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Abstract

We propose a dynamic model to analyze polychotomous data subject to temporal variation.

In particular, we propose to model categorized levels of rainfall across time. Our model

assumes that the observed category is related to an underlying latent continuous variable,

which is modelled according to a power transformation of a Gaussian latent process, centered

on a predictor that assigns dynamic effects to observable covariates. The inference procedure

is based on the Bayesian paradigm and makes use of Markov chain Monte Carlo methods.

We analyze artificial sets of data and daily measurements of rainfall in Rio de Janeiro, Brazil.

When compared to the fitting of the actual observed volume of rainfall, our categorized model

seems to recover well the structure of the data.

Key words: Bayesian Inference, Cumulative link model, Latent variable, Ordinal data,

Probit model.

1 Introduction

In different fields of science, such as atmospheric sciences, agriculture, and hydrology, understand-

ing and forecasting levels of precipitation over a region, across time, is a key issue. Depending

on the time scale, observed values of precipitation are either equal to 0 (dry period) or equal

to a positive quantity. For this reason, it is important to have statistical models that account

for this property of the data. There are in the literature different proposals to model levels of

rainfall. Stid (1973) proposes a model which assumes that levels of precipitation are realizations

from a normal distribution that has been truncated and transformed. Sansó and Guenni (1999a)
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propose a dynamic version of the model proposed by Stid (1973). More specifically, Sansó and

Guenni (1999a) assume that levels of rainfall are a power transformation of a normal process,

which, in turn, is centered on a dynamic linear predictor allowing covariates’ effects to vary

smoothly through time. Sansó and Guenni (1999b) extend the idea of the dynamic model to a

spatio-temporal setting. De Oliveira (2004) proposes a model for rainfall fields that do not have

continuous distributions, and possess a distinctive probabilistic structure that is not presented

by standard random field models. His proposal is suitable for short to medium periods of time as

it accounts for the zero inflation typically present in such rainfall data. Fernandes et al. (2009)

pursue a different approach by assuming that observed rainfall is a realization from a mixture

distribution between a variable with Bernoulli distribution, and another one assuming only pos-

itive values. They explore the exponential, gamma and lognormal distributions for the positive

part of the model.

For some applications the interest lies only in predicting if it will rain or not. In this case one

can propose models for precipitation occurrence by assuming, for example, a temporal logistic or

probit regression. Alternatively, Hughes et al. (1999) propose a non-homogeneous hidden Markov

model for relating precipitation occurrences to broad scale atmospheric circulation patterns.

Here we propose to consider that observed volumes of rainfall at each time t can be catego-

rized into one of J categories. As pointed out by Fuentes et al. (2008), rain gauges are widely

used to measure rainfall accumulation, but the information they provide is limited by their spa-

tial and temporal resolution. Rainfall estimates are also obtained through remote senses which

provide information about rainfall at locations which do not have a ground monitor. We focus

on situations in which the actual volume of rainfall for some time t at a particular location is

unknown. However, it is known, through different sources of information (remote sense, physical

model, etc.), in which range, e.g. dry, drizzle, rain, storm, the amount of rainfall at time t is.

The multinomial distribution is a natural choice to model polychotomous data. For ordinal

responses, it is usual to model the cumulative distribution function, according to the so called

cumulative link models, as seen in e.g., Agresti (1990) and Congdon (2005). The choice of a

link function can be arbitrary or induced by data augmentation, which is a method frequently

adopted to model categorical ordinal data. The idea is to assume that the categorical response

is generated by an underlying, latent, continuous variable, supposed to be divided into intervals,

each of which representing a category.
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Albert and Chib (1993) develop exact Bayesian inference for polychotomous data by using data

augmentation. The idea is to make use of an underlying normal regression structure on latent

continuous data. On the other hand, Chen and Dey (2000) use scale mixture of multivariate

normal link functions to model correlated ordinal response data.

On a pure spatial setting, De Oliveira (2000) proposes a model for binary random fields by

clipping a Gaussian random field at a fixed level. Higgs and Hoeting (2010) extend the approach

of De Oliveira (2000) to model ordinal, categorical spatial observations. Berret and Calder (2010)

develop strategies to improve the inference of the Bayesian spatial probit regression model.

