HYDRODYNAMIC LIMIT FOR A CLASS OF EXCLUSION TYPE
PROCESSES WITH CONDUCTANCES IN DIMENSION
GREATER THAN ONE

T. FRANCO, G. VALLE

ABSTRACT. For a fixed smooth regular hypersurface A on the d-dimensional
torus, we consider a random walk on the discrete torus of size N with the
jump rate to cross the bond connecting x to x + e; having order 1/N, if the
bond intersect NA, and 1 otherwise. The hypersurface A models the effect of
a membrane that slows down the passage of particles. For exlusion processes,
where particles evolve as random walks associated to A, we obtain the hydro-
dynamic limit whose equation is a d-dimensional version of a parabolic partial
diferential equation associated to a Krein-Feller operator.

1. INTRODUCTION

Let IT% be the d-dimensional torus, i.e, [0, 1)? with periodic boundary conditions.
Denote by (ej)?:l the canonical base of R?. Let A be a simple closed two times
continuously differentiable hypersurface on II% and let R; and Rs be the two disjoint
open connected components of [1?—A. Denote by 114, = (Z/NZ)? the discrete torus
with N points and put Q¢ = {0,1}“7\1. For u € TI4; and 1 < j < d, we use the
notation u_; = (U1, ..., Uj—1, Ujt1, ..., uq). During this paper we are going to use
(uj,u_j) to represent u € 114, when we need to put in evidence the kth coordinate
of u.

We define the bonds crossing rates as 9

+ if (/N (z+€;)/N)NA#£0D,
& = or {z/N,(z +e;)/N}NA#0 with (x/N,(x +e;)/N)N Ry # 0,
1, otherwise.

for every j =1,...,d and x € I1%.
Consider the random walk on N~'I14, with generator

o) = 3 (65 [ (52) = ()] - [ (552) (3]

for every v : N7, — R and x € II4,. This random walk will be called the
random walk with conductances given by A. Since the transition probability
function is symmetric, we have that the uniform distribution on 114, is reversible
for the random walk with conductances given by A.

The surface A represents a permeable membrane which tends to slow down and
reflect particles on its neighborhood, creating space discontinuities in the solutions.
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The exclusion process with conductances given by A on Q4 is a markov chain
with configuration space 4, and generator given by

d
Lnf) = 32 3 & enars I+ ) = )]
wend, j=1
for every f: Q% — R and n = (n(2))geme, , where

czati (M) = (@) [1 —n(x + ;)] + n(x +e;)[1 — n(x)]

and
‘ n(w + ej) , Y=
T (y) = n(@) L y=1+e;
n(y) , otherwise.

Here (n¥ )i>0 will be used to denote an exclusion process with conductances given
by A which is a Markov process on Q4 with generator Ly. The Bernoulli product
measures on 114, given by

va(n) = [[ a"@(1-a)'7@ peoq,
zeld,
are reversible for the exclusion process with conductances.

Before we are able to state the hydrodynamic limit, let us discuss how we arrive
at the hydrodynamic equation. For each fixed u € II¢ define the strictly increasing
functions

W;wlu—j) =v+ Fj(vlu—;) wel0,1) j=1,...d,

where
Fiwlu_j) = Y Tuy)
wel;(u—j)
with Cj(u_;) = {w € [0,1) : (w,u_;) € A} Note that
1

§ns =
! N[‘”j(%\@) - Wj(%(xz’)]

This leads us to think in a hydrodynamic equation of the form 9;p = 2?21 O, Ow; -

Now we consider the operator Uy = ijl Ou,;0w,;. The domain Dy of Uy is
defined as the set of functions g € L?(II%) for which there exist functions h; €
L2(1%), a; € L2(I14Y) and b; € L*(11971), j = 1,...,d, such that

1
/hj(w,u_j)dwz(), Vuell, andj=1,...d,
0

y
W;(dy|lu—_g) </ hj(w,u_k)derbj(u_k)) =0, Vuel?,
(0,1] 0

(these are required boundary conditions) and for every u € I1¢

9(u) = a;(u_;) + /(O,uj)uAj(u) W;(dylu—;) (/Oy hij(w, u_;)dw + bj(uj)) (11

where,

As(u) = {u;} , seueAede>0tal que (w,u_;) € Ry Yw € (uj — €,u;)
A ,seue€ Aede>0tal que (w,u_j) € Ry Yw € (u; — €,u;).
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Therefore, for g € Dy we have 9,,;0w,; g = h; and we define Uyg = 2?21 hj.

Note that every function in C2(I1%) that is identically zero on A with gradient
also identically zero on A is in Dj. This would not be an appropriated domain for
Uy, but Dy is larger and through solutions of eliptic PDE’s we can obtain functions
in Dy which are discontinuous all along the curve A. Indeed we will see soon that
Uy is the generator of a Markov Process and if Dy does not contain functions that
are discontinuous on A, then particles would be reflected on A.

We can show the following result using similar arguments as those presented in
[3]:
Theorem 1.1. The operator Uy : Dy — L?(I1?) have the following properties:

(a) The domain Dy is dense in L*(I1%).
(b) The operator Uy is symmetric and nonpositive. More precisely, for every

g1 and go in Dy.
/ / (Urg1)g2 dudv > 0

(c) I—Uy : Dy — L*(11?) is bijective.
(d) Up is dissipative.

