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Abstract

This article proposes a dynamic factor model for spatio-temporal coupled environmental vari-
ables. The model is discussed in a state-space framework which results useful for conditional
interpolation and forecast of the variables of interest. The role of the measurement matrix in spa-
tial interpolation is considered and the proposal of a stochastic specification is discussed. Full
probabilistic inference for the model parameters is facilitated by Markov Chain Monte Carlo al-
gorithms. Standard MCMC for dynamic linear models are adapted to our model specification and
predictive and interpolation results are discussed for two different data sets with variables mea-
sured at two different scales.
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1 Introduction
In recent years, spatio-temporal models have received widespread popularity and have been largely
developed thorough applications in many scientific fields. Within environmental sciences, for ex-
ample, modelling is one of the main activities to evaluate air quality and to prepare plans and
programmes as requested by many directives (eg. the Ambient Air Quality Assessment and Man-
agement Directive 96/62/EC; see for example Beattie et al., 2002) on air quality assessment and
management. To this end several efforts have been made with the aim of providing some under-
standing on the dynamic of pollutant variables.
Spatio-temporal models have been developed with no single approach considered uniformly as
being the most appropriate for a specific problem. References within this broad framework, with
a wide range of applications, include for example Sansó and Guenni (1999), Brown et al. (2000),
Allcroft and Glasbey (2003) and Sahu and Mardia (2005). The text book by Banerjee, Carlin and
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Gelfand (2004) also provides an excellent starting point for researchers. Although the book pri-
marily covers hierarchical modeling and analysis of spatial data with an emphasis towards making
Bayesian inference, it discusses spatio-temporal modeling in some detail and discusses a range of
topics including multivariate modeling, spatial epidemiology, areal data modeling and many more.
The choice of the approach is generally dictated by the objective of the study, whether it be ob-
taining air quality forecasts, estimating trends or increasing the scientific understanding of the
underlying mechanisms. In building our model, we are partly guided by the degree of problem-
solving as a criterion; specifically, we are interested in the spatial, temporal and spatio-temporal
predictions of a specific pollutant when a predictor for this variable is available. Thus, the aim is
to model the dynamic of two fields, i.e. coupled variables, that tend to occur synchronous with
one another. For example, fine Particulate Matter (PM10), is an ubiquitous pollutant with adverse
effects on human health. It contains particles formed in the atmosphere from gaseous emissions
such as sulfates (eg. SO2), carbon (eg. CO) and nitrates (eg. NOx). The physical relationships
existing among these variables and PM10 suggest that they might be used as predictors for PM10

and, in practice, their correlations should not be neglected in a model building strategy. In practice,
this is particularly important when the number of the monitoring sites for the predictors is larger
than the ones for the response variable.
Figure 1 (left), for example, shows the network of monitoring stations (Lombardy region - Italy)
for the PM10 - sites represented by ”◦” - and NOx variables - sites represented by ”×”. As it
can be seen, many of the monitoring stations recording simultaneously the two variables share the
same spatial coordinates; however, it is also worth noticing that the number of the stations for the
NOx is larger than the one related to the PM10 sites. Thus, because of the larger information
available in space for the NOx, predictions of the PM10 concentrations on the ”x”-labeled spatial
sites can be obtained conditional on the known values of the NOx.
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Figure 1: Left: Lombardy monitoring network; each ”◦” represents a site for PM10 while each
”×” represents the position of NOx sites . Right: Ozone (O3) and hourly temperatures time series
observed over Mexico City.

The same feature, may of course also happen in time. In fact, for example, consider the two time
series shown in Figure 1 (right) observed at a specific spatial site. The data, discussed in Section
7.2, refer to the series of hourly readings of measurements of Ozone (O3) - continuous line - and
temperatures - dashed line - observed over Mexico City (Huerta, Sansó and Stroud, 2004). It can be
seen that since the time series of the temperature (predictor) is longer than the one of the variable
of interest, temporal forecasts (or interpolation) of O3 can be obtained conditional on the known
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values of the covariate.
Motivated by these examples, in this paper we are interested in the development of latent regression
models which are useful for spatial and temporal predictions of a pollutant of interest. Specifically,
by exploiting the information provided by an available predictor, we discuss a modelling strategy
for coupled environmental variables.
The model is developed in a state-space representation which represents a powerful way to provide
full probabilistic inference for the model parameters, interpolation and forecast of the variable of
interest. To account for spatial interpolation, the spatial dependence is incorporated in the measure-
ment matrix and we describe its construction by discussing a stochastic specifications. Temporal
variability instead, is incorporated by allowing the temporal model parameters to evolve in time
through the state equation. This provides a natural formulation to obtain k-steps ahead temporal
forecasts of the process. Full probabilistic inference for the model parameters is facilitated by
Markov Chain Monte Carlo algorithms.
The remainder of the paper is organized as follows. In section 2, we describe the general dynamic
latent model. The modelling of the spatial dependence is described in section 3 where we also
specify in detail the components of the proposed model. In section 4 we propose a state-space
formulation while in section 5 we provide prior and posterior specifications for the model param-
eters. In section 6 we describe the forecasting and interpolation strategies while in section 7 we
present applications on two real data sets produced by monitoring networks with different features.
Finally, section 8 concludes the paper with a discussion.