In the temporal context, Carlin and Polson (1992) assume that the categorical time series

is a known function of an underlying continuous process which evolves according to a state-

space model. Inference is performed under the Bayesian paradigm and they concentrate on the

dichotomous case. Knorr-Held (1995) proposes a dynamic version of the cumulative probit model.

In particular, a multivariate autoregressive structure is assumed for the regression coefficients and

threshold parameters which define each of the categories. Cargnoni et al. (1997) discuss a class

of conditionally Gaussian dynamic models for non-normal, multivariate time series. They focus

on multivariate time series of multinomial observations.

This paper is organized as follows. Next section proposes a model for temporal observations

of categories of rainfall. Basically, we assume the latent approach of Albert and Chib (1993),

but model the latent variable following Sansó and Guenni (1999a). Besides, we consider the

bin boundaries that connect the latent variable with each of the J categories to be unknown.

Therein we also discuss possible identifiability problems with the multinomial model. Then, in

Section 3 we start by performing a simulation study to check if our proposed model is able to

capture the true structure of the data when the truth is known. We provide an example with

real data by analyzing observed temporal categories of rainfall in Rio de Janeiro, Brazil. As

the actual volumes of rainfall are observed for this data set we also fit a model to the daily

observed amount of rain and compare the predictions based on the categorized and continuous

observations. Finally, Section 4 presents some concluding remarks and points to future avenues

of research.
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2 Proposed Model

Let Yt = j be an ordinal categorical variable indicating that the response variable is in category

j at time t, which is equivalent to define a vector of variables Yt. = (Yt1, · · · , YtJ) where Ytj = 1

and Ytr = 0, r = 1, · · · , J and r 6= j. Let πtj be the probability that the response variable lies

in category j at time t, that is, πtj = Pr(Ytj = 1). Then, given this probability, the response

variable follows a multinomial distribution:

Yt.|πt· ∼ Multinomial [1,πt·] , (2.1)

where πt· = (πt1, · · · , πtJ),
J∑

j=1

πtj = 1 and t = 1, · · · , T .

One reasonable way to think of a categorized variable Yt is to consider that it has been

generated from a continuous latent variable, Zt, divided into intervals whose bin boundaries are

unknown. The categorical variable is classified in category j if, and only if, the continuous variable

belongs to the category j, that is

Yt = j ⇐⇒ λj−1 < Zt ≤ λj , j = 1, · · · , J,

with λJ = ∞. Then one can model the cumulative probability that the response variable lies in

category j or below it at time t as

γtj = Pr(Yt ≤ j) = Pr(Zt ≤ λj). (2.2)

We propose to model categories of rainfall, treating the actual volumes of rain as a latent

process Zt, to which we assign a structure based on Sansó and Guenni (1999a). Assume that Zt

is a transformation of a Gaussian latent variable ζt, given by:

Zt =





ζα
t , ζt > 0

0, ζt ≤ 0.
,

ζt = F
′
tθt + et, et ∼ N(0, Vt) (2.3)

θt = Gtθt−1 + ωt, ωt ∼ NK(0, W t),

with α > 0 and F t being a vector of regressors, which may include trend and seasonal components,

as well as other covariates at time t. The effects of the structural components of F t are described

through θt, a vector with K regression coefficients, which may vary through time according to

the stochastic dynamic structure described in the bottom line of (2.3). Note that current and
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past values of the state parameters θ are related through a K × K evolution matrix Gt. We

assume, in particular, that Vt = V and that Gt is the identity matrix of dimension K, ∀t. The

structure in (2.3) implies that Zt is positive and zero inflated.

It is worth noting that the inclusion of the Gaussian latent variable ζt implies that the link

function that is implicitly assumed in the proposed formulation is a variation of a probit model,

since:

γtj = Pr(Zt ≤ λj) = Pr(ζt ≤ 0) + Pr(0 < ζt ≤ λ
1/α
j ) = Φ

(
λ

1/α
j − F

′
tθt√

V

)
.

Hence, Φ−1(γtj) = ρj − F
′
tϑt, with ρj =

λ
1/α
j√
V

and ϑt =
θt√
V

, with Φ(.) denoting the cumulative

standard normal distribution.

