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Abstract

The non-gaussian dynamic models have been used in modeling of
count, proportions time series. In this article, a new family of dynamic
models - Gamma Family of Dynamic Models is introduced, as well as
particulares cases, generalizing previous proposals which were done in
the literature. Besides sequential inference, are presented filtering and
smoothing results. Through Monte Carlo Experiments, the behaviour
of interval and point estimators of model parameters are investigated
and compared. The results showed that the MLE and Bayesian esti-
mators have a small and similar mean square error. Already interval
estimators presented coverage rate near to the nominal level supposed
and credibility intervals have, in general, a width slightly larger. As
illustration of presented methodology, the Poisson, Gama models and
Normal model of sthocastic volatility were fitted to two real time series
and the results were satisfactories.

Keywords: State Space Models; Local Level Model; Classical Infer-
ence; Bayesian Inference; MCMC.

1 Introduction

In the literature, there are several models which are built based on normality,
homocesdacity and independence assumptions of the errors, however, in
some cases, it is not possible to satisfy these assumptions. Under time
series context, the independence assumption of the error rarely is satisfied,
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while normality assumption has been considering in the mainly approaches
of modeling time series.

The modeling by state space, that is the approached subject in this work,
possesses one great amount of works and results, based on the assumption
of normality. In this article, some possibilities will be presented for the
treatment of time series that surpass this restriction.

The starting point for this extension is the article of Nelder & Wed-
derburn (1972), that proposed the family for them considered called of
generalized linear models (GLM), unifying some existing models then of iso-
lated form in a class. The basic idea of these models consists of opening
the range of options for the response-variable distribution, allowing that the
same one belongs to the exponential family of distributions, what also it
brings a profit in the question of interpretation of the model. The function
of linking of the data plays the role to relate the average of the data to
the linear preditor, according to Nelder & Wedderburn (1972) and Dobson
(2002).

In the context of time series, the correlation structure of observations
can not be rejected. In this direction, one more general structure, called for
Dynamic Generalized Linear Models (DGLM), proposed by West, Harrison
& Migon (1985), attracting an immense interest due to great applicability
of the same ones in diverse areas of the knowledge. Proof of this is the great
number of works published on these models. Amongst which it can be cited
the works of Gamerman & West (1987), Grunwald, Raftery & Guttorp
(1993), Fahrmeir (1987), Fruhwirth-Schnatter (1994), Lindsey & Lambert
(1995), Gamerman (1991a, 1998), Chiogna & Gaetan (2002), Hemming &
Dhaw (2002) and Godolphin & Triantafyllopoulos (2006). Works that deal
with non-gaussian time series, not necessarily the DGLM, include Smith
(1979), Smith (1981), Cox (1981), Kaufmann (1987), Kitagawa (1987),
Smith & Miller (1986), Harvey & Fernandes (1989), Shephard & Pitt
(1997), Jørgensen et al. (1999) and Durbin & Koopman (2000), among
others.

The problem with this models class (GDLM) is that the analytical form
is easily lost, even using very simple components. Thus, the predictive
distribution, that is basic for inference process, can only be gotten in an
aproximated way. A particular case of these models assumes that only the
trend floats and the effect of the covariables are fixed to long of the time.
For these cases, a sufficiently wide models class exists that allows the exact
computation of the predictive distribution, the Gamma Family of Dynamic
Models (GFDM).

Thus, the main objective of this article is to consider in its second section
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Gamma Family of Dynamic Models, which allows analytical computation of
the predictive distributions. This family is gotten from a generalization of
a Smith & Miller (1986)’s result. They had considered an exact evolu-
tion equation, thus making possible the analytical integration of the states
and attainment of the predictive distributions that compose the likelihood
function.

Thus, the contributions of the article are to consider and to characterize
the GFDM, to present particular cases that belong to this family, as the
Gamma, Pareto and Beta models and to consider a smoothing form of the
component of level of the model. Besides, a study about the behavior of the
estimators for a variety of possibilities of this family.

Gamma Family of Dynamic Models will be presented in Section 2. Its
main theoretical results will be supplied as well as the form to make inference
will be described. Classical approach, using the maximum likelihood esti-
mator (MLE), and the Bayesian approach, using MCMC methods to get the
Bayesian estimators (BE), are considered in the inference process. Besides,
credibility and confidence intervals are built for the parameters. Next, in
Section 3, particular cases will be presented inside of this family. Section 4
deals with the comparison of Classical and Bayesian points of view through
exercises of simulation. In Section 5, the real data are made applications,
adjusting Poisson and Gama models. Finally, Section 6 presents the main
conclusions and final remarks.

2 Gamma Family of Dynamic Models

Smith & Miller (1986) and Harvey & Fernandes (1989) had presented par-
ticular cases of non-gaussian dynamic models. In this work, from these cases
a generalization is made, that is, a wide family is introduced, called Gamma

Family of Dynamic Models. An advantage of these models compared to
the DGLM is that evolution equation is exact. On the other hand, it is
not one trivial task to insert other sthocastic components, for example, the
components of trend or/and sazonality. Although, the effect of these com-
ponents can be caught in model through the covariables. In this section,
the GFDM definition, the procedures of inference (classical and Bayesian)
are considered, one way of making the forecast and the smoothing, as well
as the model adequacy.
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2.1 Definition

In a general way, it is defined that the time series {yt} possesses one distri-
bution in the GFDM, if its distribution is written in the form:

p(yt∣�t,') = a(yt,')�
b(yt,')
t exp(−�tc(yt,')), (1)

where yt ∈ H(') ⊂ ℜ and p(yt∣�t,') = 0, otherwise. The functions a(⋅),
b(⋅), c(⋅) and H(⋅) are such as p(yt∣�t,') ≥ 0 and the Lebesgue-Stieljes
integral

∫
dF (yt∣�t,') = 1 in which F (⋅) denotes the cumulative distribution

function of yt.
The GFDM is defined in the following way:

1. Se xt is a covariate vector, the link function g relate the preditor
to parameter �t through the relation �t = �tg(xt,�), where � has
regression coeficients (one of components of ') and �t is the parameter
relate to the description of the dynamic level. If preditor is linear then,
g(xt,�) = g(x

′

t�).

2. Level dynamic �t is given by evolution equation �t = w−1�t−1&t, where
&t ∼ Beta (wat−1, (1− w)at−1), that is,

w
�t

�t−1
∣ �t−1 ∼ Beta (wat−1, (1− w)at−1) .

3. The level dynamic �t is initialized with the specification a priori �0∣Y0 ∼
Gama(a0, b0). Therefore, using the scale propriety of the Gamma dis-
tribution, �0∣Y0 ∼ Gama(a0, b0[g(xt, �)]

−1).

One of the specifications most usual for the link function g is the log-
arithmic function. It is interesting to highlight that, in this case, the evo-
lution equation is gotten in the following way ln(�t) = ln(�t−1) + &∗t , onde
&∗t = ln(&t/w) ∈ ℜ. This equation is similar to the usual evolution equation
given by a random walk, as the local level model. The parameter w varies
between 0 and 1 and also composes '. As it will be seen to follow, w fulfills
the function to increase the variance due to passing of the time. Thus, it
plays a similar role to the system variances and it plays identical role to the
discounting factors, used in the Bayesian approach for substituting these
variances.