2 The General Model
Consider two spatio-temporal processes X(s; t) and Y (s; t), where s ∈ S, with S some spatial
domain in two dimensional Euclidean space R2 and t ∈ {1, 2, . . .} a discrete index of times. It
is explicitly assumed that X is a predictor of Y and thus, we let Y denote the specific process of
interest to be predicted both in space and in time (although, in some cases, there could be interest
in predicting both variables simultaneously).
The relationship existing between the two variables can be modeled in several ways. In this paper,
for the modeling of the time series dynamics of the variable of interest, we consider the following
dynamic factor model

g(t) =

p
∑

i=1

Big(t − i) +

q
∑

j=0

Cjf(t − j) + ξ(t) (1)

f(t) =

s
∑

k=1

Rkf(t − k) + δ(t) (2)

x(t) = mx(t) + Hxf(t) + ux(t) (3)
y(t) = my(t) + Hyg(t) + uy(t) (4)

where y(t) and x(t) are (ny × 1) and (nx × 1) time series vectors observed on nx and ny spatial
sites, respectively; my(t) and mx(t) are (ny × 1) and (nx × 1) mean components modelling the
smooth large-scale temporal variability, Hy (ny ×m) and Hx (nx × r), are measurement matrices
retaining information on the spatial structure of the random fields, Bi (m × m), Cj (m × r),
and Rk (r × r) are coefficient matrices modelling the temporal evolution of the latent vectors
g(t) = (g1(t), . . . , gm(t))′ and f(t) = (f1(t), . . . , fr(t))

′, respectively. Throughout the paper it is

3



assumed that both m and r are of several order of magnitude smaller than ny and nx, respectively.
Also, notice that ny and nx need not be the same number and, even in the case in which ny = nx,
it is not needed that the two variables have to be observed on the same sites. This is one of the
advantages of our model formulation.
Finally, ξ(t), δ(t), ux(t) and uy(t) are error terms. Specifically, we assume ξ ∼ N(0,Σξ), δ ∼
N(0,Σδ), ux ∼ N(0,Σux

), uy ∼ N(0,Σuy
) and restrict the variance matrices to be diagonal.

Factor analysis has previously been used to model multivariate spatial data. For example, Wang
and Wall (2003), Christensen and Amemiya (2002, 2003), Hogan and Tchernis (2004) provide
some evidence on how factor analysis can be used for potentially reducing the overall dimension
of the response vector observed at each location. In this paper, however, the observations are
univariate and factor analysis is used to identify possible clusters of locations whose temporal
behavior is primarily described by a potentially small set of common dynamic latent factors. As
described in Section 3, one of the key aspects of the proposed model is that flexible and spatially
structured prior information regarding such clusters can be directly introduced by the columns of
the factor loadings matrix.

3 The Spatial Dynamic Factor Model
A key-property of much spatio-temporal data is that observations at nearby sites and times will
tend to be similar to one another. This underlying smoothness characteristic of the space-time
process can be captured by estimating the state process and hence filtering out the measurement
noise. It is customary in the dynamic factor literature to refer to the unobserved (state) processes as
the common factors and to refer to the coefficients that link the factors with the observed series as
the factor loadings. However, because of their spatial nature, the factor loadings are equivalently
defined here as spatial patterns.
The specification of the spatial patterns could be done using a finite-dimensional space of re-
gression or deterministic drift functions, or using autocorrelation to make nearby values spatially
similar (Kent and Mardia, 2002). In most cases the specification is restricted to non-stochastic fac-
tor loadings matrices and some model examples are provided in Gamerman et al. (2003), Nobre et
al. (2005), Stroud et al. (2001), Mardia et al. (1998), Wikle and Cressie (1999), Sahu and Mardia
(2005) and Calder (2007).
In this paper, stochastic forms are considered in the specification of factor loadings which can
easily incorporate external information through regression functions. The approach was first intro-
duced by Lopes et al. (2008) but, in their specification, they only considered a simplified version
referred to a single variable case. The possibility of specifying two measurement equations results
in a significant advantage in terms of spatial interpolation and this makes an important differ-
ence with respect to other regression-based spatio-temporal models proposed in literature (see for
example, Huerta et al., 2004). Notice that as shown in Lopes et al. (2008) the model leads to
nonseparable forms (between space and time) for its covariance function.

3.1 Specifying the Spatial Patterns
By assuming that the latent factors, f(t) and g(t), are able to capture the temporal variation of
the space-time field, the spatial dependencies can be modeled by the columns of the matrices
Hy and Hx. Specifically, following Lopes et al. (2008), it is assumed that the j−th column of
Hy (or Hx), hyj =

(

hyj(s1), . . . , hyj(sny
)
)′, j = 1, . . . , m, can be modeled as a conditionally
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independent Gaussian Random Field - GRF; i.e. hyj ∼ MV N
(

m
(hy)
j ,Σ

(hy)
j

)

, where m
(hy)
j is a

ny−dimensional deterministic mean vector and Σ
(hy)
j is a parameterized spatial covariance matrix.

Specifically, we have Σ
(hy)
j = τ 2

yjR(φyj), where τ 2
yj is a scale parameter and R(φyj) a (ny × ny)

matrix suitably defined through a decaying spatial correlation parameter φyj. Assuming isotropy,
in this paper we consider an exponential correlation function, r(|sl−sk|) = exp{−dlk/φyj}, where
dlk = |sl − sk| is the Euclidean distance between sites sl and sk.
Several alternative patterns can be represented by properly specifying the covariance structure
and the mean function of each GRF; of course, compared with the deterministic approach (for a
discussion see for example, Kent and Mardia, 2002), it follows that in our case both Hy and Hx

cannot be specified ahead of time and must be considered as parameters. However, restrictions
on Hy and Hx are needed to define a unique model free from identification problems. Several
restrictions can be considered. The solution adopted here is to constrain the measurement matrices
so that they are lower triangular matrices, assumed to be of full rank. This form provides both
identification and useful interpretation of the factor model and, for example, is used by Geweke
and Zhou (1996), Aguilar and West (2000), Lee and Shi (2000) and Reich et al. (2009). As
also discussed by Lopes and West (2004), an advantage of using this specification is that the
order of the sites in the measurement matrices is a modelling decision that has no effect on the
resulting theoretical model nor on predictive inferences under the model. Note that as regards
the identifiability problems Hy and Hx are subject to the specified 0/1 constraints on values in
the the upper triangle and diagonal matrices, so the prior density applies only to the remaining,
uncertain elements (Aguilar and West, 2000). Furthermore, the Gaussian process prior on the
remaining loading imposes restrictions on them (loadings of locations nearby must be similar with
high probability). This additional information provides additional constraints and strengthens the
identifiability condition.