2.1 Inference Procedure

Let y = (y1, · · · , yT ) denote realizations of the categorical variable for T instants in time. Note

that πt1 = γt1 and πtj = γtj − γt,j−1, j = 2, . . . , J , with γtj given by (2.2). Thus, following the

model introduced in (2.1), the likelihood function is given by

l(y|λ,θ0, · · · ,θT , V, α) ∝
T∏

t=1

J∏

j=1

π
ytj

tj =
T∏

t=1

[Φ (ut,1)]
yt1

J∏

j=1

[Φ (ut,j)− Φ(ut,j−1)]
ytj (2.4)

=
T∏

t=1



1(yt = 1)Φ (ut,1) +

J∑

j=2

1(yt = j) [Φ (ut,j)− Φ(ut,j−1)]



 ,

with 1(.) denoting an indicator function and

ut,j =
λ

1/α
j − F

′
tθt√

V
, j = 1, · · · , J ; t = 1, · · · , T.

Examination of (2.4) (De Oliveira, 2000) shows that the model is identifiable for α 6= 1, since

if α = 1 and if the predictor contains an intercept, then the substituition of the parameters

(λ,θ0, · · · ,θT , V ) by (λ∗, θ∗0, · · · , θ∗T , V ∗)= (aλ+c, aθ0 +ce1, · · · , aθT +ce1, a2V ) for any a > 0,

c ∈ R and e1 = (1, 0, . . . , 0) implies that

u∗t,j =
λ∗j − Ft

′
θ∗t√

V ∗ =
aλj + c− aθt,1 − c−∑K

k=2 aXtkθt,k√
a2V

=
λj − Ft

′
θt√

V
= ut,j ,

thus resulting in l(y|λ, θ0, · · · , θT , 1, V ) = l(y|λ∗,θ∗0, · · · ,θ∗T , 1, V ∗). If the predictor has no in-

tercept, it still follows that, for α = 1, l(y|λ, θ0, · · · , θT , 1, V ) = l(y|aλ, aθ0, · · · , aθT , 1, a2V ).
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Therefore, care must be taken when assigning a prior distribution for α. It should assign very

low probabilities to values of α close to 1. We return to this below when we discuss the prior

distribution of α.

For computational convenience (Albert and Chib, 1993) we parameterize the likelihood in

terms of the latent variables ζt, · · · , ζT :

l(y|λ, ζ, α) ∝
T∏

t=1


1(yt1 = 1)1(ζt ≤ λ

1/α
1 ) +

J∑

j=2

1(ytj = 1)1(λ1/α
j−1 < ζt ≤ λ

1/α
j )


, (2.5)

and hence the parameter vector to be estimated in the proposed model is ψ = (θ0, . . . , θT ,

V, ζ, α,λ), as well as the evolution covariance matrixes W t. In particular, we assume that W t

is a diagonal matrix, implying prior independence among the components of θt, ∀t. In order to

specify W t we make use of discount factors. The choice of such discounts reflects the rate of

adaptation of θt to new incoming data, that is, it implies a graduate decay on the information

that observations previous to time t should bring to the estimation of θt. For details on the

specification of discount factors and the relationship between such discounts and evolution errors’

variances, see West and Harrison (1997, pp. 51, 193-202).

The prior specification for the components of the parametric vector ψ is as follows: for θ0 we

assign a multivariate normal distribution with mean vector m0 and covariance matrix C0; for V

we assign an inverse gamma distribution with shape aV and scale bV ; for the exponent α we assign

a gamma distribution with shape aα and rate bα, with these last two hyperparameters specified in

such a way that the prior distribution for α presents low probability mass in the neighborhood of

1, due to the identifiability problem discussed above. Also, as our continuous variable represents

rainfall, the positive part of the distribution is typically skewed. The hydrological literature

suggests that a reasonable transformation to rainfall data to attain normality is the cubic root.

For this reason we assign a prior distribution to α with high mass of probability around 3.

