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1 Introduction

Human rights work generally conjures images of field workers risking their lives to
help people in exotic countries who are suffering horrendous abuse at the hands of
sinister warlords. Less dramatic, but nonetheless increasingly vital in this effort,
is the role of the statistician.

Recent trends have forced human rights workers to adopt stronger method-
ology in counting the dead, the disappeared, and the damaged. One reason
is that rigorous estimates significantly strengthen criminal prosecution, and can
cast light on the role and responsibility of leaders who do not seem to be di-
rectly accountable [Ball et al., 2002]. A second reason is that when the field-
work estimates are unreliable, public attention is distracted from the conversa-
tion that should occur, regarding inappropriate use of force; the discussion be-
comes sidetracked onto numbers games, and the fog of uncertainty gives cover
to parties seeking to avoid criticism and correction (see, for example, the con-
troversy over the number of people who have died in the conflict in Darfur -
http://news.bbc.co.uk/2/hi/africa/6951672.stm).

A third reason is that modern Truth and Reconciliation Commissions are often
tasked with apportioning blame among multiple culpable parties. If the statis-
ticians cannot defensibly infer estimates for the casualties attributable to these
parties, then neither truth nor reconciliation is achieved [Ball et al., 2003]. In-
deed, truth is arguably the most important thing a rigorous statistical analysis
has to offer. For the human rights community to be successful, claims made by ac-
tivists must be well-supported. Otherwise, they can be easily dismissed or ignored
by those in power.

A fourth reason is that trends and patterns in violence need to be determined
to serve a variety of purposes - for example, to identify geographic, ethnic, or other

areas with higher or lower levels of violence for improved resource allocation and to



evaluate intervention strategies. Such comparisons (over time, space, demographic
groups) require defensible estimates of magnitude.

To these ends, statisticians have powerful tools. In this paper, we focus on mul-
tiple systems estimation (MSE) and describe several cases in which this particular
method played an indispensable part in assessing large-scale human rights viola-
tions. MSE is closely related to existing literature on capture-recapture methodol-
ogy [Peterson, 1896], but we also show its connection to recent ideas in graphical
models and model averaging. The methodology allows statisticians to make com-
pelling inferences about human rights abuses that could not be obtained from
simple descriptive tabulations [Jewell et al.].

Looking further ahead, the modern world needs a science of atrocity. In order
to avert genocides, arrest violent outbreaks, and rebuild societies that have been
riven by conflict, we must create models for the mechanisms that cause cultures
to tip into chaos. Clearly, there are many pathways—Nazi Germany and Charles
Taylor’s Liberia had different trajectories. Useful models will be hard to build.
But MSE;, in conjunction with emerging work in economics [Far, 2005], sociology
[Turner, 2006], public health [Cairns et al., 2009, Roberts et al., 2010], and polit-
ical science [Davenport, 2007], will help identify the timing of the processes that

lead to widespread violence.

2 Case Studies

In this section, we provide the historical setting of three situations in which MSE
was used to estimate the magnitude of conflict-related deaths, the data available for
each analysis, and the questions that motivated each project. The first case is an

analysis of the number of killings that occurred in Guatemala during that country’s



36 years of internal armed conflict. This analysis marks the first time that MSE
was used to address the extent of under-counting of human rights violations. The
second case is from Peru, where MSE estimates tripled the previously generally
accepted estimate of killings. Finally, in Colombia the number and diversity of
available datasets posed a novel challenge for established MSE methodology. But
a modified MSE technique developed for this situation indicated that there had

been a significant number of undocumented killings and disappearances.

2.1 Guatemala

Beginning with the attempted overthrow of the government of General Miguel
Ydigoras Fuentes by army officers in 1960, an internal armed conflict raged in
Guatemala from 1960 to 1996. During this time, the Guatemalan government
carried out a massive counter-insurgency campaign of extra-judicial killings and
disappearances. The government’s main opponents in the conflict were guerilla
groups, which formed to combat government coercion, workers’ rights groups, and
university intellectuals, who spoke out against the oppressive policies. [Ball et al.,
1999]