3.2 Covariate Effects
Many specifications for the mean level of the processes can be entertained, with the most common
ones based on time-varying as well as location-dependent covariates. Here, we assume that my(t)

and mx(t) are zero vectors and proceed by estimating m
(hy)
j and m

(hx)
j only. Spatially-varying

covariates are considered in explaining the mean level of the GRFs and some simple specifications
might be: a) m

(h·)
j = 0, b) m

(h·)
j = β

(h·)
j I, c) m

(hx)
j = D(hx)β

(hx)
j , and m

(hy)
j = D(hy)β

(hy)
j , where

D(·) is a matrix of covariates and βj a vector of regression parameters. In the latter case c), more
flexibility is brought up by allowing potentially different covariates for each Gaussian random field.
Furthermore, for spatial prediction purposes, it might also be useful to link the spatial structure of
Y and X and set D(hy) = Hx. This specification, results particularly useful when nx > ny and we
wish to predict Y on some of the sites in which X is available (see Figure 1 - left).

4 The Latent Processes
While the spatial structure of the two processes is modelled through the specification of the mea-
surement equation, the temporal dynamic of the process is modelled by the specification of two
dynamic stochastic processes, described in (1) and (2), for the unobserved state variables g(t) and
f(t). Specifically, equation (2)
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f(t) =

s
∑

k=1

Rkf(t − k) + δ(t)

represents a Vector Autoregressive - VAR(s) process for which we assume the following assump-
tion:

ASSUMPTION 1. Let L be the backshift operator, then for each t ∈ N, f(t) = [f1(t), f2(t), . . . , fr(t)]
′

admits the following one-sided moving average representation:

f(t) =

∞
∑

j=0

R̃jδ(t − j), R̃0 = Ir, (5)

where the R̃j are (r × r) matrices satisfying (Lütkepohl, 2005; sec. 2.1 and 6.1)

∞
∑

j=0

R̃jL
j = (Ir − L)−d

(

∞
∑

j=0

G̃jL
j

)

and Det
[

∑∞

j=0 G̃jz
j
]

6= 0, |z| ≤ 1, where d is the order of integration.
Equation (1) instead, provides an autoregressive distributed lag - ARDL(p; q) - (Greene, 2003;
Lütkepohl, 2005) specification for g(t) that, expressed in its rational lag form, also appears as a
linear combination of two multivariate innovation processes:

g(t) = Φ(L)δ(t) + B̃(L)ξ(t)

where, Φ(L) = B̃(L)C(L)R̃(L), and for a generic polynomial in the backshift operator, Ã(L) =
A(L)−1.

4.1 The State Space Formulation
The specification of equation (2) in the model formulation is dictated by the necessity of predicting
in time the latent vector f(t) to produce k−step ahead forecasts of g(t). Thus, to this end, we may
specify the joint generation process for g(t) and f(t) as

[

Im −C0

0 Ir

] [

g(t)
f(t)

]

=

[

B1 C1

0 R1

] [

g(t − 1)
f(t − 1)

]

+ · · ·

· · ·+

[

Bp Cp

0 Rp

] [

g(t − p)
f(t − p)

]

+

[

ξ(t)
δ(t)

]

(6)

where it is assumed without loss of generality that p ≥ max(s, q), Ci = 0 for i > q and Rj = 0

for j > s. Since v(t) is a white noise, premultiplying the left and right hand parts by

[

Im −C0

0 Ir

]−1

=

[

Im C0

0 Ir

]
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shows that the joint generation process of g(t) and f(t) is a VAR(p) process of the type

d(t) = F1d(t − 1) + . . . + Fpd(t − p) + Kε(t)

where

d(t) =

[

g(t)
f(t)

]

, Fi =

[

Bi Ci + C0Ri

0 Ri

]

, K =

[

Im C0

0 Ir

]

, ε(t) =

[

ξ(t)
δ(t)

]

.

The presence of both measurement and latent variable equations naturally leads to the state-space
representation (Hamilton, 1994) of model (1)-(4). The motivation behind casting the described
dynamic model in a state-space form is primarily in the possibility of using the Kalman filter
algorithm to produce a recursive estimation of the underlying unobserved variables, given the
observed data. The linear Gaussian state-space model is thus described by the following state and
measurement equations

α(t) = Φ α(t − 1) + Ξ ζ(t) (7)
z(t) = H α(t) + u(t) (8)

where α(t) is the state vector, Φ is the nonsingular transition matrix, Ξ is a constant input matrix,
Z(t) is the measurement vector and H is the measurement matrix. The sequences ζ(t) and u(t)
are assumed to be mutually independent zero mean Gaussian random variables with covariances
E{ζ(ti)ζ(tj)

′} = Ψδij and E{u(ti)u(tj)
′} = Σuδij , where E{·} denotes the expectation and δij

the Kronecker delta function. In (7) and (8) we have the following specification:

α(t) =











d(t)
d(t − 1)

...
d(t − p + 1)











, Φ =











F1 F2 · · · Fp

I 0 · · · 0
...

...
...