Completing the prior specification, we assume that conditioned on λj−1, λj follows a truncated

normal distribution with parameters mλj
and Vλj

, defined in the interval (λj−1,∞), for j =

1, . . . , J−1. We assume prior independence among the errors et, thus ζ1, . . . , ζT are conditionally

independent, a priori, given θt and V . Therefore, the joint posterior distribution for the general

model, conditional on W t, is given by

p(ψ|y, W t) ∝ l(y|λ, ζ, α)p(θ0)
T∏

t=1

[p(θt|θt−1, W t)p(ζt|θt, V )] p(α)p(V )
J−1∏

j=1

p(λj |λj−1).
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The joint posterior distribution is analytically intractable and we resort to Markov chain

Monte Carlo (MCMC) methods to obtain samples from the target distribution. In particular

we use a hybrid Gibbs algorithm (Geman and Geman (1984); Gelfand and Smith (1990)) with

some Metropolis-Hastings steps (Metropolis et al. (1953); Hastings (1970)). Appendix A provides

some details about the resultant full conditional posterior distributions and proposal distributions

adopted in the MCMC scheme.

2.2 Predictive Inference

Let D0 denote the set that summarizes all the information available to a forecaster at time t = 0.

If the model is closed to external information, the available information at each time t is given

by Dt = {Dt−1, yt}. In most time series applications, one aims to predict future values YT+h,

h = 1, · · · , H, given the information available up to time T , DT . Let Y f = (YT+1, . . . , YT+H)′ be

the future values at times T +1, · · · , T +H and define ψf as the collection of parameters required

for the likelihood of Yf. Then the predictive distribution for Yf, under model M , is given by:

l(yf|DT ,M) =
∫

l(yf|ψf, DT ,M)p(ψf|DT ,M)dψf =
∫

l(yf|ψf,M)p(ψf|DT ,M)dψf

= Eψf|DT ,M [l(yf|ψf,M)], (2.6)

with p(ψf|DT ,M) obtained by updating p(ψ|DT , M) through the evolution equation in the bot-

tom line of (2.3) and l(yf|ψf,M) =
∏H

h=1 l(yT+h|ψf,M). When looked at as a function of the

model M , (2.6) gives the predictive likelihood for model M , which may be used as a criterion for

model selection, see e.g. Alves et al. (2010).

Let ψm be the set of the parameters needed to describe the predictive likelihood of the model

m and suppose that a Monte Carlo sample of size N of p(ψ|Y , W ) is available. Then the

construction of a sample of p(ψm|M = m,DT ) follows directly and a Monte Carlo estimate for

the predictive likelihood in (2.6) is given by

Êψm|M=m,DT

[
l(yf | ψm,M = m,DT )

]
=

1
N

N∑

i=1

H∏

h=1

l(yT+h|ψ(i)
m , M = m,DT ) (2.7)

When selecting among a set of proposed models based on predictive likelihoods, the specification

that provides maximum value for (2.7) should be the chosen one.
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3 Data analysis

In order to verify if the proposed model is able to recover the actual structure that generated

the data, when that structure is known, artificial data sets were generated following (2.3). This

simulation exercise is summarized in subsection 3.1. Next we fit our proposed model to a real

data set, aiming at predicting categorized volumes of rainfall. We also compare the performance

of the prediction under the categorized formulation with a fitting to actual volumes of rainfall,

which we call continuous formulation.

3.1 Artificial data

Based on equation (2.3) we generated L = 25 samples, each of length T = 169, with J = 4

categories and used K = 2 covariates, such that F′t = (x1t, x2t), where x1 and x2 are the same

covariates used in the analysis of the real data in section 3.2. After fixing θ0 = (−1.3, 4.0),

W = 0.0001, V = 0.1, and α = 2, we generated the true values for θ1t, θ2t, and ζt. The true

bin boundaries were fixed at λ1 = 0.5, λ2 = 7.5, λ3 = 15. Once these values were established,

we obtained the observed values yt as follows: if zt ∈ [0.0, 0.5) then yt = (1, 0, 0, 0), else if

zt ∈ [0.5, 7.5) then yt = (0, 1, 0, 0), else if zt ∈ [7.5, 15.0) then yt = (0, 0, 1, 0), else if zt ∈ [15.0,∞)

then yt = (0, 0, 0, 1).

