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Abstract

With wireless sensor networks, preserving battery life is critical. For such sensors, data
collection is relatively cheap while data transmission is relatively expensive. For such
networks in ecological settings, certain processes are sufficiently predictable so that trans-
mission of data at a particular time can be suppressed if it does not differ from what is
expected at that time. That is, there will not be much loss of information with regard
to inference. More precisely, there is a presumed model to explain the measurements
collected at the sensors, which provides insight into what is expected at a given node,
at a given time. Under the suppression, inference objectives include both estimation of
the process parameters as well as reconstruction of the entire time series at each of the
nodes.

In this paper, we build on the existing literature that has offered ways in which one
can use suppression in wireless sensor networks to limit the number of transmissions. We
introduce a new, computationally cheap, locally linear suppression scheme based upon
process knowledge and compare it to the commonly used “constant” suppression scheme.
Maintaining the same suppression threshold, we demonstrate decreased transmission
rates under the new scheme while producing comparable posterior inference relative to
constant suppression scheme. That is, the untransmitted readings are bounded to within
an interval of the same length under both schemes, but the linear suppression scheme
will transmit less data.

We implement this scheme for a synthetic dataset produced under the assumption
of a diffusion model and show that even under high suppression rates, we are able to
recover simulation parameters. We also implement linear suppression on data collected
from a real wireless sensor network that measures the amount of light filtering through
the forest canopy at a set of locations in the Duke Forest. We show that the in-sample
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tat́ısticos, Instituto de Matemática, Universidade Federal de Rio de Janeiro.
†AE Gelfand (alan@stat.duke.edu) is a professor in the Department of Statistical Science, Duke

University, Durham NC 27707 USA

1



predictive sum of squared errors from the suppressed data is only a bit larger than that
from the full dataset.
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1 Introduction

Sensor networks are able to extract spatially referenced data in novel ways to learn

about processes ranging from the social patterns of zebras (Zhang et al. (2004)) to the

forest dynamics of redwood trees (Tolle et al. (2005)). Such data enables interesting new

models but also introduces new challenges to the data collection process. Of interest here

are wireless sensor networks, small nodes that collect and transmit data, relying solely

upon their individual batteries. Replacement of these batteries may be difficult, perhaps

impossible. So, attention to energy savings is crucial to the viability of the network. For

such sensors, in terms of battery use, data collection is cheap while data transmission is

expensive. Hence, attention to ways in which the sensor can minimize data transmission

are of particular importance.

Suppression is a commonly employed way in which sensors can reduce transmission.

By suppressing the transmission of data that is similar to, i.e., within some distance of

recently transmitted data, not only is less data sent, but we also have information about

the data that was not sent. That is, because we know the mechanism by which the data

was suppressed, we can bound the possible range of values of each suppressed piece of

data. These bounds are only applicable if we are confident that all of the transmissions

the node intended to send, in fact, arrived successfully at the base station. Unfortunately,

with the current state of technology, this is often not the case. Silberstein et al. (2007)

and Puggioni and Gelfand (2010) treat this transmission failure by appending a record

of the time stamp of the last r transmissions. Any failures are then incorporated into

the model.

Sensor networks monitor dynamic processes resulting in a time series at each sensor

location. The contribution of this paper is to introduce a more informative but locally

cheap suppression scheme that anticipates dynamic behavior in the mean of the process

being observed. Rather than using a suppression scheme that only takes the last trans-
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mitted value into account, we suppress according to a locally linear trend in the mean.

We implement this scheme within a fully model-based setting. Evidently, there is loss

of information in suppression. Assessment of performance focuses on both estimation of

model parameters and on predictive performance (reconstruction) of the full time series

from the partially transmitted one.

Sensor networks are an increasingly common data collection mechanism across a

variety of fields. Indeed the Association for Computing Machines (ACM) has published

a quarterly journal, Transactions on Sensor Networks, since August 2005. Selected

applications include tracking (Juang et al. (2002)), monitoring volcanoes (Werner-Allen

et al. (2006)), and forest dynamics (Szewczyk et al.,2004 ). Such networks are developed

to infer about a process over a region which the sensors span. However, they move beyond

“data loggers”, where data is collected locally and retrieved locally. In a network, the

sensors can communicate with each other as well as with a “gateway” or base station.

In some designed fashion, the sensors transmit data to the gateway which serves as a

repository for the data.