...
0 · · · I 0











, ζ(t) =











ε(t)
0
...
0











z(t) =

[

y(t)
x(t)

]

, H =

[

Hy 0 · · · 0

0 Hx · · · 0

]

, Ξ =











K

0
...
0











,u(t) =

[

uy(t)
ux(t)

]

.

4.2 Large Scale Dynamic Factors
Trend, periodic or cyclical behaviors are present in many applications and can be directly enter-
tained by the dynamic model framework embedded in the proposed model. The temporal large
scale variation can be incorporated into the proposed model either through the common dynamic
factors or through the mean level. In the latter, the same pattern is assumed for all locations while,
in the former, common factors receive different weights for different columns of the factor load-
ing matrix, so allowing different trend/seasonal patterns for the spatial locations. For example, a
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seasonal common factor of period N can be easily accommodated by specifying matrices of the
type

Υj =

[

cos(2πj/N) sin(2πj/N)
− sin(2πj/N) cos(2πj/N)

]

, j = 1, 2, . . . , h = N/2

and h = N/2 is the number of harmonics needed to capture the seasonal behavior of the time
series (see Lopes et al. 2008; West and Harrison, 1997, Chapter 8, for further details). In practice,
fewer harmonics are required in many applications to adequately describe the seasonal pattern of
many data sets and the dimension of this component is typically small.
By considering trend models to be of the form ∇kγ(t) = ω(t), where ∇k is the k-th order dif-
ference operator and ω(t) a normally distributed zero-mean sequence with unknown variance ϕ2,
locally linear trend models can also be easily included in the model formulation; for example, for
k = 2 we define trends of the type (Kitagawa and Gersch, 1996)

γ(t) = 2γ(t − 1) − γ(t − 2) + ω(t).

Thus, by specifying the matrix

Γ =

[

2 −1
1 0

]

a trend component can be easily introduced in the dynamic of the state vector.
Inference for the trend and seasonal model is done using the algorithm proposed below with (con-
ceptually) simple additional steps. For instance, posterior samples for the involved variance ma-
trices are obtained from inverted Wishart distributions, as opposed to the usual inverse gamma
distributions. However, for the sake of notation, the following sections present the inferential
procedures based on the more general equations (1-4).

5 Inference and Computations

5.1 Prior Information
Full probabilistic inference for the model parameters is carried out by elicitating the following
independent prior distributions.
Let σ2

y = {σ2
uy ,i}

ny

i=1, σ2
x = {σ2

ux,i}
nx

i=1, σ2
ξ = {σ2

ξ,i}
m
i=1, and σ2

δ = {σ2
δ,i}

r
i=1; then we assume

that p(σ−2
y,i ) = fG(σ−2

y,i |s
−2
y0 , νy0), p(σ−2

x,i ) = fG(σ−2
x,i |s

−2
x0 , νx0), p(σ−2

ξ,i ) = fG(σ−2
ξ,i |s

−2
ξ0 , νξ0) and

p(σ−2
δ,i ) = fG(σ−2

δ,i |s
−2
δ0 , νδ0), with s2

y0 = s2
x0 = s2

ξ0 = s2
δ0 = 1, νy0 = νx0 = 0.002 and νξ0 = νδ0 =

0.02.

For the spatial patterns, the parameters m
(hy)
j , τ 2

yj and φyj , j = 1, . . . , m, have the following prior
specification: m

(hy)
j ∼ N(mβ,Sβ), τ−2

yj ∼ G(aβ, bβ) and φ−1
yj ∼ G(2, ν), where aβ , bβ are known

hyperparameters, and ν = max{dlk}/(−2ln(0.05)) (see, Lopes et al. 2008; Banerjee et al., 2004;
Schmidt and Gelfand, 2003). In the applications discussed below, we consider the diffuse choice
of aβ = 2, bβ = 1 and the same parametrization elicited for τ 2

yj and φyj, was also chosen for τ 2
xk

and φxk, k = 1, . . . , r.

As regards the prior specification for the regression parameters in equations (1) and (2), let ∆1 =
vec[R1, . . . ,Rs] and ∆2 = vec[A1, . . . ,Ap,C0,C1, . . . ,Cq], where vec(·) denotes the vectorize
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operator; then we assume that ∆1|Σδ ∼ N(∆10,V10) and ∆2|Σξ ∼ N(∆20,V20), and set ∆10 =
∆20 = 0.051 and V10 = V20 = I. However, for the regression parameters many specifications
can be considered and for a discussion see, for example, Lopes et al. (2008).

Finally, the prior for the latent process α(t) is provided by the transition equation and completed
by α(0) ∼ N(a0,Σα0), where we set the mean of the initial state a0 to zero and choose the initial
variance matrix Σα0 to be a function of the system matrices.

5.2 Posterior inference
Posterior inference for the proposed class of spatial dynamic factor models is facilitated by Markov
Chain Monte Carlo algorithms. Standard MCMC for dynamic linear models are adapted to our
model specification such that, conditional on r and m, posterior, predictive and interpolation anal-
ysis are readily available. We provide here some information on the relevant conditional distribu-
tions.
Define σ2 = [σ2

y, σ
2
x, σ

2
δ , σ

2
ξ], τ 2

x = [τ 2
x1, . . . , τ

2
xr], τ 2

y = [τ 2
y1, . . . , τ

2
ym], φx = [φx1, . . . , φxr], φy =

[φy1, . . . , φym], α = [α(0), α(1), . . . , α(T )], Y = [y(1),y(2), . . . ,y(T )] and X = [x(1),x(2), . . . ,x(T )].
Then by denoting with ”u” the unobserved data, posterior inference is based on summarizing the
joint posterior distribution

p(Yu,Xu, τ 2
y, τ

2
x, φy, φx, α, σ2|Y,X).