Case b(yt,') = b(y) or c(yt,') = c(y) and H(') is a constant function
(it does not depend of '), the gamma family of the dynamic models becomes
a special case of exponential family of the distributions.
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For one better characterization of the GFDM, some results are presented
in Theorem 1 such as the distribution a posteriori of the level �t and the
predictive density distributions. These results are the foundations in the
inferencial process of the GFDM.

Theorem 1.
If the model is defined in the form of the Equation (1), the following results
can be obtained:

1. the prior distribution �t∣Y t−1 follows a Gamma(at∣t−1, bt∣t−1) distri-
bution such as

at∣t−1 = wat−1, (2)

bt∣t−1 = wbt−1, (3)

and 0 < w ≤ 1 .

2. (�t = �tg(xt,�))∣Yt−1, which is Gamma(a∗t∣t−1, b
∗
t∣t−1), where

a∗t∣t−1 = wat−1, (4)

b∗t∣t−1 = wbt−1[g(x
′

t�)]
−1. (5)

3. The posterior distribution of �t∣Y t is Gamma (a∗t ,b
∗
t ), where

a∗t = a∗t∣t−1 + b(yt,'), (6)

b∗t = b∗t∣t−1 + c(yt,'). (7)

4. �t = (�t[g(x
′

t�)]
−1)∣Yt has Gamma(at,bt) distribution in which

at = at∣t−1 + b(yt,'), (8)

bt = bt∣t−1 + c(yt,')g(xt,�). (9)

5. The predictive density function one step ahead is given by

p(yt∣Y t−1,') =
Γ(b(yt,') + a∗t∣t−1)a(yt,')(b

∗
t∣t−1)

a∗
t∣t−1

Γ(a∗t∣t−1)[c(yt,') + b∗t∣t−1]
b(yt,')+a∗

t∣t−1

, yt ∈ H(').

(10)
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∀t ∈ N ; t ≤ n where n is the time series length and Γ(⋅) is gamma function.
The proof of Theorem 1 is found in the Appendix 1. It is easy to see starting
from (2)- (3) what V ar(�t∣Yt−1) = w−1V ar(�t−1∣Yt−1). Thinking in terms
of the precision (Inverse of the variance) like information measure, It has
that for t− 1 → t implies that just 100w% of the information is preserved.
It is exactly that the discount factors use in West & Harrison (1997). These
factors measure the information quantity (measure by the system precision)
preserved in the course of time.

The predictive density function of the observations, given Y t, h (ℎ > 0)
steps ahead is given by

p(yt+ℎ∣Y t,') =
Γ(b(yt+ℎ,') + a∗t+ℎ∣t)a(yt+ℎ,')(b

∗
t+ℎ∣t)

a∗
t+ℎ∣t

Γ(a∗t+ℎ∣t)[c(yt+ℎ,') + b∗t+ℎ∣t]
b(yt+ℎ,')+a∗

t+ℎ∣t

, yt+ℎ ∈ H(').

(11)
Corollary. According to result 1 of the Theorem 1, equations it (2) and

(3), given a ℎ > 0, it can be obtained, ℎ steps ahead, the distribution of
�t+ℎ, given all information avaliable until to instant t, whose form is given
by:

�t+ℎ∣Yt ∼ Gamma(wℎat, w
ℎbt). (12)

As the result,

[�t+ℎ] ∣Yt ∼ Gamma(wℎat, w
ℎbt[g(xt+ℎ,�)]

−1). (13)

The distributions in (12) and (13) describe the uncertain associated to level
forecasts and based on them can be extrate resume measures of distribution,
such as mean, percentiles.

2.2 Inference Procedures

The model parameters can be divided into latent state �t and fixed parame-
ters, usually denominated hyparameters('). The on-line inference the state
parameters �t was trated in the Section 2.1 and the smoothing inference
will be treated in the Section 2.4. In this subsection, It will be discussed the
inference on the hyperparameters.
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2.2.1 Classical Inference

One way of making classical inference about the parameter vector ' is
through marginal likelihood function whose form is given by

L(';Y n) =
n∏

t=1
p(yt∣Y t−1,') =

n∏
t=1

Γ(b(yt,')+a∗
t∣t−1

)a(yt,')(b∗
t∣t−1

)
a∗
t∣t−1

Γ(a∗
t∣t−1

)[c(yt,')+b∗
t∣t−1

]
b(yt,')+a∗

t∣t−1
,

yt ∈ H('),

(14)

where ' is composed by !, � and by specific parameters of the model;
Y n = (y1, . . . , yn)

′
.

In Equation (14), definition of � , as presented above, it is due to the
following fact: Gama prior distribution, that is, the initial distribution �t

tends to turn be become non-informative when a0, b0 → 0, although it is
improper when a0 = b0 = 0 . Note that if a0, b0 → 0 e y1 = 0, the pos-
terior distribution p(�t∣Y t) can be improper, then the predictive densities
functions can not be defined.

A proper distribution of �t can be obtained in time t = � , in which � is
the index of the forst observation different from zero. Although, if a0 > 0 e
b0 > 0, it not necesary the use of � . From this moment, It will be assumed
a0 > 0 e b0 > 0.

By asymptotic properties of the MLE (Harvey, 1989), under some regu-
larity conditions, it leads

'̂
D−→ N

[
', I−1(')

]
, (15)

when n −→ ∞. If '̂ is obtained, maximizing marginal likelihood function,
what is obtained analytically as the product of predictive densities, the result
above is restricted to some following conditions (Harvey, 1989):

1. ' is a inside point of the parametric space;

2. the derivatives of the log-likelihood until to order 3 with respect to ',
exist and are continuous in the neighborhood of the true parameter
value;

3. ' is identificable.

Condition (1): When w = 1 and/or some parameter of the model definied
in the positive semi-straight is equal to zero, ' will not be a inside point to
parametric space and the distribution limit can be affected.
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Condition (2): The derivatives, for an arbitrary instant t with t =
1, . . . , n, exist and can be computed derivativing the predictive density func-
tion in (10) with respect to ' and its continuity is result of the continuity
of a∗t∣t−1 and b∗t∣t−1. In the case in which one of model parameters depends
the suport, the derivatives of this respective parameter can not exist, for
example, the Pareto model.

Condition (3): Like the likelihood function is obtained analytically by
the product of predictives density functions in (10) and being ' an interior
point to the parametric, given two points '1 and '2 arbitrary and different,
the family of join density
ℱ = {p(y1, . . . , yn;');' ∈ Φ (parametric space)} will produce different mod-
els and, as a result, different values from likelihood function.

The asymptotic confidence interval for ' is built based on a numeri-
cal approximation for Fisher information matrix, using I(') ∼= −H(') in
which −H(') is the observed information matrix, computed through second
derivatives of the log-likelihood function with respect to the parameters. As
the compute of the derivatives is not an easy task, numerical derivatives are
utilized.

Be 'i, i = 1, . . . , p, any parameter in vector '. Then, an asymptotic
confidence interval of 100(1− �)% for 'i is given by:

'̂i ± z�/2

√
V̂ ar('̂i),

where z�/2 is the �/2 percentile of standard normal distribution and V̂ ar('̂i)
is obtained of diagonal elements of Fisher information matrix.

The observed information matrix is asymptotically equivalent to ex-
pected information matrix- result known (Migon & Gamerman, 1999) and
Apparently corroborated for state models space by the led simulations in
(Cavanaugh & Shumway, 1996). This practice of approaching the expected
information matrix by the observed information matrix is relatively common
and suggested in lots of texts as (Cavanaugh & Shumway, 1996) and (Sallas
& Harville, 1988), mainly for large samples.