Three databases describe the violence in Guatemala between 1960 and 1996
based primarily on victim and witness testimonies. These are from projects con-
ducted by the Commission for Historical Clarification (CEH), the International
Center for Human Rights Investigations (CIIDH), and the Recovery of Historical
Memory (REMHI). The CEH requested that researchers at the American Associa-
tion for the Advancement of Science (AAAS) analyze the three datasets to answer

the question “How many people were killed in Guatemala during the period of the

CEH mandate, 1960-19967” [Ball, 1999, Ch. 11]

The CIIDH database contains multiple sources, but only testimonies were used in MSE

analyses Ball [2001]



2.2 Peru

Between 1980 and the mid-1990s, the Sendero Luminoso, or “Shining Path”, waged
an internal revolution in Peru. They began in Ayacucho (a Peruvian state), as
a committee in the pro-Chinese faction of the communist party. By recruiting
university students who became teachers in rural areas, the Sendero Luminoso
were able to indoctrinate the peasants. This allowed them to create a paramilitary
group consisting mainly of rural Peruvian youth.

Through a combination of force and persuasion, the Sendero Luminoso wrestled
authority from the local government in many rural areas. Sendero Luminoso ex-
ercised its new, sometimes unwanted, power over the former domain of the ousted
local government. In the cities, the Sendero Luminoso engaged in terrorist ac-
tivity. The Peruvian government eventually deployed the army to try to arrest
the spreading power of the Sendero Luminoso, which resulted in many civilian
casualties in what were described as “peasant massacres.” Since it was often un-
known whether a person was a senderista, the army’s initial strategy was simply to
kill anyone who was suspected. Thus, there were many casualties attributable to
both the Sendero Luminoso and to the army’s countermeasures [Ball et al., 2003]
[Sulmont, 2005].

The Peruvian analysis had seven available databases which had been collected
by very different organizations: the Peruvian Truth and Reconciliation Commis-
sion (TRC), the National Coalition of Human Rights, the Agricultural Develop-
ment Center, the Human Rights Commission, the Defender of the People, and
the International Committee of the Red Cross. The Peruvian TRC’s data was
collected with the purpose of answering questions about the political, social, and
economic factors that contributed to both state and Sendero Luminoso violence
and to clarify which crimes were committed by the state, which by the terrorist

organizations, and who were the victims of each sets of crimes.



2.3 Colombia

Colombia is burdened with ongoing unrest. Data on conflict-related mortality is
currently being collected by many different groups, despite the difficulties posed
by the unsettled and often insecure circumstances. Government forces, left-wing
insurgents, and right-wing paramilitaries are the actors in this, the longest-running
internal armed conflict in South America.

Many groups, both within Colombia and the broader international community,
have a declared interest in measuring the number of homicides, or lethal violations,
occurring in Colombia. More specifically, patterns of lethal violations over time
and space must be assessed to evaluate claims that demobilization of paramilitaries
and amnesty laws have led to decreases in violence.

Compared to the previous examples, the statistical analysis in Colombia had
access to the largest number and most diverse kinds of datasets. The 15 data
sources used for the Colombian study come from state agencies (including govern-
ment, security, forensic and judicial bodies) and from civil society organizations.
Focusing specifically on Casanare, a single department in Colombia (similar to a
US state), Guberek et al. [2010] used multiple systems estimation to make infer-

ence on the number of killed or disappeared individuals between 1998 and 2007.

3 Multiple Systems Estimation

In all three of our case studies, the researchers needed to understand patterns of
violence that were not fully apparent in the reported data. There was reason to
believe that the reported data failed to record a number of deaths in such a way
that conclusions based on this data would be biased [Davenport and Ball, 46].
So they relied upon a method called multiple systems estimation (MSE) to make



inferences about the extent and kind of under-registration of the violations that
were committed. As first introduced in Peterson [1896], the method was originally
developed to estimate the number of fish in a pond (those that had been caught and
counted, and those that had not). But despite this early application, the strategy
is relevant to human rights applications as well, and enables quantification of the
uncertainty regarding the number of people whose deaths were not reported.

There are many reasons why a lethal violation might not be reported. As
noted in Ball et al. [2003], it may happen that victims live in remote regions where
recording agencies do not exist. Some victims or the families of the victims may
fear retaliation if the violation is reported. Some violations may occur without
any witnesses, and some may entail other kinds of violence, such as rape, which
the witness could want to conceal. For all these reasons and more, the recorded
conflict mortalities represent only a lower bound on the true count.