By the Hille-Yoshida theorem, Uy is the generator of a strongly continuous contrac-
tion semigroup in L?(I1%).

Theorem 1.2. Fiz a continuous function py : 119 — [0, 1] and consider a sequence
of probability measures 9y on Q% associated to po, i.e., for every § >0

Jim dy Nd > H(z/N)n(x / H(u)po(u)du| > 6 p =0.
zelld,

Then, if ]P’f;’N is the distribution of () with initial distribution 9, for everyt >0,

§ > 0 and every continuous function H : 1% — R, we have that

ngnmpw Nd > H(z/N)pn:(z /H p(t,u)du| > 6 3 =0,
a:EHd

where p is the unique solution of equation

Orp =Unp
p(0.) = pol-). (1.2)

To prove the last theorem, we show a uniqueness result for solutions of equa-
tion 1.2 and then we follow the method described in [6] which is based on the
I'-convergence of Dirichlet forms. So let us skecth some steps in the proof:

For a Borel measure ;o on II% and a p-integrable Borel measurable function
H :TI? — R, we denote by pu(H) the integral of H with respect to . Following the
usual method to prove hydrodynamics we consider the empirical measures

Trt NdZntNQ z/NaO<t<T

zel‘[d
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where §,, is the point mass at u € II9. We need to show that the measure valued
process (N Jo<t<t is tight and that its limit points are concentrated on absolutely
continuous trajectories (m¢)o<i<7 such that

wt(H)wo(H)/Otws(L{AH)dso, 0<t<T, (1.3)

for every function H : II¢ — R in some appropriated core R of Uy. This requires,
for every H € R, tightness of (7Y (H)):>0, the proof that

(WfV(H) - (H) - /Ot Wév(LNH)dS) 0<t<T

converges to zero in probability and a result of convergence of fo N(LNH)ds to

fo NUnH)ds.

So we need to deal with the problem of establishing a suitable convergence of
LY to U, which is non-trivial due to the way we derive with respect to W, and Wy
in the boundary of A. So here comes the role of the I'-convergence we now define:

Denote by msy the Lebegue measure on I1¢. For H € L?(I1%), define
HN(z) = Nd/ Hdm, =Tl
E,

with B, = [& — oL, & +LN)><[%—LN,%—FLN),andforvl,vgzﬂfvﬁR

Put

EvH = —(HN,LyHY) for H € L*(T1%) and E\H = — | HUyH dmy for H € Dy .
I1d

Proposition 1.3. &y is ['-convergent to Ep, i.e, for every H € Dy

o Ep\H <liminfy_. ENGn, for any sequence (Gn)n>1 converging to H in
L2(11%).

o EAH > limsupy_,., EnFi, for some sequence (Fn)n>1 converging to H
in L2(T1).

I'-convergence implies convergence of the minimizers of the Dirichlet forms and
this result can be used to show that

sup 7Tt Ng E HA 77tN2
0<t<T peTtd,

converges to zero in probability for all H € R when N — oo and A — oo, where
= ()\ — LN)flsNH.

So we define

N
Ty Nd Z H/\ 77tN2 )

mEHd
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and we work if 7% in place of 7. Then for H € R we can prove tightness for
(wtjv’)‘H)ogtST which implies tightness for (¥ H)o<;<7 and then show, for every
limit point of (7¥)o<i<7 and for every G : II% — R continous, that

t
ﬂt(GA)*WO(GA)*/ Ts(UnGr)ds =0, 0<t<T,
0

where G\ = (A —Ux)~'G. Thus we have (1.3) and all limit points of (7{¥)o<i<7 is
concentrated on solutions of the hydrodynamic equation (1.2).

2. THE OPERATOR U, (PROOF OF THEOREM 1.1)

Let C be the space of functions ¢ : II* — R such that
(i) g)g, is continuous;
(ii) g|g, is uniformly continuous (then, it has a unique continuous extension to
Ra).

Thus if g € Cp then the set of discontinuity points of g is a subset of A. The space
C) is endowed with the sup norm || - |-

For each fixed u € II¢ define the strictly increasing functions
Wi(vlu_j) = v+ Fj(vlu_j) uwel0,1) j=1,...d,

where .
Fiwluy) = Y Tpn@+ D Twy)
weCT (u_j) weC; (u—j;)
with
C;r(u,j) ={we[0,1): (w,u—_;) € A, Ve > 0 small enough (w — €,u_;) € Ry},
C; (u—j) ={w € 0,1): (w,u_;) € A, Ye > 0 small enough (w —€,u_;) € R1},

Note that Cj(u_;) = Cf (u_;) UC; (u_j).