In some problems, the main interest is to calculate a function of the
parameter estimator. In these cases, the method Delta (Casella & Berger ,
2002) is used, which is defined soon below. Be g(⋅) an one-to-one function
whose the first derivative exists and is different from zero. Using EMV’s
asymptotic property in (15), by Delta method, it has that

g('̂i)
D−→ N

[
g('i), I

−1
ii (')(g

′
('i))

2
]
, (16)
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when n −→ ∞ and for i = 1, . . . , p. I−1
ii (') is the i-th diagonal element of

Fisher informatiom matrix I−1(').
Under the classical approach, asymptotic confidence intervals are built

for the parameters, but these intervals can present border problems, that is,
the intervals limits overtake the borders of the parametric space. In these
cases, it applies the Delta method to correct this problem of the following
way:

1. The asymptotic confidence interval for g('i) is built with i = 1, . . . , p,
using the Delta method;

2. To follow, the inverse transformation g−1(⋅) is applied in the interval
limits, obtaining asymptotic interval for '.

2.2.2 Bayesian Inference

Already for making Bayesian inference for the model parameters, like the
posterior distribution of the parameters is not analytically tractable, it is
used the method MCMC, algorithm of Metropolis-Hastings (Gamerman &
Lopes , 2006) - so that of obtaining a marginal posterior distribution sample
of parameter vector ' whose form is given by:

�('∣Y n) ∝ L(';Y n)�('), (17)

whereL(';Y n) is the likelihood function obtained in (14) and �(') is prior
distrbution of '. In this work, a proper Uniform distribution is utilized,
�(') = c for all possible values of ' in a pre-fixed interval and 0, otherwise.

Credibility intervals for 'i, i = 1, ..., p are built as following. Given a
value 0 < � < 1, all interval (t1, t2)

′
satisfying

t2∫

t1

�('i ∣ Y n) d'i = 1− �

is a credibility interval for 'i with level 100(1− �)%.

2.3 Model Adequacy and fit

Harvey & Fernandes (1989) suggest some diagnostic methods, based on the
standard residuals (Pearson). These residuals are defined by

�t =
yt − E(yt∣Y t−1, ')

DP (yt∣Y t−1, ')
, (18)
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whereDP (yt∣Y t−1, ') is the standard deviation of distribution of yt∣Y t−1, '.
Some diagnostic methods:

1. Examine residuals graph versus the time and versus an estimative of
level component.

2. Check if the sample variance of standard residuals is close to 1. A
value greater than 1 indicate superdispersation of the model.

For more details about these and other diagnostic methods, it consult Harvey
& Fernandes (1989).

3 Smoothing

The forecast of the future values of time series is an important topic in time
series analysis, due to the great interest in extrapolate the fit model results
and project the future values. The forecast for the series observations can be
obtained through the predictive density distributions. Already, the forecast
for the level, it is shown below as I built them, based on GFDM.

If the interest is to find level component estimate �, based on all avaliable
information (Y n), then the smoothing techniques should be used. Harvey
& Fernandes (1989) present a level component estimate of the process in
an application to a real series, obtained by the application of the smoothing
algorithm of the fixed interval (Harvey, 1989) to a model of random walk
plus a noise. However, there is not a theoretical base to build a smoothing.
They refer to this procedure as a ”quasi-smoothing”. Because of this, in this
subsection, is proposed one way of making the smoothing of this component
in the models of GFDM.

The goal is to obtain a sample distribution of �∣Y n, in which � =
(�1, . . . , �n)

′
. For so much, it considers

p(�, '∣Y n) = p(�∣',Y n)p('∣Y n)

= p(�n∣',Y n)
n−1∏

t=1

p(�t∣�t+1, . . . , �n, ',Y n)p('∣Y n)

= p(�n∣',Y n)
n−1∏

t=1

p(�t∣�t+1, ',Y t)p('∣Y n)

So, the smoothing problem can be solved via MCMC. Once it has a posterior
distribution sample of ', the problem is to find a sample distribution of
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�∣',Y n - what is proposed to follow. Firstly, it finds the distribution of
�t−1∣�t, ',Y t. Can be written

p(�t−1∣�t, ',Y t) = p(�t−1∣�t, ',Y t−1) (19)

=
p(�t∣�t−1, ',Y t−1)p(�t−1∣',Y t−1)

p(�t∣',Y t−1)
. (20)

Note that the three distributions of fraction above are known.
Theorem 2.
Agreing the three distributions in (19), the following result is obtained

(the demonstration can be found in the Appendix 2):

�t−1 − w�t∣�t, ',Y t ∼ Gamma ((1− w)at−1, bt−1) , t = 1, . . . , n. (21)

The result of Theorem 2 is important, because

p(�1, . . . , �n∣',Y n) = p(�n∣',Y t)
n−1∏
t=1

p(�t∣�t+1, ',Y t). Of this way, it can

be obtained a sample smoothed distribution of (�∣',Y n), following the steps
of algorithm below:

1. Set t = n and sample p(�n∣',Y n);

2. Set t = t− 1 and sample p(�t∣�t+1, ',Y t);

3. if t > 1, go back to (2); otherwise, the sample of (�1, . . . , �n∣',Y n) is
complete.

The result presented (21), utilized in smoothing algorithm above, is exact,
however aproximations of smoothed distribution of �t−1∣',Y n may be ob-
tained, which are showed below.

Theorem 3. Supposing that �t∣',Y n ∼ Gama(ant , b
n
t ) and using the

aproximation
E(exp(−qZ))=̇ exp(−qE(Z)) in which q is a constant and Z is a random
variable, it is possible to obtain

�t−1∣',Y n∼̇Gama(ant−1, b
n
t−1);

where

ant−1 = ant + (1− w)at−1 (22)

bnt−1 = bnt +
(1− w)at−1(bt−1 − bnt )

ant−1

, (23)

for t = 1, . . . , n. The recursions are initialized considering ann = an and
bnn = bn. The Theorem 3 demonstration is in the Appendix 3.
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4 Special cases of Gamma family of dynamic mod-

els

In the next subsections, some particular cases of GFDM will be discussed
such as the Poisson, Gamma, Weibull, Beta and Normal models.

4.1 The Poisson Model

Suppose that an observation in instant t is drawn of the Poisson distribution
with mean �t,

p(yt∣�t,') = �yt
t exp(−�t)/yt!, (24)

where yt = 0, 1, . . ., �t = �tg(xt,�). This model belong to Gamma family of
dynamic models in which a(yt,') = (yt!)

−1, b(yt,') = yt and c(yt, ') = 1.
Then, ' = (w, �)

′
.

The prior distribution is the same of Theorem 1. With the functions
b(⋅, ⋅) and c(⋅, ⋅), using the Theorem 1, the posterior distribution of �t∣Y t is
given by Gamma distribution with parameters

a∗t = a∗t∣t−1 + yt,

b∗t = b∗t∣t−1 + 1.

Therefore, it follows that �t = �t[g(x
′

t�)]
−1∣Y t has Gamma distribution

with parameters (update equations)

at = wat−1 + yt,

bt = wbt−1 + g(xt,�).