As a simple example of two-system estimation, consider Peterson’s original
application, estimating the number of fish in a pond. On Monday, one casts a net
and obtains nj; fish, which are tagged and released. On Tuesday, a second netting
is done, which yields ny fish, of which n/r are tagged. Under the assumptions

that

1. there are no births, deaths, emigrations, or immigrations (i.e., the pond is a

closed population)),
2. all fish are equally likely to be caught (homogeneous capture probability),

3. being captured on the first netting does not affect the probability of being
captured on the second; in particular, fish that are caught do not become

more cautious (independent systems), and

4. the tagging is error free (perfect matching),

Assuming a successful de-duplication effort.
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then it is simple to obtain an estimate of n, the number of fish in the pond, and
the variance of that estimate. Obviously, these assumptions fail significantly in the
human rights applications we consider, but careful modeling can address many of
the concerns.

In the fishpond example, the assumptions imply that the Monday fish and
the Tuesday fish are simple random samples of the population. The estimated
probability that the Monday sample captures a particular fish is py = ny/n,
and similarly the estimated capture probability for Tuesday is pr = nr/n. By
assuming independence, the expected number caught on both days is npypr, so
the plug-in estimate solves nyr = n(nar/n)(nr/n) to get n = nymny/nar. This
traditional estimate is not entirely satisfactory; it is biased and the variance is not
explicit. As noted in Chapman [1951], a less biased estimate of N is given by

(nM + 1)(nT + 1) _
nyr + 1

n =

with variance

(nM + 1)(7’LT + 1)(TLM — nMT)(nT — nMT)
(nyr +1)*(nur +2)

var[n| =

But people are not fish. Any naive attempt to estimate the conflict mortality
from overlaps in different casualty report lists runs aground because of the failure of
critical assumptions. For retrospective studies, the closed population assumption
is usually valid, because the dead stay dead. In the following subsections, we
discuss ways in which assumptions (2) and (3) can be relaxed and how assumption

(4) is typically handled.

3.1 Heterogeneous Capture Probabilities

The assumption of homogeneous capture probability means that we believe that

each data collection effort (or system) records each of the violations with equal



probability. Of course, different systems may have different probabilities of record-
ing violations (e.g., a well-funded survey will capture more violations than an un-
derfunded one), but within a given system, each violation has the same chance of
being recorded.

This assumption is rarely defensible in the context of human rights violations.
As mentioned in Bishop et al. [1975], “social visibility” is often a concern—victims
who are socially very well connected are much more likely to be reported to each of
the lists, whereas victims with a weaker social network are less likely to be reported
to any of the data collecting organizations. This would violate the assumption that
each of these two types of individuals has the same probability of being captured
for each list. And it is easy to think of other mechanisms that affect the probability
that a death is reported.

In the Guatemala case study, for example, it was found that the estimated
probability of capture varied by location; rural killings were more likely to be re-
ported than urban disappearances (personal correspondence with Patrick Ball).
In the Guatemala case, and for other cases in which there are obvious grouping
variables such as ethnicity, one possible solution is stratification. One constructs
stata within which the assumption of homogeneous capture probabilities is plausi-
ble, and generates a separate estimate of conflict mortality for each stratum, which
is then summed over strata to give a total. A side benefit of this is that one gains
fine-grained insight into ethnic, regional and/or class aspects of the conflict.

An alternative to stratification is a formal model-based treatment of the het-
erogeneity of individual capture probabilities. For example, Chao [1987] addresses
individual heterogeneity of capture probability by assuming a parametric form for
the distribution of the individual capture probabilities and letting each individual
have the same capture probability for each system, with the systems being inde-

pendent. Chao et al. [1992] builds on this work by relaxing the assumption that all



of the lists have the same capture probability for each individual. Instead, Chao
et al. [1992] assumes that the probability of capture for the ith person on the jth
list is the product of the ith individual’s capture probability and an inclusion prob-
ability for the jth list. Alternative models that explicitly model individual capture
heterogeneity based on Grade of Membership, as introduced in Woodbury et al.
[1978], are exemplified by Manrique-Vallier and Fienberg [2008]. In these models,
each individual’s capture probability on each list is modeled as a mixture of latent
class variables. Basu and Ebrahimi [2001] also employs a (two-component) mix-
ture model that allows for two different classes with distinct capture probability
for each class by each system. However, it should be noted that these models have

thus far been under-utilized in the context of human rights research.