Recent advances in wireless sensor technology have expanded the possibilities of

environmental modeling. In particular, continuous collection of data has become feasible

at temporal and spatial scales that were unattainable in the past. Furthermore, wireless

sensors can be placed in locations where measurement would otherwise be very costly

(requiring specialized technicians), or cumbersome (because of landscape and climatic

limitations). Examples of data that are suited to collection with a wireless sensor network

include soil moisture, light availability, temperature, and atmospheric CO2.

Suppression introduces missingness that is a generalization of more familiar censoring

(see, e.g., Sun (2006) and further references therein). With censoring, an observation

is restricted to a specified (possibly random) set. With suppression, an observation is

restricted to a set determined by the previous observations. In other words, suppression

is “informed” missingness. It is not sampling at coarser temporal resolution. We note
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that data suppression is a very broad term in the literature, applied to contexts such as

filtering, cleaning, acquisition, confidentiality, and misrepresentation. In the setting of

sensor networks we note the recent work of Chu, et al. (2006), Silberstein, et al. (2006)

and Silberstein, et al. (2007).

With wireless sensors, we envision high levels of suppression - potentially 70 % or

more of the time. Such levels of missingness are much higher than we work with in

customary statistical inference settings but, with processes that are highly predictable,

such suppression need not cost much in terms of inference performance regarding the

process. We note that our goal here is not network design or communication. We are not

seeking optimal placement of sensors, optimal specification of sensors, optimal collection

rates, optimal communication between sensors, etc. Rather, under a given network, we

are focused on the impact of a novel suppression scheme on our ability to learn about

the process of interest.

We apply this linear (first order approximation) suppression scheme to two illustra-

tive simulated data examples and compare it to the “comparison with last transmitted”

suppression scheme which implicitly assumes a constant mean. The simulated data

comes from a stochastic differential equation model. As a real example, we apply linear

suppression to a data set of readings of light availability from the Duke Forest in North

Carolina. In this setting, we show that even in cases with greater than half of the data

untransmitted, the mean posterior sum of squared errors only increases by about 3%

over that of the model fitted with the full data series.

Hence, the format of the paper is as follows. In Section 2 we briefly review the “last

transmitted suppression” scheme. Section 3 presents a linear suppression scheme which

can be applied using local linearization of the mean. Section 4 describes a simulation

example driven by an Orenstein-Uhlenbeck process. Section 5 investigates the Duke

Forest data. Section 6 concludes with a brief summary and possible future work.
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2 Last transmitted suppression

Data collection is assumed over a discretized time scale. A very simple suppression

algorithm, used in, e.g., Silberstein et al. (2007) and Puggioni and Gelfand (2010), is the

constant suppression scheme: transmit a new value if it is sufficiently different from the

last transmitted value. That is, without loss of generality, let the node begin recording

values at time t = t0, at which the first reading, Yt0 , is transmitted. Let tl be the

time stamp of the most recent transmission (which the algorithm resets to t0 = tl). At

each subsequent time point, t = tl + i, transmit Ytl+i if |Ytl − Ytl+i| > ε for some pre-

selected threshold, ε. If Ytl+i is transmitted, set t0 = tl + i and continue the algorithm,

transmitting the next value that differs from the last transmitted value by more than ε.

Under this algorithm, with no transmission failure, it is clear that each of the missing

readings can be bounded to be within an interval of length 2ε.

This scheme is suited for a situation in which E[Yt|Ytl ] = Ytl for t > tl. Hence, E[Yt]

is constant; there is no drift in the mean. For instance, Figure 1 shows this suppression

scheme applied to a Gaussian random walk. The trajectory given by the solid line is

observed. The full circles, along with the unfilled ones reveal the full dataset.

3 Linear Suppression

The constant suppression scheme fails to take advantage of possible trend in the incoming

data. By ignoring the trajectory of the data collected at a sensor, an opportunity is

missed for decreased transmission at that sensor under the same threshold as the constant

suppression scheme. We propose a linear suppression scheme instead. Consider a simple

dynamic model (West and Harrison (1999)) with the assumption of an observational

linear trend, E[Yt] = a + bXt, where Xt evolves dynamically. For convenience, in the

sequel we set Xt = t but the scheme is applicable to general Xt. We use the most recent
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Figure 1: Data generated from a Gaussian random walk (circles). Each of the filled
circles represents a transmitted value with the +s showing the ε bounds. (See text for
details.)

transmission and the value immediately following it to calculate current estimates of a

and b in order to inform suppression decisions.