For each of the L = 25 samples we fitted the same model used to generate the data, and

assigned the following prior distributions: for θ01 and θ02, independent, zero mean normal dis-

tributions, each with variance 10, for V we assigned an inverse gamma distribution with infinite

variance and mean equal to 0.1, whereas for α, a gamma prior distribution was asssigned with

shape parameter equal to 9 and rate equal to 3. The variances of the evolution equation of the

parameters of the covariates, W = diag(W1,W2), were estimated using discounting factors, and

these were fixed at 0.98.

We explored three different prior specifications for the bin boundaries λjs, j = 1, 2, 3. All of

them assume normal distributions for λj , truncated on λj−1, and the parameters are as shown in

Table 1. Prior distributions I and II assume the mean of the associated normal distribution for

each λj equal to the values used to generate the data. Prior I is more concentrated around the

true values used to generate the data, than prior II. On the other hand, for prior III the mean

of the associated normal distributions are fixed at values greater than the ones used to generate

the data, and with variance fixed at a reasonably high value.
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Table 1: Mean (mλ) and variance (Vλ) of the associated normal distributions for the bin bound-

aries, λ1, λ2, and λ3, of the simulation study.

Prior mλ1 mλ2 mλ3 Vλ = Vλj
∀j = 1, 2, 3

I 0.5 7.5 15.0 5.0

II 0.5 7.5 15.0 10.0

III 1.0 9.0 25.0 10.0

For each sample, and prior specification, we let the MCMC run for 900,000 iterations, consid-

ered the first 10,000 as burn in, and stored every 800th iteration to avoid autocorrelation among

the sampled values. Convergence of the chains was checked through trace plots.

Clearly, the posterior distribution of the bin boundaries λjs are sensitive to their prior spec-

ification. When comparing the posterior distributions obtained under priors I and II, except of

λ1, prior II provided wider ranges of the 95% the posterior credible intervals for λ2 and λ3 (1st

and 2nd columns of Figure 1). Apparently, the posterior distribution of λ1 is not highly affected

by its prior specification, as prior III provided very similar summaries for λ1 when compared to

priors I and II. However, as we must assume λ3 > λ2, we notice that as we increase the prior

mean, we tend to overestimate the true values of λ2 and λ3 (3rd column of Figure 1).

The variance of the observation equation, V , seems not to be sensitive to the prior specification

of the λjs (1st row of Figure 2). On the other hand, the posterior distributions obtained under

prior III tend to slightly overestimate the true value of the power transformation α.

3.2 Analyzing daily categories of rainfall in Rio de Janeiro

In this subsection, two approaches are compared, both aiming to model rainfall data. In the first

one it is assumed that the available information is on categorized rainfall occurrence and that the

actual amount of rain is unknown, being treated as a latent process, as described in section 2. In

the second approach, we follow Sansó and Guenni (1999a), and model volumes of rainfall, then

we compare the resultant predictions under both approaches.

The analyzed data were made available by the Ministry of Agriculture, Livestock and Supply,

National Institute of Meteorology - INMET, Brazil, and comprises daily ground observations on

volumes of rainfall. We have also available daily records on average wind speed, average humidity
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Figure 1: Each panel shows the 95% posterior sequence of credible intervals, based on each of

the L = 25 samples, of λ1, λ2, and λ3 (rows) under each of the prior specifications of Table 1

(columns). In all panels, the horizontal dotted line represents the true value of the respective λj .

and average temperature, but preliminary analyzes showed no significant effect of average wind

speed on rainfall. We fitted the models to the period ranging from September 22, 2005 to March

19, 2006, comprising 179 observations. We held out the last H = 10 observations for model

selection and predictive purposes, such that for the inference we had T = 169 observations.

Although the used data set provides information on volumes of rainfall, here we classify the

observed rain occurrences in six categories, each representing different levels of rainfall. We

referred to Dias and Espinosa (personal communication, 2008), who proposed five bin boundaries

to rain volumes (in mm) during the Spring/ Summer months in Rio de Janeiro (0.5, 7.5, 15.0,

22.5 and 30.0). Rain volumes were divided into categories according to these bin boundaries and

the resultant categorized variable is the one considered in the likelihood function in (2.5). We

fitted models with discount factors for the the evolution errors’ variances Wt equal to 0.95 and
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Figure 2: Each panel shows the 95% posterior credible intervals, based on each of the L = 25

samples, of V and α (rows) under each of the prior specifications of Table 1 (columns).