3.2 System dependence

System dependence among administrative lists can be of great concern in obtaining
estimates of the total number of violations. This occurs if the appearance of a
reported death on one list implies that the same person is more likely or less likely
to be reported on another list.

In the case of Colombia, for example, lists were collected from both government
records and NGOs. It is possible that people who were inclined to trust and report
a violation to an NGO were less likely to trust the government (and vice versa),
which would result in negative dependence between these two systems. Positive
list dependence is possible as well. For example, again in Colombia, the National
Police are one of several groups that contribute to the records of homicides kept
by the Vice Presidency. However, the National Police also keep their own list of
homicides. Therefore, these two lists are positively correlated—records that appear
on the National Police list are almost certain to appear on the Vice Presidency’s

list.
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Positive list dependence can result in underestimation of the number of vi-
olations, whereas negative dependence results in overestimation. Although field
workers may be able to predict certain dependencies from their experience with
the various data collecting agencies, such contextual knowledge can typically only
address pairwise dependence. Judging three-way or higher order dependence struc-

ture among systems is much more difficult to assess.

3.2.1 Log-linear models

In the motivating example with exactly two systems, the assumption of indepen-
dence between the two samples was necessary, but with more than two systems
there is some flexibility in modeling the dependence among the lists through the
use of a log-linear model.

Using the notation of Bishop et al. [1975], imagine there are d systems, which
are not necessarily independent, each of which has sampled from the population of
lethal violations. Let {i1, i, ..., 74} define an intersection of the lists, where for each
individual i; = 1 if the individual is present in the jth sample and 0 otherwise.
For example, with d = 3, the intersection pattern {1,0,1} corresponds to names
that appear in the first system’s sample, do not appear in the second sample, and
appear in the third. Similarly, Yj¢; is the total number of names that appear on
the first and third lists but not the second, and Y is the collection of counts for
all possible intersections. Also let m;,;, ., be the expected number of individuals
that have the list intersection {41, 4s, ..., 74}

When there are more than two lists, one can use log-linear models to estimate
the dependence structure among the lists. For example, define the expected counts

as

log miiy.iy = U FUiy) + Uy + -+ + Uggy) + Z UaB(inig)
+ Z UaBy(inigiy) T 7 T U2, d(iris...iq)
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or any subset of the above terms, where the u;(;,) only appears for the m;;,. ., for

which i1 = 1 and uagi,i,) only appears in the sum for m;,4,. 4, for which i, =1

iaig
and i3 = 1. The inclusion of such terms as the UaB(inig) provides a model that
accounts for dependence between list o and 3.

Because u appears regardless of which other terms and cross-terms appear in
the equation, we see that the unobserved count, mgg..o, would be expressed in this
framework as logmgg_o = u. Bishop et al. [1975] gives several examples of closed
form estimates for the maximum likelihood estimate, N =n+ Moo...0, and the
associated uncertainty for each.

Notice how this relates to the simple two list estimate. Equating the current
notation with that of Section 3.2, Y = {Y1; = nyr, Yo = nar, Yor = nr}. Then,
under the log-linear model with an intercept and one coefficient for each list, the

fitted value of mpr is exp{u + u; + us}. Thus, exp{u} corresponds to n in the

two-system example, exp{u;} corresponds to pys, and exp{us} corresponds to pr.

3.2.2 Graphical models

An alternative way to incorporate system dependence is through graphical models.
In this framework, we write Y; ;, i, ~ Multinomial(@), where @ = {6¢,,0¢,, ...,00, }
is the collection of probabilities of a violation occurring in each cell of the multi-
nomial distribution. Each 6¢; is the vector of capture probabilities for clique Cj
in the decomposable graphical model describing the dependence structure of the
systems. In the Bayesian framework, we let each 8¢, ~ Dirichlet(d), which is the
conjugate prior for the multinomial likelihood and allows for easy marginalization
over the nuisance parameters, 6, for posterior inference about N. Thus one can ob-
tain closed form expressions for the posterior probability, P(N|Y"), free of all other
unknown model parameters. For a detailed description of using graphical models

to represent list dependence, see Madigan et al. [1995], and for an introduction to
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graphical models generally, see Lauritzen [1996].