As a first version, let t0 be the time at which a sensor begins taking readings, and let

t1 be the following reading. Initialize tl0 = t0 and tl1 = t1 to be the two most recently

transmitted readings. At each time t > tl1 , use tl0 and tl1 to calculate current â and b̂,

the coefficients that connect a line between (tl0 , Ytl0 ) and (tl1 , Ytl1 ), which can be found

using simple algebra. If |Yt− â− b̂t)| > ε, transmit Yt and set tl0 = tl1 and tl1 = t. If the

newest reading, Yt falls within the ε-bound of the linear predictor, Ŷt = â + b̂t, do not

transmit Yt. In the constant suppression case we do not need to know the mean; here,

we do not need to know the trend.

A second algorithm which allows faster adaptation to a quickly changing linear trend

would use only the most recent transmission. Under this algorithm, we can suppress by

assuming that the points since the last transmission approximately follow the line implied
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by Ytl and Ytl+1, where tl was the time of the transmission. The predicted value at tl + i

for i > 1 is then â + b̂(tl + i), where â and b̂ are calculated such that the line passes

through Ytl and Ytl+1. In this case, the transmission rule is different. Again, for i > 1,

if |Ytl+i − â − b̂(tl + i)| < ε, do not transmit. If |Ytl+i − â − b̂(tl + i)| > ε, transmit

Ytl+i. Then, we know that Ytl + jbmin − ε ≤ Ytl+j ≤ Ytl+j + jbmax + ε for 1 < j < i− 1,

where bmin =
(Ytl+i−1−ε)−Ytl

i−1 ≤ b ≤ (Ytl+i−1+ε)−Ytl
i−1 = bmax. Note that, because we use

adjacent time points to create the local linear predictor, the estimated lines may have

high variability. Also, due to the uncertainty about the b̂ that was used for suppression,

the bounds become wider as we move away in time from the last transmission. Still,

because it adapts rapidly, we employ this scheme in the sequel.

Figure 2 shows an illustration of the second linear suppression scheme. The dotted

line, which passes through the last transmitted value and the following value, shows the

line to which each subsequent transmission is compared. Once a reading deviates from

the dotted line by more than ε, the previous value (dot) is transmitted. Figure 3 shows a

periodic time series without noise (top) and with random deviations (bottom) suppressed

by both linear and constant suppression with the same threshold. It reveals that the

linear algorithm can achieve faster adaptation to a quickly changing locally linear trend

relative to the constant suppression scheme, particularly when the approximately linear

trend is strong relative to the noise.

More elaborate local suppression schemes can be developed, such as second order

approximation. However, we suspect that, in many cases, this would be locally very

unstable. Moreover, we focus on first order approximation as an approach that re-

quires negligible additional local computation compared with the constant suppression

scheme. We note that if EYt = aexp(−bt), we can take logs and then implement linear

suppression, similarly for any linearizable form, i.e., a mean allowing a one-to-one trans-

formation to linearity. More generally, we might devise linear suppression as a first order
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Figure 2: A cartoon illustration of the second linear suppression scheme. The dotted
line provides comparison to determine subsequent transmission.

approximation from a more complex mean evolution. That is, if EYt = g(t) where g is

differentiable, then EYt ≈ g(t0)+g
′
(t0)(t−t0) for t near t0. Such local linearity supports

the use of a linear suppression scheme. Below, we work with a stochastic differential

equation to describe the evolution of Yt. Using customary Euler discretization leads to

local linearity in the conditional mean, again encouraging linear suppression. Lastly, all

of the above applies if we replace t with Xt, as long as Xt is observed locally with Yt.

4 Examples using a diffusion model

We turn to a simulated application of model-based suppression, using the second sup-

pression algorithm described above. This example is motivated by a model that has

been used to characterize soil moisture, as in Puggioni (2008) and references therein.

We apply a suppression scheme tailored to the data generating model which arises from

a stochastic differential equation, in fact, a simulated classic Orenstein-Uhlenbeck (O-U)

process (see Uhlenbeck and Ornstein (1930)) with fixed parameters. We then demon-
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Figure 3: Data generated from 10 cos(t), for 30 values of t, and suppressed using both
linear (left) and constant (right) suppression, both with ε = 1. The suppression rate was
0.43̄ for linear suppression and and 0.2 for constant suppression for the top “noise-less”
row.

strate our approach with data generated from a logistic growth model, again a stochastic

differential equation model, with dynamic parameters that themselves are an O-U pro-

cesses.

We simulate an O-U process dYt = (θ1 +θ2Yt)dt+dWt using the Euler discretization

Yt− Yt−1 = (θ1 + θ2Xt−1)∆t + θ3N(0,
√

∆t) (see Iacus (2008), Elerian et al. (2001), and

Eraker (1998)). We simulate the series on the process on the interval [0, 50] at a resolution
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100 times higher than the data that we use for the analysis (i.e., we sampled 5000

observations in the interval but viewed the series as sampled at t=1,2,...,50. The higher

resolution is intended to provide a discrete sample that better resembles a continuous

trajectory. Figure 4 shows both the original series and the series used for the analysis.
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Figure 4: Simulated O-U process realization with parameters θ1 = 0, θ2 = −.7, θ3 = 1.