For every j = 1,...,d, define the generalized partial derivative dy, as follows

Ow, g(u) = lim — glu+ eej) - Ng(u)

’ =0 Wilu; + elu—y) — Wj(ujlu—j)
if the above limit exists and is finite. Denote by Dy the set of functions in C, such
that Oy, g, is well defined and differentiable in the j-th coordinate with 0, 0w,
continuous, for all j =1,...,d. (verificar a necessidade de ter 0,;0w,; em Cy)

Define the operator Uy : Dy — Cx (I1¢) by

, ueHd,

d d
Urg = 320000 = 320, 0u9).
j=1 J=1

By [1, Lemma 0.9 in Appendix], given g € Cy and a continuous function h,
Ow,; 9(u) = h(u)

for all w in II? if and only if

glwr,u_j) — glwa,u_;) = / h(v,u—;)dW;(v) (2.1)

Bj(wy,ws2)
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for all w; < wg and u_; € %1, where
Bj(wi, w2) = ([w1, w2) U Aj(w,u—j)) — Aj(wi,u_j).
Note that
h(v,u_;)dW;(v) = 0,
(0,1]
because ¢(0,u_;) = g(1,u_;) forall u_; € TI4~1.
It follows from this observation and the definition of the operator U, that Dy is
the set of functions g in Cs such that, for every j =1, ...,d,

9(u) = a;(u_;) + /(o,uj)uAj(u) W;(dylu—;) </Oy hij(w, u_j)dw + bj(“—j)) , (2.2)

for some function h; in Cy and two continuous real functions a; : m4-! - R and
bj: %1 - R, j=1,...,d, such that

1
/hj(w,u_j)dw:(), Vuell, andj=1,...d, (2.3)
0

Y
W;(dy|u—g) </ hj(w,u_y)dw + bj(uk)> =0, Yuell?, (2.4)
(0,1] 0

The requirement (2.3) corresponds to the boundary condition dw, g(0,u—;) = w,g(0,u_;)

and (2.4) to the boundary condition g(0,u_;) = g(1,u—;). One can check that the
functions hj, a; and b; are unique.

Lemma 2.1. The following statements hold.
(1) The set Dy is dense in L%(I19).
(2) The operator Uy : Dy — L2(T1%) is symmetric and nonpositive. More
precisely, (Upf,g) is equal to

d 1
_I;/Hd_lduk/o Fre(dz|u—y) ((Op, f)(u—r, 2)) ((Or,9)(u—k, 2))

for all f, g in Dy.
(3) The operator Uy satisfies a Poincaré inequality: There exists C > 0 such
that

l9l} < C(-Ung.g) + ([ gturdu)

I1d
for every g in Dy.

Proof of Lemma 2.1:

Proof of (a): If we take functions with support does not intersect A, it is easy
to show the density in L? of D5. We not only show this fact, but also point the
existence of functions in the domain which are smooth in IT*\A and discontinuos
over A. Let As = {x € 1% dist(x,A) < §}. Choose ® a partition unity of
As such that supp(®) C Ags. Fix (ai,...,aqs) € R? and define g : [0,1)? —
R, g(x1,...,24) = a121 + -+ + aqzxq a linear function. Therefore, the function
g(z1,...,zq) (Z@e@ qzﬁi) is C'*° and its gradient along the surface A is constant

and equal to (a1,...,aq). Then its easy to verify that, if a1 = -+ = aq = q,



HYDRODYNAMIC LIMIT FOR EXCLUSION PROCESSES WITH CONDUCTANCES 7

g(w1,...,mq) - ( Z ¢i) +1pg,

P €P
belongs to Dy . If we sum a smooth function which support does not intersect Csx,
we obtain another function in the domain, and consequently the density, because
26 can be chosen arbitraly small.

Proof of (b): By definition (Upgy, g2) is equal to

Z/ du(0y,, 0F, g1)(u) g2(u Z/Hd 1du k/ d2(0u,, 0, 91)(U—k, 2) g2 (U—g, 2)

that, by the one-dimensional result in ... of [3], can be written as

d 1
’;/Hdlduk/o Fre(dzlu_k) (Or, g1)(u_k, 2) (OF,g2) (u_k, 2) -

In particular,

d 1
= U_ Z|U_— U_f, 2 2 .
Usgi) =3 [ v [ Fildsues) (05.9) (-1 20

Proof of (c): Verificar se a cont. a esquerda em alguns pontos causa problema.

Write
/Hdg(u)zdu— (/H Q(U)du>2 A o (v))dv}zdu

< /H d /H (gw) — g(o)Pdudu. (25)

=wand @* = (@".',vg), k =1,...,d, then

d
| Z[g(ﬂ’“) — g(a* )]

Il

—
—

—

o

<

|

©

If we define by induction @°

lg(u) — g(v)]

< Zﬂ o (it o2 il ().

Thus, By Cauchy-Schwarz inequality |g(u) — g(v)|? is bounded above by

2% sup{Fy((0,1]u_z) : weIl?, 1 <k <d} Z/ 29 gk, ))2Fk(dz|(ﬂ’ik)

0,1] 3Fk

By (2.5) and the previous inequality we have the Poincaré inequality. O

Denote by {, >11\2 the inner product on D, defined by
<fvg>11\72 = <fvg> + < Z/{Afa

= (fg) + ;/ 1/01 (0w, 1) () (O, 9) () W (duiy) du_

Let H,*(T1%) be the set of all functions g in L?(IT%) for which there exists a sequence
{gn :m > 1} in Dy such that g, converges to g in L?(IT1%) and g,, is Cauchy for the
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inner product (-,-)3. Such sequence {g,} is called admissible for g. For f, g in
H?(T1%), define

(F0k® = T (fasga)k° (2.6)

where {f.}, {gn} are admissible sequences for f, g, respectively. By [9, Proposition
5.3.3], this limit exists and does not depend on the admissible sequence chosen.
Moreover, H,*(I1%) endowed with the scalar product (-,-)y* just defined is a real
Hilbert space.