Replacing the functions a(⋅, ⋅), b(⋅, ⋅), c(⋅, ⋅) and using Theorem 1, it ob-
tains the predictive distribution, what is Negative binomial, given by

p(yt∣Y t−1,') =

(
a∗t∣t−1 + yt + 1

yt

)
(b∗t∣t−1)

a∗
t∣t−1(1 + b∗t∣t−1)

−(a∗
t∣t−1

+yt) ,

in which yt = 0, 1, 2, . . .
and (

a∗t∣t−1 + yt + 1

yt

)
=

Γ(a∗t∣t−1 + yt)

Γ(yt + 1)Γ(a∗t∣t−1)
.
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The likelihood function has the following form

lnL(';Y n) =
n∑

t=1
ln Γ(a∗t∣t−1 + yt)− ln yt!− ln Γ(a∗t∣t−1)+

a∗t∣t−1 ln b
∗
t∣t−1 − (a∗∣t−1 + yt) ln(1 + b∗t∣t−1),

(25)

where ' = (w, �)
′
.

Then, by properties of Negative binomial distribution, the mean and
variance of predictive distribution of yt+1∣Y t,' are, respectively,

yt+1 = E(yt+1∣Y t,') = a∗t+1∣t/b
∗
t+1∣t

and

var(yt+1∣Y t,') = a∗t+1∣t(1 + b∗t+1∣t)/(b
∗
t+1∣t)

2.

4.2 The Gamma model

Suppose that the time series {yt} is generated Gamma distribution with
unknown shape parameter � and scale parameter ��t, then:

p(yt∣�t,') =
y�−1
t exp(−�t�yt)

Γ(�)(�t�)−�
, yt > 0 (26)

where �t = �tg(xt,�) and ∀t ≤ n. The expected value (yt∣�t,') is 1/�t. If
� = 1, (yt∣�t,') has exponential distribution with mean 1/�t.

The model Gamma can be written in the form of Gamma family of

dynamic models in which a(yt,') =
y�−1
t ��

Γ(�) , b(yt,') = � and c(yt,') = �yt.

By Theorem 1, given the t-th observation and the functions b(⋅, ⋅) and
c(⋅, ⋅), the posterior distribution of �t∣Y t is Gamma with parameters

a∗t = a∗t∣t−1 + �

b∗t = b∗t∣t−1 + �yt.

So, it follows that (�t = �t[g(xt,�)]
−1)∣Y t ∼ Gamma(at, bt) and update

equations are given by:

at = at∣t−1 + �

bt = bt∣t−1 + �ytg(xt,�).
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Replacing the functions a(⋅, ⋅), b(⋅, ⋅) and c(⋅, ⋅) in (10), the predictive den-
sity function yt∣Y t−1,' ∼ Gamma-gamma(a∗t∣t−1, b

∗
t∣t−1/�, �) whose form is

given by:

p(yt∣Yt−1,') =
Γ(�+ a∗t∣t−1)y

�−1
t

Γ(a∗t∣t−1)Γ(�)(b
∗
t∣t−1/�)

−a∗
t∣t−1(yt + b∗t∣t−1/�)

�+a∗
t∣t−1

,

if yt > 0 and 0, otherwise.
The likelihood function is the product of predictive density functions

given by:

lnL(';Y n) = ln
n∏

t=1

p(yt∣Y t−1,')

=
n∑

t=1

ln p(yt∣Y t−1,')

=

n∑
t=1

ln Γ(�+ a∗t∣t−1)− ln(Γ(�)Γ(a∗t∣t−1))+

a∗t∣t−1 ln(b
∗
t∣t−1/�) + ln y

(�−1)
t − (�+ a∗t∣t−1) ln(yt + b∗t∣t−1/�),

where ' = (w, �, �)
′
.

By properties of Gamma-gamma distribution, the mean and the variance
of yt+1, conditioned the information until time t, are

yt+1∣t = E(yt+1∣Y t,') =
b∗t∣t−1

a∗t∣t−1 − 1

and

var(yt+1∣Y t,') =
(b∗t∣t−1)

2[�2 + �(a∗t∣t−1 − 1)]

(a∗t∣t−1 − 1)2(a∗t∣t−1 − 2)
.

4.3 The Weibull model

If the observations at instant t are generated of triparametric Weibull dis-
tribution (Ross , 2002) and parameters �t = � and �t = � = 0 are invariants
in time and unknown, so:

p(yt∣�t,') = ��t(yt)
�−1 exp[−�t(yt)

� ], (27)

where yt > 0, �t, � > 0 and �t = �tg(xt,�).
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The Weibull model can be written in the Gamma family of dynamic
models form in which a(yt,') = �(yt)

�−1, b(yt,') = 1 and c(yt,') = (yt)
� .

By Theorem 1, the posterior distribution of �t∣Y t is Gamma with pa-
rameters

a∗t = a∗t∣t−1 + 1,

b∗t = b∗t∣t−1 + (yt)
� .

Then, according to Theorem 1, it has that �t = �t[g(xt,�)]
−1∣Y t ∼ Gamma(at, bt)

and update equations are given by:

at = at∣t−1 + 1, (28)

bt = bt∣t−1 + (yt)
�g(x

′

t�). (29)

Until this momment, was not done any remark for data with censoring,
which are very communs in survival analysis. Now, can be assumed that yt
is observed if �t = 1 or right censoring if �t = 0. In this way, via Bayes’
theorem, the update equation at in (28) become at = at∣t−1 + �t, where �t is
a indicator of right censoring.

Knowing a(⋅, ⋅), b(⋅, ⋅) and c(⋅, ⋅) and using the Teorema 1, the predictive
density function yt∣Y t−1, ' is given by:

Γ(1 + a∗t∣t−1)�(yt)
�−1

Γ(a∗t∣t−1)(b
∗
t∣t−1)

−a∗
t∣t−1 [(yt)� + b∗t∣t−1]

1+a∗
t∣t−1

;

where yt > 0, a∗t∣t−1 and b∗t∣t−1 are given by Theorem 1.
The likelhood function, what is the product of predictive density func-

tions, is given by:

lnL(';Y n) = ln
n∏

t=1

p(yt∣Y t−1,')

=

n∑
t=1

ln Γ(1 + a∗t∣t−1) + ln �(yt)
�−1

− ln Γ(a∗t∣t−1) + a∗t∣t−1 ln b
∗
t∣t−1 − (1 + a∗t∣t−1) ln[(yt)

� + b∗t∣t−1],

in which ' = (!, �, �)
′
.

4.4 The Pareto model

The Pareto distribution has several applications in economic, social and
geophysical problems (Johnson, Kotz & Balakrishnan , 1997). If the ob-
servations at time t are generated of Pareto distribution with parameters
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� > 0, unknown and invariant in time, and �t > 0, so:

p(yt∣�t,') = �t�
�ty−�t−1

t , (30)

where yt > � and �t = �tg(xt,�).
Also, the Pareto model can be written in Gamma family of dynamic

models form in which a(yt,') = y−1
t , b(yt,') = 1, c(yt,') = ln yt− ln � and

H(') = �.
The prior distribution are the same of Gamma family of dynamic models.

When the t-th observation is obtained, the posterior distribution of �t∣Yt,
by Theorem 1, is Gamma with parameters

a∗t = a∗t∣t−1 + 1,

b∗t = b∗t∣t−1 − ln �+ ln yt.