0.99. As the results were not sensitive to this choice we show the results based on 0.99. The

parameters of the prior distributions for α, V and θ0 were, respectively: aα = 9, bα = 3, aV = 2,

bV = 2, m0 = 0, C0 = 10. In the same spirit of the simulated exercise, a sensitivity analysis

has been performed to evaluate the impact of the bin boundaries’ prior specification on the joint

posterior distribution of ψ. A grid of values was specified for the parameters of the truncated

normal prior distributions for λj , j = 1, . . . , 5, according to Table 2.

Table 2: Parameters of the prior distribution specifications for the bin boundaries λj , j =

1, 2, 3, 4, 5 for the rainfall dataset.

Set µλ1 µλ2 µλ3 µλ4 µλ5 Vλ = Vλj∀j
1 0.5 7.5 15.0 22.5 30.0 5.0

2 0.5 7.5 15.0 22.5 30.0 10.0

3 1.0 8.0 20.0 30.0 40.0 10.0

4 0.7 6.0 12.0 20.0 35.0 10.0

5 0.7 15.0 25.0 30.0 60.0 10.0

We ran the MCMC for the different models for 900,000 iterations, considered the first 100,000

as burn in and stored every 800th iteration. The summary of the posterior distribution of the
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bin boundaries, under the five different prior specifications are depicted in Figure 3. When the

first and second specifications are compared, it is clear that changes in the prior variance did

not substantially affect the point estimates, with the second specification providing slightly wider

credibility ranges, as expected. Except for λ1, the estimation of the remaining bin boundaries

was indeed sensitive to different prior mean specification, as shown by the comparison between

priors 1 and 2 and the remaining ones. The predictive likelihood estimates originated from the

Figure 3: Summary of the posterior MCMC samples of the bin boundaries under the five different

prior specifications.

five specifications above are registered in Table 3, which shows that the second prior specification

provides the best predictive result, followed very closely by the third specification. The fifth

prior, centered on values which are in dissonance with the experts’ information, produces the

worst results among the proposed specifications.

Table 3: Model comparison under the predictive likelihood estimates considering different prior

specifications for the bin boundaries.

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5

0.000742 0.000773 0.000772 0.000703 0.000635
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In the remaining of this section, except if otherwise stated, the posterior and predictive

results associated to the categorized formulation refer to the model fitted with the second prior

specification. Figure 4 displays the estimated time series of precipitation (in the log scale for easy

of visualization), as well as the actual observed precipitation volumes. It is clear that the latent

variable Zt captures the observed time series and its general behavior pretty well.

Figure 4: Observed time series (solid circles) of precipitation - in the log scale- and its estimates

(solid line), according to the best proposed model under the categorized formulation, together

with the 95% posterior credible interval (dotted lines).

A comparison with an analysis using the actual observed volumes of rainfall

We now compare the results of the categorized formulation to a continuous formulation, as

proposed by Sansó and Guenni (1999a). Basically, following equation (2.3), we write down a

likelihood function for the daily volumes of rainfall, in this case Zt denotes the actual observed

amount of rain. Thus it is only necessary to estimate the variance of the latent variable, ζ, the

regression coefficients θ and the exponent α.

Figure 5 shows the regression coefficients, which are positive for humidity and negative for

temperature, under both models. The estimated coefficients exhibit quite similar temporal tra-

jectories, regardless of the adopted approach. Figure 6 shows the summary of the posterior

distribution of the variance V and the exponent α, for the five different prior specifications under

the categorized formulation, as well as under the continuous formulation. When the best categor-

ical specification (based on prior 2) is compared to the continuous formulation, it is clear that the
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observational variance V concentrates on smaller values under the categorical approach, while the

exponent α concentrates on smaller values under the continuous approach. The uncertainty asso-

ciated to the estimation of α is significantly smaller under the continuous approach, as reflected

by the 95% credibility intervals. This is probably related to the fact that more information is

available when we fit the model using the actual volumes of rainfall.