Denote by L?\(Hd) the Hilbert space generated by the continuous functions en-

dowed with the inner product (-, -)5 defined by

d
= W.(du;) du_; .
(fr90a jz_;»/l—ldl 0.1) g J( uj) U—j

The norm associated to the scalar product (-, )5 is denoted by || - ||a-

Lemma 2.2. A function g in L*(I1¢) belongs to H}\’Q(Hd) if and only if there exist
G1, ... ,Gq in L3 (1) and functions a; € L*(I1%~Y) such that

Gj(v,u_j) dWj(v) = 0 (2.7)
(0,1]
and
o) = aslu) + [ Gy uy) aW, (0) 8)
(0,u;)UA; (u)

Lebesgue almost surely. We denote the generalized partial W;-derivative G of g by
Ow,g. For f, g in Hi’2(Hd),

d
Gk = o+ 3 [ O )0 G Wity 29

Proof. Fix g in H,{’2(Hd). By definition, there exists a sequence {g,, : » > 1} in Dy
which converges to ¢ in L?(II¢) and which is Cauchy in H}\’Q(Hd). In particular,
for every j = 1,...,d, Ow,gn is Cauchy in L% (11%) and therefore converges to some
function G; in L3 (I1%). By (2.4),

/ (0w, ) (v,u_3) dW; () = 0
(0,1]

for all n > 1 so that

Gj(v,u_;)dW;(v) = 0,
(0,1]

which is (2.7).
In order to prove (2.8), denote by aj the continuous functions that satisfy

gn(u) = aj(u—j) + fj'(u)

for every u € 1%, j = 1,...,d and n > 1, where to simplify notation we are writting

) = /( oy )0 A 0).
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Now, apply the Cauchy-Schwarz inequality to obtain that

< [10w; 9n — Gilla -
2

fi = / Gj(v,u_j)dW;(v)
(0,u; )UA; (u)

Therefore
(fj (u))n>1 converges in L*(T1%) to / Gj(v,u_j)dW;(v).
(0,u;)UA; (u)
for every j = 1,..d. Therefore, (a?(-))n>1 also converges in L?(II%') and we

denote its limit by a;(-). Then (2.8) follows.
We have that (2.9) is a consequence of the established convergence results. O

Lemma 2.3. The embedding H}\’z(Hd) C L2(11%) is compact.

Proof. Consider a sequence {g, : n > 1} bounded in H}\’Q(Hd). We need to prove
the existence of a subsequence {g,, : k > 1} which converges in L?(II¢).

By the previous lemma, g, satisfies (2.7) and (2.8) for some af € L*(II%°!)
and with G; replaced by dw, g, which belongs to L3 (II*). Moreover, |[0w,gn|a <
|||y, The sequences {Ow,gn}tn>1, j = 1,....d, are therefore bounded in L3 (II%).
Also, by Schwarz inequality, the sequence f(o,uj)u A (u) (Ow, gn) (v, u_yz) dW;(v) is
bounded in L2(T1%). Therefore, it is also clear that (@})n>1, j = 1,...,d, are also
bounded sequences in L?(I1971).

Since {9w, gn } is a bounded sequence in L3 (11?) which is separable, there exists a
subsequence {ny} such that dy, g, converges weakly in L3 (II%) to a limit denoted
by G;. As in the proof of Lemma 2.2, it follows that

/ (O 0, 0 0-) AW 0)
(0,u5 )UA; (u)

converges in L?(I1%) to

/ G, u_y) AW, (v).
(0,u;)UA; (u)

To make the rest of the proof simpler we suppose that the convergence just stated
holds for ny = n.

Therefore, To complete the proof we have to show that there exists a subsequence
{nx} such that (a}*) converges in L2(I1%71) for every j = 1, ...,d. To show this, fix
i # jin {1,...,d} and note that

n) = al(ui) — auj)
- / (O gn) (v, u—s) W) — / (Ow, ) (v, u_y) dW; ().
(0,u:)UA; (u) (0,u;)UA; (u)

Thus f'; converges in L?(I1%) to some function fi,j- In particular, we can fix a
subsequence {ny} such that the convergence of fzn; to f;; holds Lebesgue almost
surely. By Fubini’s theorem, we have that the convergence holds u_; and u_; almost
surely for every pair 4, j € {1, ...,d}. This implies that there exist functions a;(u_;),
Jj=1,...,d, such that f; ;(u) = a;(u—;) — a;(u—;) for every pair ¢,j € {1,...,d} and

a* — a; almost surely for every j =1, ...,d.