3.2.3 Model selection and averaging

This expanded flexibility in modeling now raises the question of which model
to choose. In the log-linear setting, Bishop et al. [1975] discusses fit statistics
for determining which log-linear model best describes the dependence structure
exhibited by the data. The Peruvian report [Ball et al., 2003] uses this x? test
statistic to choose among several three-system models. Other standard model-fit
statistics, such as Akaike or Bayesian Information Criterion, may also be used.

In some cases, such as the Colombia example discussed previously, these fit
statistics can be almost indistinguishably similar for models that produce quite
different estimates of V. In this case, it would be undesirable to completely ignore
the models that are nearly as good as the best model but which tell a very different
story. One solution to this is to employ Bayesian model averaging. York and
Madigan [1992] shows how to use model averaging, as opposed to model selection,
in the graphical model setting to average across models for list dependence based
upon the marginal likelihood of each model. While each of these are reasonable
options for handling all of the options for modeling the dependence structure, these
methods generally assume an enumerable model space.

If one does not restrict the set of models under consideration, aside from requir-
ing that the model contain an intercept and not be saturated, then the number of
possible models is 22‘~1 — 2. For the case in Colombia, in which d = 15, this num-
ber is incalculably large and so not all models can even be considered. Madigan
et al. [1995] explains how to use Markov Chain Monte Carlo model composition
to average across a universe of models which may not be easily enumerable by
stochastically moving through the model space, switching from the current model

to a new proposed model with probability that is a function of the ratio of the two
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marginal likelihoods. Lum et al. [2010] introduce a method that considers only
three systems at a time and averages over all models applied to each three-system
partition with the additional layer of also averaging over all three-list partitions

to create a tractable model-partition space.

3.3 Record-linkage

The fourth critical assumption for MSE calculations is perfect matching. This is
necessary because the size of each list and the size of the overlaps among lists
must be known. Therefore individual records must be both identifiable as unique
within a list (e.g., duplicate records must be reconciled and eliminated within a
single list) and identifiable when identical across lists (e.g., if the same record
appears on multiple lists, it must be recognized as the same).

This can be particularly challenging within the context of estimating killings
and disappearances, since in these instances we are matching individual victims
between lists. In many societies, names may not be a useful personal identifier,
because of common given names or surnames. Often, complete victim names
are unknown, or may be intentionally withheld. Typically, victim names and
additional information, such as the date or location of the violation, are necessary
to generate confidence in matched records.

This problem is compounded since imperfect matching occurs both through
false negative matching and through false positive matching. False positive matches
are usually caused when records of two people with identical names are mistakenly
thought to refer to the same person. Because both the size of the lists and the size
of the overlaps influence the final estimate of the full population size, imperfect
matching could either decrease or increase an MSE estimate, according to which
records appear in which subsets of the lists. Thus, it is impossible even to take

a “safe” strategy of conservative matching, because the effect of such a matching
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policy on the final estimate is unpredictable.

Record matching is complex. The initial statistical strategy for record link-
age was the model of Fellegi and Sunter [1969]. What follows is a generalization
of this model. Given two records, x and y, one calculates some (usually vector-
valued) statistic h(x,y) and estimates P(match | h(x,y)) according to an appro-
priate model. If this estimated probability exceeds some user-specified value 7,
then the algorithm declares that the records are a match.

To make this concrete, suppose there are two records:

x = { R. Munson, 710 Duckpin Lane, Bowling Green, KY }

y = { Roy Munson, 710 Duckling Street, Bowling Green, KY }.

The analyst would use their best judgment to create a function h that extracts
information from these records (e.g., match on first initial, equal street number,
similar street name, same city name, same state) and build a model which describes
the probability that these records refer to the same person. That model would be
calibrated against, say, a corrupted version of a known database. In principle,
depending on the modeling effort, this approach could take account of the fact
that “Munson” is a rarer name than “Smith”, increasing the estimated match
probability, or that Bowling Green is relatively small, also increasing the estimated
probability.