Through the forecasted amount of rainfall obtained by the continuous formulation and using

the bin boundaries suggested by Dias and Espinosa, we can obtain forecasts for future categorized

rain categories based on the continuous model. The top line of Figure 7 exhibits the predictive

median for the categorized response variable, as well as the actual observed category at each time,

under the best categorized model and the continuous formulation (2nd column). Both models

exhibit very similar patterns in their respective predictions. The second line of Figure 7 shows

posterior and predictive medians, and their respective 95% credible limits, for the latent variables

ζα
T+h, as well as, the actual observed rainfall volumes. The predictive point estimates provided by

the continuous formulation are closer to the actual observed rain volumes, just as expected, since

the volume of rainfall was assumed known in that approach. It is worth noting that, although

the observed volumes were unknown under the categorized formulation, the estimation procedure

under that approach was able to recover the general pattern of the continuous response, with the

actual observed amounts of rainfall falling within the limits of the 95% posterior credible interval.
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Figure 5: Posterior summary of the evolution of the regression coefficients for humidity (θ1) and

temperature (θ2), under the categorized model (first row) and the continuous formulation (second

row).

Figure 6: Summary of the posterior distribution for the variance of the evolution errors, V , and

for the exponent α. In each panel, vertical lines 1 to 5 represent 95% posterior credible intervals

obtained under the five different prior specifications for the categorized model and vertical line 6

represents the result under the continuous formulation.
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Figure 7: First row: Median of the posterior predictive distribution for the last 10 observations

held out from the inference procedure. The symbol × represents the posterior median of the pre-

diction. Second row: summary of the posterior (left panel) and posterior predictive (right panel)

distributions and respective limits of the 95% posterior credibile intervals, under the categorized

(left panel) and the continuous (right panel) formulations, for the volumes of rainfall (in the log

scale). Solid lines are the median and dashed lines are the limits of the credible intervals. In

all panels, the solid circles represent the last 10 observations which were used in the inference

procedure, and the hollow circle is the actual observed category (first row) or the observed volume

(second row).
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4 Discussion

We proposed a model for polycothomous data that vary across time. More specifically, we con-

centrated on the problem of modelling observed categories of rainfall. We extended the work of

Albert and Chib (1993) assuming that the underlying continuous variable follows the model pro-

posed by Sansó and Guenni (1999a). Different from Albert and Chib (1993), we assumed the bin

boundaries, that connect the categorical variable to the (latent) continuous one, as parameters

to be estimated.

In section 2 we showed that we must impose some restrictions to the proposed model in order

to be able to obtain estimates of the parameters of interest. Analysis of artificial data suggest that

we are able to recover the true values of the parameters. The analysis of daily measurements of

rainfall in Rio de Janeiro suggest that the categorized approach is able to recover reasonably well

the underlying true process, when compared to the model that makes use of the actual volumes

of rainfall (Section 3.2).

Following the suggestion of Dias and Espinosa (Private Communication, 2008) we assumed

the bin boundaries fixed across time because we had only Spring/Summer observations. If a

longer time series, covering different seasons of the year is investigated, we suggest to change

the prior distribution of the λs accordingly. In this case, the MCMC described in the appendix

has to be accommodated as different bin boundaries will be used for different instants in time.

The proposed model might be used as the top layer of a hierarchical model which accounts

for different sources of information on rainfall, e.g. ground-based measurements, remote sense,

physical models, etc. Combining the information from these different sources is challenging and

is a current subject of research.
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A Full conditional posterior distributions

In what follows, the full conditional posterior distributions based on the likelihood function

in(2.5), which makes use of the latent variables ζ, are described. Let ψ = (V, ζ,λ, θ, α) and

ψ−β be the vector ψ, except for a component β.

Full conditional distribution of the bin boundaries λ1, · · · , λJ The full conditional pos-

terior distribution of λ is given by

p(λ|ψ−λ, W , y) ∝ exp



−

1
2

J−1∑

j=1

(
λj −mλj√

Vλj

)2




J−2∏

j=1





[
1− Φ

(
λj −mλj+1√

Vλj+1

)]−1


×

J−1∏

j=1

[1 (max {max {Zt : Yt = j} , λj−1} < λj < min {min {Zt : Yt = j + 1} , λj+1})].