J
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It remains to show that we can take a subsequence {ny} of {ny} such that
a?’“' — a; in L2(TI11). From here, we denote by u_; _; € 1772 the vector obtained
from u € II? by removing the i-th and j-th coordinate. Since

[ e =) = @ () = )P dng = 0 i (2:10)

and a?(u_;) — a;(u_;) goes to zero almost surely, we have that there exists a sub-
sequence {n}} of {ny} such that, Vi # j, u_; _; almost surely

/0 [} (u_s) — ai(u_;)|*du; — 0. (2.11)

We proceed with an analogous argument to show that there exists a subsequence
{n2} of {n}} such that, Vi # j # [, almost surely with respect to (uy, k # i,j,1)

//m [a?i (u_;) — a;(u_;)*dujdu; — 0. (2.12)

Indeed, from (2.10), there exists a subsequence {n}} of {n}} such that, Vi # j # [,
almost surely with respect to (uy, k #i,7,1)

[ i ) = o) = @) - 0y )P — 0. 213)

The last integral can be written as the sum of three terms: the first term is the
integral in 2.11 replacing ¢ with 7 and j with [, and thus goes to zero almost surely;
the second term is

2 [ [ la ) = astu- e} () = as s — 0.

whose absolute value is bounded above by

2 ( / ) - cw(u_j)]?dul)é ( J | et - ai<u_i>12dujdul> .

which, again by 2.11, goes to zero almost surely; and the third term is equal to 2.12
which is the term we are interested, and can be written as the sum of 2.13 with the
other terms in its expansion. Therefore 2.12 holds true.

If we keep recursively increasing the number of variables in which we are in-

tegrating [af (u_;) — a;(u_;)] we arrive at a subsequence {n{ '} such that a?’“i
converges to a; in L2(T19~1) for every i = 1, ..., d. O

Let Dy be the set of functions g in H}\’Q (I14) for which there exist h; in L2(I1¢),
7 =1,...,d, such that

[ ] ownw @wawWsde)d; = ~(1h)  (219)
me-1 J(0,1]
for all f in H}\’Q(Hd). Since, for g € Dy,

/m_1 /(0 l](aw_jf)(u) (Ow, 9)(u) Wj(duj)du—; = —(f, Ou;0w,9)

we have that Dy C Dy C H}\’2(Hd). Moreover, for each g € Dy, the functions h;
are uniquely determined because Hy?(I1%) D Dy is dense in L*(I1%). We are going
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to show in the next result that D, is the proper domain for I/ in the sense of the
definition previous to Theorem 1.1.

Lemma 2.4. The domain Dy consists of all functions g in L?(I1%) such that
y
o) = as(u)+ [ Wit ([ w4 nap) . @29
(0,u5)UA; (u) 0
for every u € 1%, where h; € L?*(I1¢), a; € L2*(I19"Y) and b; € L2191, j
1,...,d, and they satisfy

1
/ hj(w,u_j)dw =0, for almost all u_; € m-! andj=1,...d, (2.16)
0

y
W, (dy) (/ hj(w,u_g)dw + bj(u_k)> =0, for almost all u_; € TI"1.
(0,1] 0
(2.17)

Moreover, in this case,

- / (O, £) () (D, ) () W (duy)du_y = (f. hy) (2.18)
mmd-1 J(0,1]

for all f in H}\’Q(Hd) and 7 =1,...,d.

Proof. We first show that any function g in L?(II?) with the properties listed in
the statement of the lemma belongs to Dj. So take g satisfying (2.15). By the

one-dimensional arguments presented in [3], we have, for all f in H,*(I1%) and
j=1,...,d, that

B /(O 1 (6WJ f)(v’ u—j) ((9ng)(’(), u—j) W; (d’U) = f(U, U_j) hj (’U’ u_j) dv

(0,1]

holds for almost all u € I1%. Therefore, we have (2.18) and, by definition, g € Djy.
Conversely, assume that g belongs to D and take h; € L?(11%), j = 1,..,d, such
that

- [ ] N @) Wiy = () 29
=1 J(0,1]

for all f in H}\Q I1%). By Lemma 2.2, we have that
g(u) = a;(u—;) + / (Ow, 9) (v, u—;) dW;(v),
(0,u;5)UA; (u)

for every j = 1,..,d. Now we fix j. We have to show that for some b; € L2(I1¢"1),
(2.16) and (2.17) hold and

O, = [ byt b5y (2:20)

for almost every u € II%. We have that (2.17) follows from the previous identity
and (2.7) in Lemma 2.2.

To prove (2.16), let {g, : n > 1} be an admissible sequence in Dy for g. From
(b) in Lemma 2.1, we have that for each f € Dy (IT9),

_ /(;) . (8WJ f)(w, U-j) (8ngn)(w, u—j) WJ(dUJ) _

_ /(O | ) 00,0 ) (2.21)
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for almost all u € I1* and dw, g, can be written as

/0 (Ou; Ow, gn) (W, u_j)dw + by (u_;)

Since Dy is dense in Hy?(I1%), identity (2.21) holds for every f e Hy*(I1%). Fol-
lowing the proof of Lemma 2.2, The first integral in (2.21) converges in L?(I1¢~1)
to

_ /(0 . (Ow, f)(w,u_j;) (0w, g)(u) W;(duy) .