The common factors are jointly sampled by means of the well known forward Filtering back-
ward sampling (FFBS) algorithm (Carter and Kohn 1994; Frühwirth-Schnatter 1994). All other
full conditional distributions are ”standard” multivariate normal distributions or inverse gamma
distributions, except the parameters, φj , characterizing the spatial correlations which are sampled
based on a Metropolis-Hastings step. Specific details for the implementation of the involved full
conditional distributions can be found, for example, in Lopes et al. (2008) and Lütkepohl (2005).

6 Uses of the Model
In this sections we provide specific details on how to obtain temporal forecasts and spatial predic-
tions of the variable of interest Y .

6.1 Forecasting
One of the main objectives of the analysis might be that of obtaining temporal forecasts of the
variable Y . These can be obtained through the state space formulation which naturally provides
the framework to learn about the h-steps ahead predictive density, p [z(T + h)|Z], of the joint
process Z = [Y X]. Thus, let Θ = [σ2, τ 2

x, τ
2
y, φx, φy], then

p [z(T + h)|Z] =

∫

p [z(T + h)|α(T + h),H,Θ] p [α(T + h)|α(T ),H,Θ]

p [α(T ),H,Θ|Z] dα(T + h) dα(T ) dH dΘ

where [z(T + h)|α(T + h),H,Θ] ∼ N
[

Hα(T + h),Σuy

]

, [α(T + h)|α(T ),H,Θ] ∼ N(µh,Vh),
µh = Φhα(T ) and Vh =

∑h

j=1 Φh−1Ψ(Φh−1)′, for h ≥ 0.
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Then, if
{

(H(1),Θ(1), α(T )(1)), . . . , (H(M),Θ(M), α(T )(M))
}

is a sample from p [α(T ),H,Θ|Z]

it is easy to draw α(T + h)(j) from p
[

α(T + h)|α(T )(j),H(j),Θ(j)
]

, for all j = 1, . . . , M ,
such that p̂ [z(T + h)|Z] = M−1

∑M

j=1 p
[

z(T + h)|α(T + h)(j),H(j),Θ(j)
]

is a Monte Carlo
approximation to p [z(T + h)|Z] . Analogously, a sample

{

z(T + h)(1), . . . , z(T + h)(M)
}

from
p [z(T + h)|Z] is obtained by sampling z(T + h)(j) from p

[

z(T + h)|α(T + h)(j),H(j),Θ(j)
]

,
for j = 1, . . . , M .

6.1.1 Conditional Forecasting

The forecasting procedure described in the previous section is obtained under the hypothesis that
the predictor X is unknown for the period of interest. However, as shown in Figure 1 (right),
occasionally the forecaster may know the ”future” values (with respect to Y ) of the exogenous
variable. When this is the case, we may produce temporal forecasts of g(t) conditional on a
specific path of f(t). In the following, we thus propose a simple procedure to obtain g(T +h)|f(t),
thus avoiding the use of equation (2) to obtain h-steps ahead forecasts of f(t). Suppose that for the
period T +1, T +2, . . . , T +h, X is known such that Xh = [x(T + 1),x(T + 2),x(T + h)]. Then,
h-step forecasts of g(t) may be obtained conditional on fh = [f(T + 1), f(T + 2), . . . , f(T + h)],
with fh = H†

xXh where H†
x denotes the pseudo-inverse of Hx.

6.2 Interpolation
In this section we are now interested in spatial interpolation at the nu locations where the response
variable Y has not yet been observed. More precisely, let yo denote the vector of observations
from locations in S and yu denote the vector of measurements to be predicted in locations defined
by Su = {sny+1, . . . , sny+nu

}. Also, let hyj = {ho′

yj ,h
u′

yj} be the j-column of the factor loadings
matrix Hy with ho

yj corresponding to yo and hu
yj corresponding to yu, respectively. Interpolation

consists of finding the posterior distribution of hu
yj (Bayesian kriging)

p
(

hu
y |y

o
)

=

∫

p
(

hu
y |h

o
y,Θ

)

p
(

ho
y,Θ|yo

)

dho
y dΘ

where p
(

hu
y |h

o
y,Θ

)

=
∏m

j=1 p(hu
yj|h

o
yj,m

(hy)
j , τ 2

y,j, φy,j). Standard multivariate normal results can

be used to derive, for j = 1, . . . , m, the distribution of p(hu
yj|h

o
yj ,m

(hy)
j , τ 2

y,j , φy,j). Conditionally
on Θ,

[

ho
yj

hu
yj

]

∼ MV N

[ (

D(hyo)

D(hyu)

)

β
(hy)
j ; τ 2

y,j

(

R(o,o)(φyj) R(o,u)(φyj)
R(u,o)(φyj) R(u,u)(φyj)

) ]

where R(u)(φyj) is the correlation matrix of dimension nu between ungauged locations, R(u,o)(φyj)
is a matrix of dimension (nu×ny) where each element represents the correlation between ungauged
location si and gauged location sj , for i = 1, . . . , nu and j = 1, . . . , ny. Therefore, it follows that
the conditional mean and variance are

E
[

hu
y |h

o
y,Θ

]

= D(hyu)β
(hy)
j + R(u,o)(φyj)R

(o,o)(φyj)
−1(ho

yj − D
(hyo)
j β

(hy)
j )

V ar
[

hu
y |h

o
y,Θ

]

= R(u,u)(φyj) − R(u,o)(φyj)R
(o,o)(φyj)

−1R(o,u)(φyj),
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and the usual Monte Carlo approximation to p(hu
y |y

o) is p̂(hu
y |y

o) = L−1
∑L

l=1 p(hu
y |h

o(l)
y ,Θ(l)),

where {(h
o(1)
y ,Θ(1)), . . . , (h

o(L)
y ,Θ(L))} is a sample from p(ho

y,Θ|yo). If h
u(l)
y is drawn from

p(hu
y |h

o(l)
y ,Θ(l)), for l = 1, . . . , L, then {h

u(1)
y , . . . ,h

u(L)
y } is a sample from p(hu

y |y
o).