Then, making the inverse transformation, it follows that �t = �t[g(xt,�)]
−1∣Y t−1 ∼

Gamma(at, bt) where the update equation are given by:

at = at∣t−1 + 1,

bt = bt∣t−1 + (− ln �+ ln yt)g(xt,�).

By Theorem 1, with the functions a(⋅, ⋅), b(⋅, ⋅) and c(⋅, ⋅), the predictive
density function yt∣Y t−1,' has the following form:

a∗t∣t−1y
−1
t [b∗t∣t−1]

a∗
t∣t−1

[b∗t∣t−1 − ln �+ ln yt]
a∗
t∣t−1

+1
,

where yt > �.
With the predictive density functions, it is possible to determine the

likelihood function, which is:

lnL(';Y n) = ln
n∏

t=1

p(yt∣Y t−1,')

=
n∑

t=1

ln p(yt∣Yt−1,')

=
n∑

t=1

ln(a∗t∣t−1y
−1
t (b∗t∣t−1)

a∗
t∣t−1)− (a∗t∣t−1 + 1) ln[b∗t∣t−1 − ln �+ ln yt],

where ' = (w, �, �)
′
.
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4.5 The Beta model

When a parameter of Beta distribution is equal to 1, it can be written in
GFDM form. This model is very useful for modeling time series that are
proportions and probabilities. Suppose that the time series {yt} is generated
of the Beta distribution with parameters �t and 1 whose density function is
given by

p(yt∣�t,') = �ty
�t−1
t , (31)

where 0 < yt < 1.
This model belong to the GFDM in which a(yt,') = y−1

t , b(yt,') = 1
and c(yt,') = − ln(yt). The update equations and the predictive density
function can be found similarly as the previous models, using Theorem 1.
In this case, ' = (w, �)

′
.

4.6 The Normal model

The methodology developed in this article, can be applied, also, to gaussian
models. If the observations at time t are generated of Normal distribution
with mean z

′

t� (zt is a covariate vector with respct to time series mean) and
precision parameter (the inverse of variance) �t > 0, then:

p(yt∣�t,') =
�
1/2
t√
2�

exp

(
−�t(yt − z

′

t�)
2

2

)
, (32)

where −∞ < yt < ∞ e �t = �tg(xt,�).
The Normal model may be written in GFDM form that a(yt,') =

(2�)−1/2, b(yt,') = 1/2 and c(yt,') = (yt − z
′

t�)
2/2.

The prior distribution �t∣Y t−1 is given by item 2 of Theorem 1. As the
Theorem 1, the posterior distribution of �t∣Y t also can be obtained, being
Gamma with parameters

a∗t = a∗t∣t−1 + 1/2,

b∗t = b∗t∣t−1 + (yt − z
′

t�)
2/2.

Therefore, using again the scale property of Gamma distribution, it fol-
lows that �t = �t[g(xt,�)]

−1∣Y t ∼ Gamma(at, bt) where the update equa-
tions are given by:

at = at∣t−1 + 1/2,

bt = bt∣t−1 + ((yt − z
′

t�)
2/2)g(xt, �).
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The predictive density function yt∣Y t−1,', by Theorem 1, has the fol-
lowing form:

Γ(a∗t∣t−1 + 1/2)(2�)−1/2(b∗t∣t−1)
a∗
t∣t−1

Γ(a∗t∣t−1)[(yt − z
′

t�)
2/2 + b∗t∣t−1]

a∗
t∣t−1

+1/2
,

where −∞ < yt < ∞.
With the predictive density functions, it possible to build the likelihood

function:

lnL(';Y n) = ln
n∏

t=1

p(yt∣Yt−1,')

=
n∑

t=1

ln p(yt∣Yt−1,')

=

n∑
t=1

ln Γ(a∗t∣t−1 + 1/2)(2�)−1/2(b∗t∣t−1)
a∗
t∣t−1−

ln Γ(a∗t∣t−1)[(yt − z
′

t�)
2/2 + b∗t∣t−1]

a∗
t∣t−1

+1/2
,

in which ' = (w, �, �)
′
.

Following the same idea of Normal model with evolution equation in the
variance, other models can be built. For example, the case of the Lognormal
model whose density function is:

p(yt∣�t) =
�
1/2
t√
2�

exp

(−�t

2
(ln yt − z′t�)

2

)
, onde

yt > 0; �t > 0; z′t and � are covariate and parameter vectors, respectively,
such as −∞ < z′t� < +∞.

This distribution belong to GFDMwith functions a(yt, ') =
1√
2�
, b(yt, ') =

1/2 and c(yt, ') =
−(ln yt−z′t�)

2

2 .

5 Simulations study

In this section, Monte Carlo simulations are done for two models of the
GFDM: Poisson and Gamma. The MLE and the Bayesian estimators are
compared with respect to the bias and the MSE, as well as the credibility
and confidence intervals are assessed with respect to the width and coverage
rate. All results showed were obtained through programs developed in the
software Ox (Doornik , 1999).
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5.1 The Poisson model

Through Monte Carlo simulations, the performances of the maximum like-
lihood estimator(MLE) and the Bayesian estimators - BE-mean and BE-
median - were investigated for time series with length n = 100, generated
under the Poisson model with a covariable xt = cos(2�t/12), for t = 1, . . . , n,
and parameters w = 0.90 and � = 1. Two chains with 5000 samples were
generated of which the 3000 first were excluded. The number of Monte
Caro replications was fixed in 500. The level of confidence and the credibil-
ity probability of the confidence and credibility intervals, respectively, were
fixed in 0.95. The state initial condition was �0∣Y0 ∼ Gama(0.01, 0.01). The
proper prior distributions Uniform were adopted for w and �.

In the Figure 1, is a time series simulated under Poisson model with the
same parameters described above. Observe that time series osciltates around
a mean level equal to 3. Note that, also, dashed and dotted lines which
represent the mean of predictive distribution of the classical and Bayesian
fits, respectively, from Poisson model follow well the behaviour of time series
(full line).

From Figure 6, note that the values of Gelman and Rubin’s method for
assessing the convergence of generated chains via MCMC of w and � for each
Monte Carlo are less than 1.07 and 1.04 (less than 1.10, reference value),
respectively. Therefore, it has evidences of chains convergence (Gelman ,
1996, ver).

In the Tabel 1, the MLE and the Bayesian estimators are compared with
respect to the bias and MSE. For �, all estimators have bias and MSE values
very close. For w, the BE-mean and EB-median present smaller MSE values
than MLE.

In Table 2, the credibility and confidence intervals are compared through
coverage rate and width. For �, the coverage rate of confidence interval is
closer to nominal level of 0.95 than the credibility intervals. The intervals
have coverage rate equals for w.

5.2 The Gamma model

The criteria of MC simulation from the Gamma model are similar to Poisson
model, which was shown in the previous section. The performances of MLE
and Bayesian estimators - BE-Mean and BE-Median - were investigated
by Monte Carlo experiments for time series of length n = 100, generated
under Gamma model with a covariate xt = cos(2�t/12), t = 1, . . . , n, and
parameters ! = 0.90, � = 5.00 and � = 0.50. Two chains of 5000 samples
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Table 1: MLE and BE for the Poisson model.
MLE BE-Median BE-Mean

estimate estimate estimate
Bias Bias Bias

' (MSE) (MSE) (MSE)

w = 0.90 0.917 0.899 0.893
0.017 -0.001 -0.007
(0.003) (0.002) (0.002)

� = 1.00 1.003 1.001 1.003
0,003 0.001 0.003
(0.011) (0.011) (0.011)

Table 2: Credibility and confidence intervals for the Poisson model with
noimal level of 95%.