Therefore

converges to zero as n goes to co. If f =1, since

/ (Ou,; 0w, gn ) (w,u_;)dw = 0,
(0,1]

( ]f(w,u_j) (Ou,; Ow, gn) (W, u_j)dw — ( ]f(w,u_j)hj(w,u_j)dw du_j,
0,1 0,1

u_; almost surely, then passing to a subsequence if necessary gives (2.16). If f(u) =
Tio,y)ua; (yyufj)(u), then an analogous argument as above allow us to show that there
exists a subsequence {n} such that

y y
lim (Ou; Ow; gn) (W, u_j)dw = / hj(w,u_j)dw =0,
0 0

u_; almost surely. Therefore for almost all u_; € II91, b} is Cauchy, and we
denote its limit by b;. Note that b; € L?(I1%"!) with

10511 < 0w, gnlia + [lAsl-
This gives (2.20). O

Recall that we denote by I the identity in L2(TI¢). By Lemma 2.1, the symmetric
operator (I —Ly) : Dy — L2(I1%), is strongly monotone:
(I-La)g,9) = (9:9)
for all g in Dy. Denote by 7; : Dy — L2(I1%) its Friedrichs extension, defined
as Tig = g — Z;l:l hj, where h; are the functions in L?(II¢) given by (2.14). By
Theorem 5.5.a in [9], 7; is self-adjoint, bijective and

(Tig.9) > (9.9) (2.22)
for all g in Dy . Note that the Friedrichs extension of the strongly monotone operator
(AL=Lp), A>0,is T = (A — DI+ Ty : Dy — L2(T19).

Define Uy : Dy — L2(I1%) by Uy = 1—T;. In view of (2.14), Upng = q if and only
if g =37, h; with

- / / (0w, £)(w) (D, 9) (u) Wy (dug)du_; = (f,h;)
md—1 .J(0,1]

for all f in H}\’Q(Hd) and 7 = 1,...,d. In particular by Lemma ?? (b) Upg = Lag
for all g in Dp. Moreover, if a function g in D, is represented as in Lemma 2.4,
Uprg = Z;l=1 h;. This identity together with the identification of the space Dy
provides the alternative definition of the operator Uy presented just before the
statement of Theorem 1.1.
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Proof of Theorem 1.1. It follows from Lemma 2.1 (a) that the domain D, is dense
in L?(11%) because Dy C Dy. This proves (a).

By definition, I-Uy = 77 : Dy — L?(I1?%), which have been shown to be bijective.
This proves (b).

The self-adjointness of Uy : Dy — L%(I1¢) follows from the one of 7; and the
definition of Uy as I — 7;. Moreover, from (2.22) we obtain that (=7 f, f) > 0 for
all f in Dy.

To prove (d), fix a function g in Dp, A > 0 and let f = (Al — Uy )g. Taking the
scalar product with respect to g on both sides of this equation, we obtain that

Mg, g) + (~Ung,g) = (g, f) < (g, )" *(f, /)/*.

Since g belongs to Dy, by (¢), the second term on the left hand side is positive.
Thus, [Ag] < £l = IO — Up)g]l

We have already seen that the operator (I-Uy) : Dy — L?(I1%) is symmetric and
strongly monotone. By Lemma 2.3, the embedding H3 (I1¢) C L?(T1%) is compact.
Therefore, by [9, Theorem 5.5.c], the Friedrichs extension of (I — Uy), denoted
by 71 : Dy — L2*(I19), satisfies claims (e) and (f) with 1 < Ay < Xp < -+,
An T oo. In particular, the operator —Uy = 7; — I has the same property with
0< A <Ay <--+, Ap T oo. Since 0 is an eigenvalue of —U, associated at least to
the constants, (e) and (f) are in force. O

It follows also from [9, Theorem 5.5.c] that f,, belongs to Ha(II¢) for all n.

3. HYDRODYNAMIC LIMIT

Proposition 3.1. The sequence of processes {ml¥ ;0 < t < T} is tight in the
uniform topology, where w is the empirical measure obtained by the exclusion

processes with conductances.

Proof: It is enough to prove that {(mN, H); 0 < s < t} is tight for a dense family
of smooth functions H : I — R. By Dynkyn’s formula (or apendix in [5]),

t
MY = (x¥ H) — (x H) —/ L (x, H)ds
0

is a martingale. We will show that the quadratic variation of this martingale goes
to zero uniformly when N increases, which gives that M} converges in L? to zero.
By Doob’s Inequality, M} is tight.