In order to suppress transmission from this series, we use a scheme tailored to the

process. We assume θ1 = 0 for simplicity, though this can be relaxed. We then suppress

according to the following scheme:

1. Transmit first two readings. (t = 1, t′ = 2, Ŷt = Y1, Ŷt′ = Y2, i = t′)

2. Calculate current estimate of θ2 from these two values as θ̂2 = (Yt′ − Yt)/(∆tYt).

3. Forward simulate with 0 variance from Ŷi to form predictions of the coming values.

Thus the prediction for Yi+1 is Ŷi+1 = Ŷi + Ŷiθ̂2∆t.

4. If |Ŷi+1− Yi+1| > ε, transmit Yi+1. Set t = t′, t′ = i+ 1, i = 1, Ŷi+1 = Yi+1 and go

to (2). Else i = i+ 1 and go to (3).

The dynamic parameter estimates are calculated very similarly to the linear suppression

scheme, though prediction is done according to the SDE.
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In order to infer about the model parameters, we use the method of Eraker (1998)

to estimate the parameters. We use a Metropolis-Hastings step rather than the more

complicated rejection sample hybrid Metropolis-Hastings for this simple univariate series.

This method requires inserting several latent variables between each of the sampled time

points, even in the case of a unsuppressed series. We include four latent variables between

each integer time point, and we sample each of the suppressed time points within their

known bounds. For further discussion on estimation of stochastic differential equations,

see Elerian et al. (2001) or Durham and Gallant (2002).

In an illustrative simulation with parameters θ1 = 0, θ2 = −.7, θ3 = 1, we set

ε such that the suppression rate was 38%. This resulted in posterior means and 95%

credible intervals of θ̂1 = .02 with interval [−.24, .29], θ̂2 = −.54 with interval [−.72,−.38]

θ̂3 = .82 with interval [.77, 1.10]. For each of the parameters, despite 38% suppression,

the credible intervals always contain the true simulated parameters. We note that the

maximum likelihood estimates from the full data set were θ2 = −.57, θ3 = .87.

The above suppression scheme updates θ2 dynamically based on the last two trans-

missions. The data, however, were generated from a fixed θ2. A more interesting case is

when the model parameters are themselves dynamic. For this, we turn to a new model

in which Yt is a logistic stochastic differential equation process with carrying capacity

K, which is fixed at one in this example, and time-varying rate parameter rt governed

by an O-U process:

dYt = rt(1− Yt/K)Ytdt+ σdWt

drt = (θ1 + θ2rt)dt+ θ3dWt.

The parameters of the logistic process are themselves governed by a stochastic differential

equation, allowing for movement of Yt according to the sign of rt, as seen in Figure 5,

which is an example realization from this process. A version of this model was considered
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recently in Duan et al. (2010).

Figure 5: (left) Logistic series simulated at 100 times the resolution sensed by nodes.
(right) Series sensed by the node. The parameters for this simulation were θ1 = 0,
θ2 = −.8, θ3 = 1, σ = .05

In order to illustrate, we assume that both series, {Yt} and {rt} are sensed by the

node, though each series is suppressed completely independently of the other. The O-

U process in rt is suppressed as above, and the logistic series is transmitted using a

suppression scheme in accord with the logistic model. At each time point, we use the

last two transmissions, t and t′ to estimate r̂ =
Yt′−Yt

(t′−t)Yt(1−Yt/K) . As only the unsuppressed

values of the rt and Yt series are ever seen by the base station, we must infer both the

missing values of each series and the model parameters governing both processes. Table
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1 shows posterior mean estimates for each of the parameters averaged over ten series of

length 100, suppressed at the rates indicated.

5 Duke Forest light availability data

The Duke Forest in Durham, North Carolina has deployed a sensor network to study

various aspects related to the health of the forest. One of the variables collected is

a reading of the amount of light each node senses during the course of a day (Clark

et al. (2011)). We work with a dataset consisting of five nodes, measured across twelve

days, with 72 measurements taken each day (20 minutes apart). After discussion with

ecologists, the following model for light filtration through a canopy was proposed:

−log(
Iitd
I0td

) = Fit +Gd + εitd

Fit ∼ N+(µi, τ
2
i )

µi ∼ N+(θµ, τ
2
µ)

Gd ∼ N+(µG, τ
2
G)

εitd ∼ N+(0, σ2).

