parameters. The blocks were formed by µ, α, p, βu, βν and βξ. At iteration s, parameters are
updated to iteration s+ 1 as follows:

Sampling θ. The components of θ are sampled separately for each mixture component. The
αjs and µjs must be positive. Therefore, α∗j is proposed from α∗j |α

(s)
j ∼ G(α

(s)
j , α

(s)2

j /Vαj).

Note that, E(α∗j | α
(s)
j ) = α

(s)
j , and V ar(α∗j | α

(s)
j ) = Vαj , for j = 1, . . . , k. Same procedure is

adopted for the proposal for µj , given by µ∗j |µ
(s)
j ∼ G(µ

(s)
j , µ

(s)2

j /Vµj)IA, where IA = I(µ
(s+1)
1 <

. . . < µ
(s+1)
j−1 < µ

(s)
j < µ

(s)
j+1 < . . . < µ

(s)
k ) and the difference that they must also obey the order

constraint. The values α(s+1)
j = α∗j and µ(s+1)

j = µ∗j are accepted with probability

min

{
1,

π(Θ∗|x)fG(µ(s)
j |µ∗j , µ∗2j /Vµj

)fG(α(s)
j |α∗j , α∗2j /Vαj

)I(µ(s+1)
1 < . . . < µ∗j < . . . < µ

(s)
k )

π(Θ̃|x)fG(µ∗j |µ
(s)
j , µ

(s)2
j /Vµj

)fG(α∗j |α
(s)
j , α

(s)2
j /Vαj

)I(µ(s+1)
1 < . . . < µ

(s)
j < . . . < µ

(s)
k )

}
,

where Θ∗ = (α
(s+1)
<j , α∗j , α

(s)
>j , µ

(s+1)
<j , µ∗j , µ

(s)
>j , p

(s), β
(s+1)
u , β

(s+1)
ν , β

(s+1)
ξ ) and Θ̃ = (α

(s+1)
<j , α

(s)
≥j ,

µ
(s+1)
<j , µ

(s)
≥j , p

(s), β
(s+1)
u , β

(s+1)
ν , β

(s+1)
ξ ), with y<l = (y1, ..., yl−1) and y≥l = (yl, ..., yk), for any

vector y = (y1, ..., yk).

Sampling p. p∗ is sampled from a Dirichlet proposal with parameters (Vpp
(s)
1 , . . . , Vpp

(s)
k ), where

Vp is a tuning constant that determines the variance of the proposal distribution. Then, set

p(s+1) = p∗ with probability min
{

1, π(θ(s+1),p∗,β(s)|x)fD(p(s)|p∗)
π(θ(s+1),p(s),β(s)|x)fD(p∗|p(s))

}
.

Sampling βu. Sample β∗u from a N(β
(s)
u , Vu) distribution. The sampled value must satisfy (7).

Otherwise, a new value must be sampled until the conditions are satisfied. Then, set β(s+1)
ν = β∗ν

with probability min

{
1,

π(θ(s),p(s),β∗u,β
(s)
ν ,β

(s)
ξ |x)

π(θ(s),p(s),β
(s)
u ,β

(s)
ν ,β

(s)
ξ |x)

}
.
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Sampling βν . Sample β∗ν from a N(β
(s)
ν , VνIp) distribution. The sampled value must satisfy (7).

Otherwise, a new value must be sampled until the conditions are satisfied. Then, set β(s+1)
ν = β∗ν

with probability min

{
1,

π(θ(s),p(s),β
(s)
u ,β∗ν ,β

(s)
ξ |x)

π(θ(s),p(s),β
(s)
u ,β

(s)
ν ,β

(s)
ξ |x)

}
.

Sampling βξ. Sample β∗ξ from a N(β
(s)
ξ , VξIp) distribution. The sampled value must satisfy (7).

Otherwise, a new value must be sampled until the conditions are satisfied. Then, set β(s+1)
ξ = β∗ξ

with probability min

{
1,

π(θ(s),p(s),β
(s)
u ,β

(s)
ν ,β∗ξ |x)

π(θ(s),p(s),β
(s)
u ,β

(s)
ν ,β

(s)
ξ |x)

}
.

The method of Roberts and Rosenthal (2006) prescribes optimality of MCMC algorithms
for univariate components when acceptance rates of 0.44 are obtained. Smaller acceptance rates
around 0.15 are used since the proposals here are not univariate. These settings were used to se-
lect the tuned variance parameters. This choice was efficient for all components with reasonably
fast convergence to stationarity. The only parameter where variances were not tuned automati-
cally according to this rule was p. A few choices of values were imposed until convergence was
also reached.
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