Put F = (7N, H). The quadratic variation of M} is given by fot(]LNF2 -

2FLnF)ds (see [5] or Revuz-Yor). The term inside the last integral is
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LyF2—2FLyF = ZZW N ere [F2(noter)y — F2(n,)]
—2F (n, ZZN% oo, (™) = F(n,)]
B ZZNZ w,z+ei ﬁ?’ﬂei) - F(ns)]z

xr +e;

= N2d ZZN2 T,x+e; 775 5L’+€l) nﬁ(x))2 H(T)iH(

- ﬁ > N et e - o) (O -

i, eNA=0

i, eNA#D

— ﬁ > (a(z+ei) = ns(x))? (H( NN—l

i, 2NA=0

Tte;\ x
b 3 (e e) - (TS

i,xNAZD

IN

1 1
Clym 2 Yty 2 !

i, 2NA=0 i, xNAF#D

for some constant C' > 0 depending on H € C'. The first sum is O(N?), which
divided by N2¢ goes to zero. Because A is smooth, the number of terms in the
second sum is O(N?~1), and divided by N2¢~! also goes to zero.

Thus, by Doob inequality, for every § > 0,

lim P, { sup |MtN| > 5] =0.
N—oo 0<t<T

In particular, the sequence of martingales {M}Y : N > 1} is tight for the uniform
topology. One must still examine the integral part in the martingale to conclude

the tightness of the process (7Y, H). Using changing of variables and fé\{y = z]/\,[zv

ya L N o) - () - H
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/TNQLNFCZS = ]\]]:d/N2Z§x£+€z [773($+61)H(;)+773($)H(1:]+\[6i)
—mxx+aﬁﬂx}“y+swﬂu;ﬂds

_Z avm-l—el / (LII)
Ly $/szwaﬂmhs

x; dist(z,A)> 3

N t Tt+e;\ x
Sy S [ [ MR

x; dist(z,A)< 3 i Nz

Because |§x ste;| < 1, the absolute values of both sums above are bounded by
C(H)(t—s) and thus we have the tightness of the integral term, and consequently
the tightness of (7{¥, H).

3.1. The hydrodynamic equation. Consider a bounded density profile  : II¢ —
R. A bounded function p : [0,7] x II% — R is said to be a weak solution of the
parabolic differential equation

Oip = Unp
{szw (3-1)

if for all functions H in Dy, all t > 0,

t
ett) = ) = [ (o ttnimyds
where p; is the notation for p(t,-). We prove in Subsection 5.3 uniqueness of weak
solutions. Existence follows from the tightness in Section (5.2).
4. T'-CONVERGENCE

In this section, we will present all needed tools from I'-convergence to attain the
hydrodynamical limit.

Definition 4.1. Given G € L*(I1¢), define the projection Sy : L*(I1%) — L%(114))

by
. )d
SnG(x) AN|/ Gly)dy,
v . [ {2 €T% |2 = Ylma <ININRy, if x€ Ry,
where Ay = { {2€T% |2~ Ylmaw < 1/N} N Ry, if z € Ry.

For two functions vy, vy : 1% — R, we define (v1, va) N 1= w7 ernfv vy (z)ve ().
Put En(G) = —(SNG,LySnG)n for G € L2(I1%) and £(G) = — [;a GUAG da
for G € Dy.
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Proposition 4.2. For any G € L*(I1), Sy is close to isometry, or else,
Jim (SnG, SxC)w = G5,

Proof. The result is straightfoward for continuous functions. Let Fx denotes the
o-algebra generated by the partition of II? in the sets AY. An easy calculation
shows that

(SnG, SnG)n — G5 = |G~ E[GIgn]l3 . (4.1)
where the expectation is to Lebesgue measure. For a given function G € L?(I1%),
let be F : TI¢ — R a continuous function such that ||[F' — G2 < €. Then,

IF=E[F[Fnllle < [IF=Gllz + |G - E[GIFN]2 + [[E[G — FIFn][l2

and applying Jensen inequality to the last term we get the desired convergence. [

Proposition 4.3. Ex is ['-convergent to Ep, i.e, for every G € Dy
(1) £(G) < liminfy_o En(GN), for any sequence (Gn)n>1 converging to G
in L2(T1).
(2) £(G) > limsupy_,o. EN(FN), for some sequence (Fy)n>1 converging to
G in L*(I1%).

5. SCALING LiMIT

In this section, following the ideas of [6], we will combine all previous results
about I'-convergence to obtain the hydrodynamical limit of exclusion process. The
central structure of the proof is the usual one for convergence of stochastic processes.
First we prove tightness of the sequence of processes 77 and then we show that all
limit points are concentrated on weak solution of the hydrodynamic equation (3.1).
Uniqueness of such solutions, proved in subsection (5.3), concludes the proof.

To avoid complications about to deal with 7% directly, the strategy above will
be done for another process 7V, which is called in the literature by the corrected
empirical measure, and is close to 7!V, carrying out the results to this last one.