This distribution is analytically intractable, hence we use Metropolis-Hastings steps to obtain

samples from it. A product of truncated normal distributions, each one centered on the cur-

rent value of each cut point, is adopted as proposal density for this step, so that q(λp|λc) =

q1(λ
p
1|λc)

∏J−1
j=2 qj(λ

p
j |λp

j−1, λ
c), with

qj(λ
p
j |λp

j−1,λ
c) =

1√
2πVl

exp

{
−1

2

(
λp

j−λc
j√

Vl

)2
}

Φ
(

min{Zt:Yt=j+1}−λc
j√

Vl

)
− Φ

(
max{max{Zt:Yt=j},λp

j−1}−λc
j√

Vl

) .

The supports of the densities q1, . . . , qJ−1 are given by:

max{max{Zt : Yt = 1}, 0} < λp
1 < min{Zt : Yt = 2},

max{max{Zt : Yt = j}, λp
j−1} < λp

j < min{Zt : Yt = j + 1}, j = 2, . . . , J − 1

and Vl is tuned to provide reasonable acceptance rates.

Full conditional distribution of the exponent α The full conditional posterior distribution

of α, p(α|ψ−α, W , y), is proportional to p(α)l(y|ψ). The domain of α is constrained because of

the likelihood function in (2.5). As showed in the following lines, this parameter lies in an interval

given by α ∈ (max {a} , min {b}), whith a = (a1, . . . , aNa), b = (b1, . . . , bNb) and Na, Nb ≤ T .

To determine a and b, it is necessary to analyze the category to which the response variable

belongs and the value of ζ. Let q = 1, . . . , Na and s = 1, . . . , Nb.
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If the response variable belongs to category 1 at time t, then

Yt1 = 1 ⇔ 0 < ζα
t ≤ λ1 or ζt ≤ 0.

Note that if ζt ≤ 0 or ζt = 1, the restriction does not depend on α. If ζt > 0, then 0 < ζα
t ≤ λ1,

implying that −∞ < α log (ζt) ≤ log (λ1). This last inequality implies that

α ≥ log(λ1)
log(ζt)

= aq, for 0 < ζt < 1,

α ≤ log(λ1)
log(ζt)

= bs, for ζt > 1.

If the response variable belongs to category j > 1 at time t, then

Ytj = 1 ⇔ λj−1 < ζα
t ≤ λj ⇔ log (λj−1) < α log (ζt) ≤ log (λj).

Once again, notice that:

aq =
log(λj)
log(ζt)

< α ≤ log(λj−1)
log(ζt)

= bs, for 0 < ζt < 1,

aq =
log(λj−1)
log(ζt)

< α ≤ log(λj)
log(ζt)

= bs, for ζt > 1.

Note that max {a} < min {b}, ∀ζ, λ, because the bin boundaries, λ1, . . . , λj , are ordered and

also because, for each pair of instants t1, t2 ∈ {1, 2, . . . , T}, with t1 6= t2, it is true that, if j1 < j2

and Yt1 = j1, Yt2 = j2, it follows that ζt1 < ζt2 . Then, the full conditional posterior distribution

of α is given by

p(α|ψ−α, W , y) ∝ G(aα, bα)1(α ∈ (max {0, a} , min {b})).

Full conditional distribution of the latent variable ζt The full conditional posterior

distribution of ζt, t = 1, . . . , T , is given by p(ζt|ψ−ζt
,W ,y) ∝ l(y|ψ)p(ζt|θt, V ). Therefore,

p(ζt|ψ−ζt
, W , yt = j) ∝ N(F

′
tθt, V )

[
1(ζt ≤ λ

1/α
1 )1(Yt1 = 1) +

∑J
j=2 1(λ1/α

j−1 < ζt ≤ λ
1/α
j )1(Ytj = 1)

]
.

Full conditional distribution of the variance V The full conditional posterior distribution

of V is an inverse gamma distribution defined by

(V |ψ−V ,W ,Y ) ∼ IG

(
aV +

T

2
, bV +

1
2

T∑

t=1

(
ζt − F

′
tθt

)2
)

.
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Full conditional distribution of the regression coefficients θ As (ζt|θt, V ) ∼ N(F
′
tθt, V ),

(θt|θt−1, W ) ∼ N(θt−1, W ) and p(θ|ψ−θ, W , Y ) ∝ ∏T
t=1 {p(ζt|θt, V )} p(θ|W ), we can use the

FFBS algorithm. The variance W is assumed known through discount factors.
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