As a by-product, the expectation of nonobserved measures yu can be approximated by Ê[yu|yo] =

L−1
∑L

l=1 h
u(l)
y αl.

Notice that when nx > ny, as in Figure 1 (left), it might be interesting to predict Y (at least) on
some of the sites in which X is available. In this case, whether the spatial correlation between X
and Y is quite high it may be worth trying to set

[

D(hyo);D(hyu)
]

= Hx so that the interpolation
procedure exploits the spatial information structure of the predictor.

7 Applications
In this section, we discuss the application of our model (1-4) to the two real data sets introduced
in section 1. The first data set (section 7.1) is related to the daily mean concentrations of PM10

and NOx observed in the Milan district; the second one (section 7.2) , instead, represents hourly
measurements of O3 and temperature variables observed over Mexico City. In both cases the
interest would be in temporal forecasts and spatial interpolation of PM10 and O3.
In both applications the choice of the number of components, m and r, as well as the orders p, q
and s, of the autoregressive components in equations (1) and (2), is based on the following well-
known predictive model choice criterion (see for example, Laud and Ibrahim, 1995; Gelfand and
Ghosh, 1998; Sahu and Mardia, 2005)

PMCC =
∑

{

(Y (s, t) − E[Y (s, t)rep])
2 + V ar[Y (s, t)rep]

}

(9)

where the summation is taken over all the (N×T ) observations except for the missing observations
and Y (s, t)rep is a future observation corresponding to Y (s, t) under the model assumed.

7.1 Modeling PM10 and NOx in the Milan district
A quite large number of monitoring sites located overall the Lombardy Region (Italy) for PM10

and NOx was shown in Figure 1. However, due to the large amount of missing data for many of
the series, we have to restrict our analysis to a smaller number for which both variables are simul-
taneously available. Specifically, we consider 20 sites and the period of the data covers the months
January-October 2008, for a (20 × 297) data matrix. The raw data are provided by the Environ-
mental Agency (ARPA) of Lombardy Region. Latitudes and longitudes are expressed according
to the universal transverse Mercator (UTM) coordinates and these are measured in kilometers.
To test the model capability to perform temporal forecasting and spatial interpolation, the last
week of the observed data and the temporal series of two monitoring sites have been excluded
from the estimation procedure and used only for prediction purposes. Thus, we have nx = ny =
18, T = 290; nu = 2, Su = {sny+1, sny+2}, and a forecast period Th = {T + 1, . . . , T + 7}.
For interpolation and forecasting comparison purposes, the following two different cases are also
considered:

i) the NOx variable is assumed to be available for the sites in Su; that is, the time series of
X(su

1 , t) and X(su
2 , t), for t = 1, . . . , 297, are available at sites and time points for which

both spatial interpolations and temporal forecasts for Y are required;

11



ii) the NOx variable is assumed not to be available at Su.

Because concentration data are always positive, it is convenient to operate on a logarithmic scale to
remove the effect of heteroschedasticity. For this data set, missing data are in a moderate amount
(less than 2%) and they will be reconstructed at each MCMC iteration by sampling from the full
conditional distribution of Y .
An exploratory analysis of the data shows quite large correlations (many above 0.75) among the
time series of the spatial sites; however, some features of the data suggest that it will be difficult
to predict all the data satisfactorily. For example, in the period August-October, some close sites
show highly disparate values with correlations close to 0.2.
Examination of graphical representations of X and Y , such as contour plots drawn at several time
points, highlights the presence of a spatial quadratic surface. Thus, the entries of the design ma-
trices, D(hx) and D(hy), for the specification of m

(hx)
j and m

(hy)
j , respectively, are functions of the

spatial coordinates and are defined to represent a six-parameter quadratic trend model (Cressie,
1993). However, for the Y variable, we also consider the effect of setting D(hy) = Hx.
Different values for p, q and s, ranging from 1 to 2, and an increasing number of factors (never
larger than 12 for each variable) have been considered for model specification. The MCMC algo-
rithm described above was also run for parameter estimation for a total of 75, 000 iterations and
posterior inference was based on the last 50, 000 draws using every 10th member of the chains.
The MCMC chains of the parameters were monitored to detect possible problems in convergence
although, no such problems were found in the implementation.
Competing models were compared on the base of the predictive criterion (9) and results for
PMCC are shown in table 1. The optimal choice was found for m = 9 and r = 8 and D(hy) = Hx;
henceforth we work with this model specification; the first component represents a local linear
temporal trend (see section 4.2) while the others are temporally stationary components. Specifi-
cally, f(t) follows a VAR(1) while g(t) is an ADL(1, 1). The dynamic evolution of the factors is
characterized by considering R1 and B1 as diagonal matrices, while C0 and C1 are full matrices.

PMCC r
m 7 8 9 10 11 12
7 455.2 450.2 456.1 453.0 457.1 459.4
8 440.5 438.4 430.3 425.1 437.2 444.1
9 399.9 392.6 401.1 400.0 411.8 418.2

10 408.1 401.5 409.1 405.1 417.4 419.6
11 412.4 410.4 414.3 409.2 428.1 439.3
12 418.6 416.7 420.2 413.8 442.7 451.1

Table 1: Values of the predictive model choice criterion - PMCC -for various values of m and r

The MCMC estimates of the components gi(t), i = 1, . . . , 9 along with their 95% credibility in-
tervals are shown in Figures 2 for the chosen model.