Cred. Int. Conf. Int.

mean limits mean limits
width width

' (coverage) (coverage)

w = 0.90 [0.785; 0.966] [0.651; 0.964]
0.181 0.313
(0.98) (0.98)

� = 1.00 [0.801; 1.214] [0.806; 1.199]
0.413 0.393
(0.98) (0.97)
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Figure 1: The full line represents the simulated time series under the Poisson
model, the dashed and dotted lines indicate the smoothing mean of classical
and Bayesian fits, using the exact smoothing method, respectively.

were obtained of which the 3000 first were excluded. The number of Monte
Caro replications was fixed in 500. The level of confidence and the credibility
probability of the confidence and credibility intervals, respectively, were fixed
in 0.95. The state initial condition was �0∣Y0 ∼ Gama(0.01, 0.01). The
proper prior distributions Uniform were adopted for w, � and �.

The Figure 2 presents an example of simulated time series as this model.
The dashed and dotted lines represent the smoothed mean of classical and
Bayesian fits, respectively, and have a similar behaviour.

From Figure 7, observe that the values of Gelman and Rubin’s method
of generated chains by MCMC for w, � and � are less than 1.07, 1.03 ad
1.03, respectively. so, it has evidences of the chains convergence.

From Tabel 5 - what presents the results of MC study of classical and
Bayesian point estimators -, note that the estimators have the same MSE
except the parameter � whose MLE has MSE slightly small. The MLE
possesses smaller bias than the Bayesian estimators (BE-Mean and BE-
Median) for all parameters of model.

From Table 6, observe that the intervals possess a coverage rate of 0.98
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Figure 2: The full line represents the time series simulated under Gamma
model, the dashed and dotted lines indicate the smoothed mean of the clas-
sial and Bayesian fitso, using the exact smooth method, respectively.

Table 3: MLE and BE for Gamma model.
MLE BE-Mean BE-Median
Bias Bias Bias
(MSE) (MSE) (MSE)

! = 0.90 0.905 0.876 0.883
0.005 -0.024 0.017)
(0.003) (0.003) (0.003)

� = 0.50 0.486 0.483 0.483
-0.014 -0.017 -0.017
(0.004) (0.004) (0.004)

� = 5.00 5.174 5.349 5.295
0.174 0.349 0.295
(0.488) (0.597) (0.549)
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Table 4: Confidence and credibility intervals for Gamma model with nominal
level of 95%.

Conf. Int. Cred. Int.
mean limits mean limits

width width
(coverage) (coverage)

! = 0.90 [0.666; 0.960] [0.750; 0.959]
0.294 0.209
(0.98) (0.98)

� = 0.50 [0.357; 0.612] [0.347; 0.619]
0.255 0.272
(0.96) (0.98)

� = 5.00 [3.701; 6.647] [3.894; 7.096]
2.946 3.202
(0.98) (0.98)

for all parameters of model, except the confidence interval for � whose cov-
erage rate is 0.96. In general, the confidence interval has a width slightly
lesser than the credibility interval.

6 Application to real time series

6.1 ASIAV time series

In this subsection, Poisson model is adjust to the monthly data of the pa-
tient number with affection of the superior and inferior aerial vias - ASIAV
- from São Paulo city , from 1997 to 1999, which is composed of 48 observa-
tions. A time series of sulfur dioxide SO2 (xt) is considered, t = 1, . . . , 48.
Os dados of the patient number with affection of the superior and infe-
rior aerial vias and the pollutant SO2 were obtained by Health ministery
(http://www.datasus.gov.br) and by Technology and saneamento environ-
mental company from São Paulo (CETESB), respectively.

The Figure 3 shows the graphs of series ASIAV and SO2. It does not
obseve discrepant values of ASIAV in years assessed. The pollutant concen-
tration SO2 presents the highiest mean value in 1997, as well as o number
with affection of the superior and inferior aerial vias (see Figure 3). It seems
that exists a relation between these series. To follow, is showed the results
of Poisson model fit to ASIAI series.

In the Table 5, are the MLE and the Bayesian estimates of the parameters
w and � from Poisson model. The last is associated with a covariable xt
(SO2) and its estiamte is equal among all methods (0.023). Already, the
estimates of w is about 0.69.
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Figure 3: Graph 1: The full, dashed and dotted represent ASIAV time series,
the smoothed mean of the classical and Bayesian, respectively. Graph 2:
time series of poluent SO2 in the years from 1997 to 2000.

Table 5: MLE and BE for the parameters of Poisson model fitted to the
ASIAV time series.

MLE BE-Median BE-Mean

w 0.698 0.684 0.683
� 0.023 0.023 0.023

From Tabel 6, it concludes that the parameters � and w are significants
at confidence and credibility level of 0.95. Note that the lower limit of both
intervals for � is close to zero.

It Tried include in the model sine and cosine covariables, computed at
the Fourrier’s frenquecies, for capturing some sazonality structure, however
they were not significants. It is important to emphasize that the ASIAV
series has a few observations (n = 48), so that the model can capture some
sazonality structure from it. The model fit does not present inadequacy
evidences.

The values Gelman and Rubin’s criterion (Gelman , 1996) for the two
chains of parameters w and � are 1.00 and 1.00, respectively. All values are
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Table 6: Confidence and credibility intervals for the parameters of Poisson
model fitted to the ASIAV time series with nomial level of 95%.

Int. Assint. Int. Cred.

w [0.458; 0.849] [0.492; 0.864]
� [0.001; 0.038] [0.007; 0.039]

close to 1, indicating the chains convergence. The Figure 8 shows the graph
of two chains of each parameter. Observe that they superimpose, which is
one evidence of convegence of the chains.

6.2 Petrobrás log-returns time series

The Normal model, described in the Subsection 3.3.1, is fitted to the daily
data of Petrobrás stock market returns (Petro) in the period from 01/03/1995
a 12/27/2000, totalizing 1498 observations. It is important to emphasize
that researches have been developed in order to incorporate a stationary
evolution equation, from this way, allowing that the returns are stationar-
ies.

The Figure 4 presents the times series plot of logarithm of Petrobrás
returns. Once it presents a correlation structure with respect to the mean,
first is fitted a Local Lvel Model (LLM) (Harvey, 1989) or a linear dynamic
model with autoregressive structure. The residuals of LLM fiited also is
shoed in the Figure 4 and is used for the fit from Normal model (Subsection
3.6) with mean zero, known. So after the fit of LLM, assumes that the
residuals of fit et∣�2

t ∼ N(0, �2
t ), so it has that Normal model (Subsection

3.6) with zero mean and precision �t =
1
�2
t

. Finally, it has the fit of LLM-

Normal model.
Already, the Normal model with unknown mean is fitted considering

the mean �yt−1 with autoregressive structure and precision �t = 1
�2
t

(see,

Subsection 3.6), named Normal model in tables and graphs, which it will be
showed below. To treat as the mean as the variance of time series is done
only one model fit, while in other proposed is done a combination of models,
that is, the treatment is performed in two steps: one model for mean and
one model for variance.