In this model, Iitd is the reading of the ith node at time t of day d with I0td the associated

above-canopy reading. The Fit are intended to capture the local fluctuations in light at

each time of day at each node. We also include Gd as a daily average to capture the

relative cloudiness of each day. Lastly, we include i.i.d. errors, εitd. This simplified model

reflects the ecologists’ belief that the shadows which pass over the node throughout the

day are highly local, so much so that incorporating information from neighboring nodes

would likely not improve explanation. Thus, this model is completely non-spatial. It

is essentially a random effects model, where each node has its own random effect for
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.05

θ 1
=

0

-.022 -.023 -.015 -.024 -.001
.25 -.022 -.016 -.013 -.018 0
.45 -.019 -.018 -.015 -.026 -.004
.65 -.019 -.015 -.011 -.032 0
.85 -.022 -.020 -.020 -.032 -.005
.05

θ 2
=
−

0.
50

-.497 -.418 -.512 -.506 -.613
.25 -.514 -.503 -.513 -.519 -.583
.45 -.495 -.527 -.492 -.511 -.558
.65 -.483 -.494 -.495 -.512 -.656
.85 -.559 -.607 -.609 - .624 -.942
.05

θ 3
=

1

.947 .957 .952 .942 .999
.25 .956 .947 .944 .944 .973
.45 .940 .961 .924 .931 .951
.65 .918 .929 .916 .933 1.00
.85 .962 .986 .969 .964 1.05
.05

σ
=
.0

5

.044 .044 .044 .043 .043
.25 .044 .044 .042 .043 .044
.45 .045 .043 .045 .043 .041
.65 .046 .045 .045 .047 .043
.85 .078 .077 .077 .079 .071

Table 1: Posterior inference for the logistic/O-U model under varying suppression rates.
(See text for details.)
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each time of day. These are tied together in the hierarchy by µi, the node-level mean.

Evidently, the first stage is loglinear in the ratio, log( IitdI0td
). We assume that the above

canopy reading is known without error because this can be read at the base station

directly. Also, we know that if there is no light above the canopy, there must also be no

light below. So, we assume that each of the zero readings are also known. Figure 6 shows

an example of light readings from one series, the log ratio log( IitdI0td
), and the suppressed

data. To complete a Bayesian specification, we adopt flat priors for the mean parameters

with inverse Gamma priors on each of the variance components/parameters.
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Figure 6: (left) Light readings from a selected node. (center) The log ratio, log( IitdI0td
) for

this node to the above canopy reading. (left) A portion of the suppressed series.

We fit the model using several suppression thresholds, resulting in suppression levels

up to 62%. Table 2 shows the fitted sum of squared errors (observed-predicted) for each

of the models. Note that, even in the case of highest suppression, there is only a 3%

increase in the sum of squared errors. Figure 7 shows a comparison between each of the

Fit fitted from the full data set to each of the suppressed data sets. We find that, in

general, again we are able to recover approximately the same parameters, even from the

most suppressed data set.
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Threshold Suppression Level SSE

0 0 268
10 0.39 271
20 0.47 271
30 0.53 271
40 0.57 274
50 0.62 275

Table 2: The sum of squared error of the light model applied to each data sets with
varying suppression levels.
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Figure 7: Each panel represents the average fitted value versus the actual data for a
different suppression threshold applied to the light data.

6 Summary and future work

We have shown the benefits of working with locally linear suppression schemes. In

particular, by allowing the data model to inform about the nature of trend and then

adapting the suppression scheme accordingly, under fairly high levels of suppression,

we can achieve comparable inference performance, in terms of parameter estimation and

prediction, to using the full dataset. We have shown this in a simple simulation example,

a more complicated diffusion model simulation example, and with a real dataset.
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Future work in this area includes exploring suppression schemes incorporating spatial

dependence. By incorporating both the temporal dependence as we have done in the

suppression scheme presented here as well as spatial dependence with neighboring nodes,

potentially less data might be transmitted. Cascaded suppression is a spatial suppression

scheme in which nodes are clustered together depending on location and a “head node” is

selected for each cluster. The head node then takes the temporally suppressed readings

from each node in its cluster and decides which, if any, values to forward to the base

station. In this way, the cluster head will forward representative readings from the

cluster so that all readings not sent can be bounded in a way similar to purely temporal

suppression. Another research avenue would examine suppression for time series that

are non-Gaussian, or even discrete (e.g., binary or count data).
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