Factors may be identified according to their relative weight in the explanation of the data variability.
On average the larger proportion of the data variability is associated with the trend factor. It
accounts for 38% while the third factor appears after that with around 15%. Over all, the common
factors explain around 71% of the variability.
Table 2 presents posterior summaries for the spatial dependence of the factor loadings. For the
PM10, the posterior mean of the correlation parameter of the first factor loading corresponds to
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Figure 2: Marginal posterior means for gi(t), i = 1, . . . , 9 (in lexico-graphic order) and 95%
credible intervals (dashed line).

an approximate range of 63 kilometers in spatial dependence since the covariogram decays to 0.05
for φ̂y1 = 21. For the other factor loadings the spatial correlations at 40 kilometers vary from 0.03
(for the second factor loading) to 0.06 (for the third factor loading). On the other hand, the NOx

estimated ranges vary approximately from 31 kilometers to 58 kilometers. We believe that these
estimates might reflect the characteristics of the area under study which is flat (i.e it does not show
specific geographical morphologies) and highly industrialized.
To provide some examples, Figures 3 and 4 present the mean surfaces for the first 4 columns of
the standardized (Bollen, 1989) factor loadings matrix Hy obtained by interpolation, as explained
in Section 6.2. In each map, we also show the monitoring network where the size of each site is
proportional to the absolute value of the corresponding factor loading.
Since all the weights of the first factor loading are very similar to each other, the first factor repre-
sents the grand mean and accounts for the global time-trend variability of all the series. Also the
estimated loadings of the second factor do not show any specific spatial pattern and it can thus be
interpreted as a common stationary component. Instead, the third factor loading is a contrast be-
tween two groups of 9 sites each, with one group mainly located in the north-eastern part. Finally,
the fourth factor loading shows the larger values for the sites centered on the city of Milan and
also represents a contrast between the two groups totaling 14 sites and the remaining 4 sites in the
north-eastern corner of the area of study.
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1st F.L. 2nd F.L. 3rd F.L. 4th F.L. 5th F.L.
Mean 23.89 12.26 15.38 15.47 13.39

Median 21.05 11.86 14.63 14.32 12.46
95% C.I. [14.91,29.93] [7.29,18.84] [8.11,22.57] [8.60,23.70] [7.61,23.50]

6th F.L. 7th F.L. 8th F.L. 9th F.L.
Mean 14.64 12.37 13.51 15.14

Median 14.05 11.70 13.09 13.63
95% C.I. [7.75,21.02] [7.73,19.58] [8.18,22.37] [8.06,24.10]

Table 2: Posterior summary for the decay parameters characterizing the columns of the factor
loadings matrix (PM10). C.I. and F.L. stand for credibility interval and factor loading, respectively.

Figure 3: Factor loadings interpolation. The contour values represent the range of the posterior
means for hy1 and hy2, respectively. The size of each site is proportional to the absolute value of
the corresponding factor loading.

The autocorrelations of the raw residuals, the differences between the observed and the fitted, are
also given in Figure 5 and they do not show any temporal pattern. This is also confirmed by the
Ljung-Box statistics whose null hypothesis is rejected for all the residual series.
Forecasting and interpolation results, for the case ii) described above, where the NOx is not avail-
able at sites in Su, are first presented in Figures 6 and 7. Specifically, Figure 6 provides some
examples of forecasts obtained for six of the 18 observed series. As it can be seen, the ”uncondi-
tional” forecasts, compared with the true values, seem to provide quite good results but in some
cases they tend to be very similar to the mean of the data. Figure 7 instead, shows ”unconditional”
interpolation results for sites in Su. We can notice the ability of the model in tracking the behavior
of the series although some difficulties in the fit are observed at the beginning of the series.
Forecasting and interpolation results, for the case i) instead, are shown in Figures 8 and 9. As can
be seen, the ”conditional” (on the known values of X) forecast and interpolation approach now
exhibits more encouraging out-of-sample properties of the model, with data points being more
accurately forecast and interpolated for several steps ahead and out-of-sample monitoring stations,
respectively. It is worth noting here that none of the 95% credibility intervals, either based on
forecasting or interpolation are symmetric, and that in general, they appear narrower than in the
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Figure 4: Factor loadings interpolation. The contour values represent the range of the posterior
means for hy3 and hy4, respectively. The size of each site is proportional to the absolute value of
the corresponding factor loading.
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Figure 5: Plot of the autocorrelations of the raw residuals.

unconditional case.
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Figure 6: Comparison of ”unconditional” forecasts and true values for a selection of six sites. True
data (x), interpolated values (continuous line), 95% credible interval limits (dashed line).

7.2 Modeling Ozone Levels at Mexico City
In this section we describe the main results obtained in modeling Ozone levels. Specifically, we
consider hourly readings of concentrations of O3 and air temperature which, in our model formu-
lation, is used as a covariate. The O3 variable is observed at 20 monitoring sites while the air
temperature is observed at 16 stations of which 12 share the same coordinates of the O3 sites. The
data cover the period from February 6th (14:00 p.m.) to February 12th (17:00 p.m.). The moni-
toring sites are scattered irregularly in Mexico City and the network is named Red Automatica de
Monitoreo Ambiental (RAMA) de la Ciudad de México. The coordinates are expressed in kilo-
meters. The exploratory analysis of the cycle behavior of the time series essentially confirms the
presence of a peak corresponding to a daily cycle with wavelengths of 24 h and a peak correspond-
ing to a harmonic cycle with a wavelength of 12 h. This feature was also noticed by Huerta et al.
(2004). The exploratory analysis also confirms that the variability of the mean level across stations
is important and that the cyclical behavior of the series differs in amplitude according to location.
This site-specific feature can be naturally captured by the components of the factor loadings ma-
trices.
As in section 7.1, to test the forecasting performance of the model, the last 48 hours have been
excluded from the estimation procedure and used only for prediction purposes. Furthermore, to
provide interpolation results conditional on known values of the temperature, the time series of two
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Figure 7: ”Unconditional” interpolation results for sites in Su. True data (x), interpolated values
(continuous line), 95% credible interval limits (dashed line).