The Table 7 is composed of the log-likelihood, AIC and BIC for some
models fiited. According to Harvey (1989), it adopts AIC and BIC criterion
being AIC = −2l('̂) + 2p and BIC = −2l('̂) + n ln(p), in which l(⋅) is
the log-likelihood value, p the number os model parameters and n the num-
ber of observations. The DIC criterion (Deviance Information Criterion)
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(Spiegelhalter et al. , 2002, see) is using for comparing the Bayesian models.
Normal model with unkonwn mean possesses the biggest log-likelihood

values and the smallest AIC and BIC values, comparing to LLM-Normal
model (mean know).

Table 7: Values of log-likelihood, AIC, BIC and DIC for the models fitted
to the Petrobrás returns.

Models log-likelihood AIC BIC DIC

LLM + Normal1 classical 3368.61 -6729.22 -4660.55 -

LLM + Normal1 Bayesian - - - -6732.10

Normal2 classical 3371.92 -6739.84 -5705.51 -

Normal2 Bayesian - - - -6739.60
1zero mean. 2unkonwn mean.

The results of the estimation from the models LLM-Normal and Normal
model. The MLE from LLM with autoregressive structure are �̂2

� = 0.001,
�̂2
� = 0.000 and �̂ = 0.106. From the Normal model with zero mean, w

is the only parameter to be estimated. The MLE, the BE-Median and the
BE-Mean of w are 0.798, 0.798 and 0.797, respectively. While the credibility
and confidence intervals at level of 95% are [0, 769; 0, 827] and [0, 768; 0, 828],
respectively.

Already, for the fit of Normal model with unknown mean, the MLE,
the BE-Median and the BE-Mean of � (w) are 0.126 (0.799), 0.126 (0.798)
amd 0.126 (0.798), respectively. The credibility and confidence intervals
at level of 95% for parameters � (w) are [0.074; 0, 178] ([0, 770; 0, 828]) and
[0.071; 0, 181] ([0, 768; 0, 828]), respectively.

The values of Gelman and Rubin’s method (Gelman , 1996) for two
chains is equal to 1.00 for the parameter w and observe that, in the Figure
9, the two chains for each parameter superimpose, indicating the conver-
gence. The same can be observed for the Bayesian fit of Normal model with
unknown mean. Figure 10 shows the generated chains of w and �. In Figure
5, it finds the graph of volatility obtained by Normal model with unkonwn
mean under classical and Bayesian approaches in several instants in time. It
possessses discreptants values (pulses) which are explained by crisis period,
hnown in the literature. It highlights that the fit captures the Nasdaq’s drop
in April/2000.
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Figure 4: Graph of the Petrobrás log-return and residuals of the LLM fit,
respectivamente.

7 Conclusions and final remarks

In this work, was presented a new family of dynamic models (the GFDM), as
well as particular cases from it and a new way of making smooth of the level
component. Through Monte Carlo experiments, was checked the perfor-
mance of the point and intervalar estimators (classical and Bayesian) from
the Poisson and Gamma models in finite samples. The results shown that
both estimators possess MSE relatively small. Already, the intervalar esti-
mators have a behaviour similar with respect to the coverage rate, although
the confidence interval has the smallest width.

With respect to the non-gaussian models, several works can be devel-
oped. A study exploring the properties of Gamma family would be very
relevant. Specific cases of the Gamma family of dynamic models can be
found. An evolution equation with a autoregressive structure can be pro-
posed. The piecewise exponential model is very used and it has an ample
application, mainly, in studies in reliability and it fits into the molds of the
non-gaussian models, however the observation dependence not be considered
in the piecewise exponential model (Gamerman , 1991b), but it is can be
applied to the models that take in count the autocorrelation of observations.
Hyphotesis tests can be explored, as well as the use and application of the
bootstrap in the GFDM, so that the inference about parameters model can
be done. Other work interesting that can be developed is the comparation
between the non-gaussian models and dynamic generalized linear models
(West & Harrison , 1997) either via Monte Carlo experimentos or using real
time series.
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Figure 5: The full and dashed lines represent an smoothed estimative of
sthocastic volatility, obtained by the fit of Normal model with unkonown
mean under the classical and Bayesian approaches, respectively.
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Appendix 1

Theorem 1 demonstration.

Assuming the model definition in the Section 2.1, The update equations
can be obtained. It will be done the prove of the items 1, 2, 3, 4 and 5 from
Theorem 1.
PS.: To facilitate the notation, the vector ' will be omitted in the distribu-
tion below.

Proof:

∙ If t = 1, �0∣Y0 ∼ Gamma(a0, b0) and �0∣Y0 ∼ Gamma(a0, b0[g(xt, �)]
−1)

- which is truth by assumption 4 of the model;

By induction hyphotesis, supposing that �t−1∣Y t−1 ∼ Gamma(at−1, bt−1)
s valid at t and, as result, �t−1∣Y t−1 ∼ Gamma(a∗t−1, b

∗
t−1) is valid at

t:

∙ Now, it will prove that assumption is valid at t+ 1.

The distributions �t−1∣Y t−1 and �t∣�t−1,Y t−1 are known. The first
by induction hyphotesis and the last by Lemma 1 below.

1. Integrating out in �t−1, by Lemma II below, it conclude that
�t∣Y t−1 ∼ Gamma

(
at∣t−1, bt∣t−1

)
where at∣t−1 = wat−1 and bt∣t−1 =

wbt−1.

2. Therefore, from item (1), (�t = �tg(xt,�))∣Yt−1 ∼ Gamma
(
a∗t∣t−1, b

∗
t∣t−1

)

onde a∗t∣t−1 = at∣t−1 e b∗t∣t−1 = bt∣t−1g(xt,�)
−1.

3. By Bayes’ theorem,

p(�t∣Y t) ∝ p(yt∣�t)p(�t∣Y t−1) ∝�
(a∗

t∣t−1
+b(yt,'))−1

t exp[−�t(b
∗
t∣t−1+

c(yt,'))].
Then, it follows thar �t∣Y t ∼ Gamma (a∗t , b

∗
t ), where a

∗
t = a∗t∣t−1+

b(yt,') and b∗t = b∗t∣t−1 + c(yt,').

4. Using the item (3),
(�t = �tg(xt,�)

−1)∣Y t ∼ Gamma (at, bt), in which at = at∣t−1 +
b(yt,') and bt = bt∣t−1 + c(yt,')g(xt,�); ∀t ∈ N , t ≤ n where n
is the time series length.
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The inductive hyphotesis is verified.

5. Demonstration of predictive distribution a step ahead:

p(yt∣Y t−1,') =

∞∫

0

p(yt∣�t,')p(�t∣Y t−1,')d�t

=
a(yt,')

Γ(a∗t∣t−1)(b
∗
t∣t−1)

−a∗
t∣t−1

∞∫

0

[
�
b(yt,')+a∗

t∣t−1
−1

t exp
(
−�t(c(yt,') + b∗t∣t−1)

)]
d�t

=
Γ
(
b(yt,') + a∗t∣t−1

)
a(yt,')(b

∗
t∣t−1)

a∗
t∣t−1

Γ(a∗t∣t−1)
(
c(yt,') + b∗t∣t−1

)a∗
t∣t−1

+b(yt,')
; where

a∗t∣t−1 = wat−1, b
∗
t∣t−1 = wbt−1g(xt,�)

−1 e yt ∈ H(').

□

Lemma I. Knowing that &t ∼ B (wat−1, (1− w)at−1) by item 2 of
GFDM definition, the distribution of �t = w−1�t−1&t is expressed by equa-
tion (33).