Much of the art in this science derives from the selection of the function h.
Phillips [1990] let h reflect phonetic similarity: Duckpin and Duckling sound a
bit alike, so if the information for either record were collected aurally, it could
explain the discrepancy. Other strategies look for matches on alphanumeric strings
separated by punctuation, or focus on distances between short character strings (so
that misspellings have little influence); these may involve metrics that are based on

“edit distance” or “affine gaps”. Elmagarmid et al. [2007] provide a recent survey
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of this literature. In terms of implementation, the WEKA project [Hall et al.,
2009] provides machine learning algorithms that are useful for record linkage.

Additional art results from the selection of the statistical model for estimating
match probabilities. The default analysis uses logistic regression, but more so-
phisticated record-linkage techniques employ generalized additive models or other
strategies. The success of such models can be assessed by application to a real
or artificial database in which known amounts and kinds of corruption have been
introduced. A good assessment should be able to duplicate the kinds of mistakes
that occur in the actual collection process. One advantage of such assessment is
that the analyst can tune the simulation to the particulars of their circumstance;
record linkage with American names and addresses is a very different problem from
linking, say, Japanese names and addresses.

In the context of human rights applications, the challenge is more difficult than
linking names and addresses. A report might indicate that a male body was found
at a given intersection on a given date; a potential match might indicate that a
specific person was abducted by armed men a day earlier at a nearby location.
Building appropriate summary functions h and matching models is an on-going
challenge. Each analysis must be hand-fit to the situation; important issues include
whether the person and place names have been transliterated, whether certain
names are common or rare in the relevant location, and whether recall for date is
accurate.

These uncertainties should be propagated into the MSE analysis. For each pair
of records, the analysis produces an estimated probability that they match. From
this, one can simulate realizations of the match sets among the the different systems
used to produce the MSE inference. By chance, one simulation, in which records
are matched according to their estimated probabilities, might yield a relatively

high estimate of duplication; a second simulation might produce a lower estimate.
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By repeating these simulations many times and producing the corresponding point
estimate through MSE for each, one can obtain a confidence interval on the number
of casualties that takes account of the probabilistic uncertainty in the matching

procedure.

4 Summary of Findings

By using multiple systems methods, for each of the case studies described in this
paper, analysts uncovered patterns in the conflict violence that would have been
mis-represented had they relied upon traditional descriptive statistics.

In the Guatemala case, after matching and de-duplicating, Ball [1999, Ch. 11]
estimate a total of 47,803 reported killings across the three databases described in
Section 2.1. Matching was done on a random sample from each database, with
matching rates used to estimate the total number of matches across combinations
of entire databases. See Chapter 11 of Ball et. al. 2000 for more details. Using an
expansion of the two-systems estimation technique in Section 3 [developed in Marks
et al., 1974], Ball [1999, Ch. 11] estimated that approximately 84,468 killings were
not reported to any project, for a total of 132,174 killings in Guatemala between
1978-1996 (SE = 6,568).

Arguably even more important than the estimated magnitude of total killings
was the calculation of this estimate by ethnic group and region. The Commission
for Historical Clarification (CEH) used secondary sources and qualitative evidence
to identify six geographic regions during 1981-1983 in which they believed state
violence was concentrated against indigenous peoples. Using the MSE method,
separate estimates were calculated for each ethnic group in each region for the
years 1981-1983. The 1981 census was then used to calculate a killing rate. In at

least two of the six regions, indigenous peoples were killed at a significantly higher

17



rate than non-indigenous (see Figure 1). In fact, in these regions it was estimated
that 40% of indigenous people had been killed, which was five to eight times
greater than the rate for non-indigenous people. The Commission for Historical
Clarification used this, among other evidence, as an indication that acts of genocide

were committed against the indigenous people of Guatemala [Ball, 1999, Ch. 11].

Figure 1: Estimated Proportions of Ethnic Groups Killed in Guatemala 1981-1983
(originally published in ‘The Guatemalan Commission for Historical Clarification:
Generating Analytic Reports,” Chapter 11 of Making the Case: Investigating Large
Scale Human Rights Violations Using Information Systems and Data Analysis)
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In Peru, MSE analyses were conducted using the log-linear model approach
described in Section 3.2.1. These analyses resulted in an estimate of 69,280 deaths
between 1980 and 2000, more than three times the previously accepted estimate of
25,000 deaths often reported by human rights NGOs and newspapers [Ball et al.,

2003]. Additionally, the common local narrative of violence was that government
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forces had been the main perpetrators. MSE analyses revealed that violations
committed by the Sendero Luminoso were disproportionately under-reported, and
that in fact this group was responsible for between 41% and 48% of killings and
disappearances [Ball et al., 2003]. Figure 2 shows the estimated total number
of victims by perpetrator group and geographic location. The perpetrator group
labels are in Spanish - PCP-SL are the Sendero Luminoso, Ag. FEstado are State
agents, and Otros are others. As Figure 2 shows, the estimated number of victims
of the Sendero Luminoso is greater than the estimated number of victims of state

agents in every geographic region except Lima Callao.