monitoring sites for O3 have also been excluded from the analysis. Thus, we have ny = 18, nx =
16, T = 100; nu = 2, Su = {sny+1, sny+2}, and a forecast period Th = {T + 1, . . . , T + 48}.
Different model specifications, with an increasing number of factors have been tested and, accord-
ing to the predictive criterion (9), the optimal choice was found for m = 7 and r = 6. For both
variables, the first two components represent the harmonic cycles with a wavelength of 24 h and
12 h, respectively. The remaining 4 components in f(t) follow a random walk, while the remain-
ing 5 components in g(t) follow an ADL(1, 1). Parameter estimation was carried out by MCMC
for a total of 50, 000 iterations and posterior inference was based on the last 30, 000 draws using
every 10th member of the chains. The MCMC chains of the parameters were monitored to detect
possible problems in convergence although, no such problems were found in the implementation.
The posterior mean for correlation of the first two factor loadings, corresponding to the harmonic
cycle of 24 h and 12 h with respect to O3, consist of an approximate range of 33.4 and 31.2 kilome-
ters in spatial dependence since the covariogram decays to 0.05 for φ̂y1 = 11.15 and φ̂y2 = 10.42,
respectively. Similar results are also found for the spatial dependence of the temperature since the
estimated factor loadings corresponding to the two cycles show that the spatial correlations at 30
kilometers vary from 0.06 (for the harmonic cycle of 12 h) to 0.07 (for the harmonic cycle of 24
h).
Forecasting and interpolation results (on the original scale), conditional on the known values of
the air temperature, are shown in Figures 10 and 11, respectively. Specifically, Figure 10 provides
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Figure 8: Comparison of ”conditional” forecasts and true values for a selection of six sites. True
data (x), interpolated values (continuous line), 95% credible interval limits (dashed line).

a selection of the three best (top row) and worse (bottom row) forecasts (mean with corresponding
the 95% predictive probability intervals) obtained for the 18 observed series. As can be seen, in
both cases, the model represents the cyclical patterns and non-stationarities of the data adequately,
with the actual observed values falling within the range of the forecast intervals.

8 Discussion
In this paper we have discussed the modeling of coupled environmental variables by means of
Bayesian dynamic factor models with smooth factor loadings. Specifically, we use factor analysis
ideas to frame and exploit both the spatial and the temporal structure of the observed processes.
The spatial variation is brought into the model through the columns of the factor loadings matrix,
while the time series dynamics are captured by the common dynamic factors which follow time
series decomposition processes, such as local and global trends, cycle and seasonality.
The matrix of factor loadings plays the important role of weighing the common factors in general
factor analysis and is here incumbent of modeling spatial dependence. A key feature of the pro-
posed model is its ability to encompass several existing models, which are restricted in most cases
to non-stochastic factor loadings matrices. Furthermore, unlike many existing spatio-temporal
models, our model formulation also works in cases in which X and Y are observed on different

18



0 50 100 150 200 250 300
0

50

100

150

200

0 50 100 150 200 250 300
0

50

100

150

200

250

Figure 9: ”Conditional” interpolation results for sites in Su. True data (x), interpolated values
(continuous line), 95% credible interval limits (dashed line).

spatial sites.
Another main advantage of the model formulation is that it enables to consider cases in which both
the spatial and the temporal series of X may be longer than that of Y . As noticed, this is partic-
ularly useful to produce improved spatial and temporal predictions by ”conditioning” on known
values of the predictor. For example, this seems to be particularly effective for the Ozone - air
temperature case where, in general, the air temperature is either available or easily predictable.
The model has been implemented in a Bayesian set-up using MCMC sampling. Despite the large
number of parameters implied by the model formulation we did not find convergency problem of
the algorithm. The implemented MCMC code was also validated through an extensive simula-
tion study where, both model parameter estimation and prediction capabilities of the model were
considered. In general, simulation results (not provided here) show that: i) all the parameters are
well estimated and all true values fall within the marginal 95% credibility intervals, ii) accurate
estimates of both factor loadings and common dynamic factors can be obtained, iii) the PMCC
criterion is able to correctly select the order of the simulated factor model and, iv) excellent results
can be achieved if we would be able to produce predictions conditional on the known values of the
predictor.
As a final consideration, we emphasize that the model can be indifferently used for both continuous
and lattice spatial data and that it can be easily extended allowing both X and Y to be multivari-
ate multidimensional spatio-temporal processes. This will constitute an extension of the model
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Figure 10: Comparison of ”conditional” forecasts and true values: the best and worst forecasts
are shown in the top and bottom rows, respectively. True data (x), interpolated values (continuous
line), 95% credible interval limits (dashed line).

discussed in Fontanella et al. (2007) and will be a topic for future work. In this case however,
computational problems related to the inversion of high dimensional covariance matrices might
arise; in fact, the computational burden increases with the dimension of T , ny, nx, m and r. No
such problems were found here for the two case studies.
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Figure 11: ”Conditional” interpolation results for sites in Su. True data (x), interpolated values
(continuous line), 95% credible interval limits (dashed line).
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