5.1. The corrected empirical measure. Let’s proceed to rigoursly define the
so-called empirical measure. We begin by citing a general fact about minimizers of
quadratic forms in a hilbert space X:

Proposition 5.1. Let F : X — [0,400] be a quadratic form, let A be the corre-

sponding operator on V.= D(F'), and let P : X — V be the orthogonal projection
onto V. For every x, f € X, the following conditions are equivalent:

(a) z € D(A) and Ax = Pf;
(¢) z is a miminum point in X of the functional G(y) = F(y) — 2(f,y — z).
Proof. E.g. [10], page 141, proposition 12.12. a

Coming back to our situation, define the functionals
ERNEF) = ((A—Ln)SNF,SvF)n — 2(SnF, SnG) N
E9(F) = ((A=La)F.F)—2(F,G)
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Recall the definitions of £y and £. By En L¢ proved in section (4), proposition
(4.2) and proposition (convergéncia gamma + uniforme = gamma), we achieve
Eﬁ L &G, This convergence, plus the coerciviness also proved in section (4),
implies existence of a sequence of minimizers Fy of £§ converging in L? to the
minimizer F of £¢. By the proposition (5.1) above about minimizers, we have the
two equations (A — Ly)SyFny = SyG and (A — LA)F = G. Using this equations
and again (4.2), it implicates Ex(F) = (SNG,SnF) — (G, F) = E(F). Now we
are ready to define the corrected empirical measure fr,{v . Let F € Dp and define
G by G = (A — L5)F. Define Fy as the minimizer of £§ (notice that in this way
Sy Fy is unique). Then we define

wy Nd Z 0l (2)Sn Fy ().

zeTN

Remark: In spite of the name, 77V is not clear if well defined as a measure in I1%.

5.2. Tightness and proof of hydrodynamic limit. Let F' € Dy and Fy the

2
sequence of minimizers defined as before. As already seen, Fiy =R F', which implies,
by (4.2),

. 1
lim ~a Z |SyFn(z) — Sy F(z)] = 0.

N —oo
zeTN
And from this, we get

Py ( sup [N (F) — #N(F >|>e) —0.
0<t<T

Therefore, {#]N(F),0 < t < T}y>o is tight in D([0,T],R) if, and only if,
{7N(F),0 <t < T}y>o0 is. So, if we show the tightness of {7 (F),0 < t <
T} N>0, the density of Dy will guarantee the tightness of {r¥,0 < ¢t < T}y>0 in
D([0,T], ML). For references, see [5].

By Dynkyn’s formula and a simple calculation,

MYE =50 -7 E) - [ S @Sk 6)

zeTN

is a martingale. His quadratic variation is given by

(MMN(F))e = | % > 0 (y) =0l (2))%€), (SnFn(y) — S Fn(y))*ds.

In particular, we have (MY (F)); < s5&En(Fn). Because En(Fy) — E(F), the
martingale converges to zero in L?, and, by Doob’s inequality, it is tight (in the
uniform topology, thus in the Skorohod topology). On the other hand, by using
the two equations (A — Ly )SnyFn = SnG and (A — LA)F = G, we can rewrite the
integral term in (5.1) as

/ i Z e ( [SN LAF)(x )+ASN(F—FN)(x)]ds

zeTN

_ /Ot 7 (SN(EAF) + A Sy (F = Fy) ) ds.
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It is easy to see that |7) (H)| < [i;, |H (u)|du, which together with the convergence

of minimizers F L F (notice that the norm of Sy as a projection is uniformly
limited), yields the bounded variation of the integral term, uniformly in N. By
[5], tightness follows at once, and we get as well the convergence result: Ve > 0,
VF € Dy,

t
Nlim Puy [ sup ‘T(gV(F) — ) (F) — / W?(UAF)dS‘ > 5} = 0.
—0o0 0<t<T 0
Let m,0 < t < T, be any limit point of {7}¥,0 < ¢ < T}n>0. Then, by the
convergence above, 7,0 < t < T satisfies the identity

¢
Wt(F)—m)(F)—/ ms(UpF)ds =0, 0<t<T,
0

for any function F' € Dy. The uniqueness of bounded solutions of such equations
proved in subsection (5.3) finishes the hydrodynamic limit.

5.3. Uniqueness of weak solutions. In this subsection, we are to prove the
uniqueness of weak solutions of (3.1), which strategy follows [4]. It suffices to check
that the only solution of (3.1) with v =0 is p = 0, because of linearity of £,. Let
p:[0,T] x T¢ — R be a weak solution of the parabolic differential equation

{ Op = Uprp
p(0,) = 0.
Then,
t
(oo H) = / (pusUnH) ds | (5.2)
0

for all functions H in Dp and all ¢ > 0. From (Teorema sobre autovalores de Uy)
the operator —U has countable eigenvalues {\,, : n > 0} and eigenvectors {f,}.
All eigenvalues have finite multiplicity, 0 = Ag < Ay < -+, and lim, . A, = 0.
The eigenvectors {f,,} form a complete orthonormal system in the L?(T). Define

R(t) = T;N 712(1 :_ )\n) <pta fn>27

for all t > 0 and R(0) = 0. R(t) is well defined because p; belongs to L?(T) and
{fn} is a complete orthonormal system in the L?(T). Since p satisfy (5.2), we have

that %(pt,fn>2 = =2\ {pt, fu)?. Then

d 2\,
(%R)(t) =- % m(ﬂt, fa)?

because »_, -y #%(pt,fny converges uniformly to ZneN#ﬁn)@t’fﬁQ’
when N increases to infinity. Thus R(t) > 0 and (4R)(t) < 0, for all t > 0

and R(0) = 0. From this, we obtain R(t) = 0 for all ¢ > 0. Then {(p;, pt) = 0, for
all ¢ > 0, which implies p = 0.
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