Proof:
The, using the Jacobian’s method, it has that

p�t∣�t−1,Yt−1
(�t) =

⎧
⎨
⎩

Γ(wat−1)Γ((1− w)at−1)

Γ(at−1)

w

�t−1

(
w�t

�t−1

)wat−1−1(
1− w�t

�t−1

)(1−w)at−1−1

;

if 0 < �t < w−1�t−1,
0; otherwise.

(33)

□

Lemma II.
If �t−1∣Yt−1 ∼ Gama(at−1, bt−1) and the distribution of �t = w−1�t−1&t

is given by equation (33), then �t∣Yt−1 ∼ Gama(wat−1, wbt−1).
Proof:
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p(�t∣Y t−1, ') =

∫
p(�t−1∣Y t−1, ')p(�t∣�t−1,Y t−1, ')d�t−1

=

∞∫

w�t

[
�
at−1−1
t−1 exp(−bt−1�t−1)

Γ(at−1)b
−at−1

t−1

]⎡
⎣w�

−1
t−1(

w�t

�t−1
)wat−1−1(1− w�t

�t−1
)(1−w)at−1−1

Γ(wat−1)Γ((1−w)at−1)
Γ(at−1)

⎤
⎦ d�t−1

Be c =
w(w�t)

wat−1−1

b
−at−1

t−1 Γ(wat−1)Γ((1− w)at−1)
, so,

p(�t∣Y t−1, ') = c

∞∫

w�t

[
�
at−1−1−wat−1+1−1
t−1 exp(−bt−1�t−1)

] [
(1− w�t

�t−1
)(1−w)at−1−1

]
d�t−1

= c

∞∫

w�t

exp(−bt−1�t−1)(�t−1 − w�t)
(1−w)at−1−1d�t−1

Be z = �t−1 − w�t, then

p(�t∣Y t−1, ') = c

∞∫

0

exp [−bt−1(z + w�t)] z
(1−w)at−1−1dz

=
wwat−1−1+1(�t)

wat−1−1Γ((1− w)at−1)

Γ(at−1)b
−wat−1

t−1 Γ(wat−1)Γ ((1− w)at−1) [Γ(at−1)]−1
exp(−wbt−1�t)

=
�
wat−1−1
t exp(−wbt−1�t)

(wbt−1)−wat−1Γ(wat−1)
, �t > 0.

□

Appendix 2

Theorem 2 demonstration:

PS.: To facilitate the notation, the vector ' will be omitted in the dis-
tribution below.
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Proof:

p(�t−1∣�t,Y t) = p(�t−1∣�t,Y t−1), by Markovian structure of the model

=
p(�t∣�t−1,Y t−1)p(�t−1∣Y t−1)

p(�t∣Y t−1)

=
w

�t−1

(
w�t

�t−1

)wat−1−1(
1− w�t

�t−1

)(1−w)at−1−1

× Γ(wat−1)Γ((1− w)at−1)

Γ(at−1)
×

b
at−1

t−1

Γ(at−1)
�
at−1−1
t−1 exp(−�t−1bt−1)

Γ(wat−1)
(wbt−1)

wat−1

�
wat−1−1
t exp(−�twbt−1)

∝
(�t)

wat−1(�t−1 − w�t)
(1−w)at−1−1�

at−1−1
t−1 exp(−bt−1(�t−1 − w�t))

�
at−1+wat−1−1−1
t

∝ (�t−1 − w�t)
(1−w)at−1−1 exp (−bt−1(�t−1 − w�t))

Then, �t−1 − w�t∣�t,Y t−1 ∼ Gama ((1− w)at−1, bt−1).

□

Appendix 3

Theorem 3 demonstration:

PS.: To facilitate the notation, the vector ' will be omitted in the dis-
tribution below.

Proof:
Note that p(�t−1∣Y n) =

∫
p(�t−1∣�t,Y t)p(�t∣Y n)d�t. Supposing �t∣Y n ∼

Gamma (ant , b
n
t ), it follows that

p(�t−1∣Y n) ∝
∫

(�t−1 − w�t)
(1−w)at−1 �

ant −1
t exp (−bt−1(�t−1 − w�t)− bnt �t) d�t

∝ �
(1−w)at−1

t−1 exp(−bt−1�t−1)×
∫ (

1− w�t

�t−1

)(1−w)at−1

�
ant −1
t exp (−�t(b

n
t − wbt−1)) d�t
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Making the change variable Z = w�t/�t−1, then

∝ �
(1−w)at−1

t−1 exp(−bt−1�t−1)×
∫

(1− Z)(1−w)at−1

(
�t−1Z

w

)ant −1

exp

(
−�t−1Z

w
(bnt − wbt−1)

)
�t−1

w
dZ

∝
�
(1−w)at−1+ant
t−1

want
exp(−bt−1�t−1)×

1∫

0

Zant −1 (1− Z)(1−w)at−1 exp

(
−�t−1Z

w
(bnt − wbt−1)

)
dZ

Using E(exp(−qZ))=̇ exp(−qE(Z)), where

q = −�t−1w
−1(bnt − wbt−1) e E(Z) =

ant
ant +(1−w)at−1

,

p(�t−1∣Y n) ∝
�
(1−w)at−1+ant
t−1

want
exp(−bt−1�t−1)E

[
exp

(
−�t−1Z

w
(bnt − wbt−1)

)]

=̇
�
(1−w)at−1+ant −1
t−1

want
exp

[
−bt−1�t−1 −

�t−1E(Z)

w
(bnt − wbt−1)

]

∝ �
(1−w)at−1+ant −1
t−1 exp

⎡
⎣−bt−1�t−1 −

�t−1
ant

ant +(1−w)at−1

w
(bnt − wbt−1)

⎤
⎦

= �
(1−w)at−1+ant −1
t−1 exp

[
−�t−1

(
bt−1 +

ant (b
n
t − wbt−1)

w(ant + (1− w)at−1)

)]

Note that the expression above is the nuclues of Gamma distribution.
Therefore,

p(�t−1∣Y n)∼̇G
(
ant−1, b

n
t−1

)
, onde

ant−1 = ant + (1− w)at−1 e bnt−1 = bnt +
(1−w)at−1(bt−1−bnt )

ant−1
.

□
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Appendix 4
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Figure 6: Boxplots for the Gelman and Rubin’s values for diagnostic the
chains convergence for parameters ! and � for the 500 Monte Carlo gener-
ated under the Poisson model, respectively.

1.0
0

1.0
2

1.0
4

1.0
6

w

1.0
00

1.0
05

1.0
10

1.0
15

1.0
20

β

1.0
00

1.0
05

1.0
10

1.0
15

1.0
20

1.0
25

χ

Figure 7: Boxplots of Gelman and Rubin’s values for diagnostic of chain
convergence for !, � and � for 500 Monte Carlo genearated under Gamma
model, respectively.
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Figure 8: Graphs of the two chain generated by MCMC for the parameters
w and � of the Bayesian model fit to the time series ASIAV, respectively.
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Figure 9: Graphs the two chains generated by MCMC for parameter w of the
fit of Bayesian LLM-Normal model to the Petrobrás log-return time series,
respectively.
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Figure 10: Graphs the two chains generated by MCMC for parameter w of
the fit of Bayesian Normal model (GFDM, unknown mean) to the Petrobrás
log-return time series, respectively.
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