Figure 2: Estimated Number of Victims by Region and Perpetrator (originally

published in ‘How Many Peruvians Have Died?’)
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The large amount of data available to the Colombia project required the use
of both the graphical modeling approach described in Section 3.2.2 and model

averaging and partitioning of data, as described in Section 3.2.3. This project
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generated specific point estimates: 2,653 disappearances (95% credible interval:
1,270, 5,552) between 1998 and 2005 and 6,215 killings (3,944, 9,983) between
2000 and 2007. These estimates were also calculated for specific geographic regions

based on grouping the following municipalities within Casanare:
e Geographic Region D - Center: Yopal and Aguazul

e Geographic Region F - Piedemonte: Sacama, La Salina, Tamara, Recetor,

Chameza and Nunchia

e Geographic Region F' - South: Tauramena, Monterrey, Villanueva, Mani and

Sabanalarga

e Geographic Region G - Plains: Hato Corozal, Paz de Ariporo, Pore, San

Luis de Palenque, Trinidad and Orocue

Figure 4 shows the point estimates for killings for each geographic region and year
(a) and population-adjusted estimates (b).

The major findings of this research were that 1) even with access to 15 datasets,
a statistically significant number of events are unreported (i.e., the number of un-
observed violations is not zero), 2) the pattern of unreported events varies over
time and space, and 3) descriptive comparisons of the 15 datasets revealed that
even groups which might have comparable reporting mechanisms, in practice doc-
ument distinct subsets of cases (such as the Vice Presidency and the National
Police). It is important to note that this last point is not a criticism of the data

collection mechanisms of the Vice Presidency or National Police (or any of the

We used the projections for the total population of Casanare by year as calculated by the
Colombian National Bureau of Statistics. See (http://www.dane.gov.co/daneweb_V09/index.
php?option=com_content&view=article&id=238&Itemid=121. Since we were unable to find
the yearly projections disaggregated by municipality, we assigned the same proportions by mu-

nicipality as the proportions in the 2005 census.
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other organizations that provided datasets for the Casanare analysis) but rather a
key reality that different organizations capture different proportions of the universe

of interest, even when contextual knowledge leads us to expect similar samples.

Figure 3: Estimated Killings by Region and Year in Casanare (originally published

in “To Count the Uncounted: An Estimation of Lethal Violence in Casanare”)
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5 Conclusion

The increase in data collection about human rights violations has allowed political
scientists, policy makers, historians, and other researchers in traditionally non-
quantitative fields to ask and answer questions about the patterns and extent of
violence in times of conflict. Unfortunately, many of these answers are derived from
convenience samples, resulting in biased conclusions. Although data collection
efforts are constantly improving, it is probable that, in many situations, there are

still large numbers of violations that are not recorded by any of the data-collecting
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groups.

By bringing modern statistical tools to human rights research, otherwise inac-
cessible features of the conflict can be illuminated. These methods can potentially
aid a retrospective understanding of which policies were effective in curtailing
violence, who the main perpetrators were, and who the victims were, based on
estimates (with quantified uncertainty) of the actual number of events, not just
the reported number. As the case studies of violence in Guatemala, Peru, and
Colombia show, this often results in substantially larger estimates of total conflict
mortality. Furthermore, using statistical methods to separate the number of crimes
reported from the number committed, the statisticians were able to scientifically
support a claim of genocide in Guatemala. In Peru, the analysis discovered ap-
proximately that Sendero Luminoso were responsible for the majority of atrocities
(46% compared to 30% of violations committed by agents of the Peruvian state)
Ball et al. [2003]. And in Colombia, new methodology found a much larger num-
ber of victims than expected, and exposed gaps in the record collection systems.
The indispensable role of statistics in the field of human rights—and in many other

seemingly unquantitative fields—should not be underestimated.
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