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Abstract

The stochastic volatility in mean (SVM) model using the class of symmetric scale mixtures of

normal (SMN) distributions is introduced in this article. The SMN family distributions is an attrac-

tive class of symmetric distributions that includes the normal, Student-t, slash and contaminated

normal distributions as special cases, providing a robust alternative to estimation in SVM models

in the absence of normality. Using a Bayesian paradigm, an efficient method based on Markov

chain Monte Carlo (MCMC) is developed for parameter estimation. Additionally, we develop a

second-order approximation method to the usual Auxiliary Particle Filter (APF) in order to es-

timate efficiently the log-likelihood function to model comparison, as is the case of the Bayesian

Predictive Information Criteria (BPIC). The methods developed are applied to analyze daily stock

returns data on São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). Bayesian

model selection criteria as well as out-of- sample forecasting results reveal that the SVM model

with slash distribution provides significant improvement in model fit as well as prediction to the

IBOVESPA data over the usual normal model.

Keywords: Markov chain Monte Carlo, non-Gaussian and nonlinear state space models, scale

mixture of normal distributions, stochastic volatility in mean.

1 Introduction

Over the last years the stochastic volatility (SV) models has been considered as an useful tool for mod-

eling time-varying variances, mainly in financial applications where policies makers or stockholders are

constantly facing decision problems usually dependent on measures of volatility and risk. SV models

were introduced as an alternative approach to the family of GARCH (Bollerslev, 1986) models for

describing time-varying volatilities. An attractive feature of the SV model is its close relationship to
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financial economic theories (Melino and Turnbull, 1990) and its ability to capture the main empirical

properties often observed in daily series of financial returns in a more appropriate way (Carnero et al.,

2004).

The estimation of the canonical SV model was at one time considered difficult since the likelihood

function of these models is not easily calculable. This problem has fully resolved by the creative use

of MCMC methods (see Jacquier et al., 1994; Shephard and Pitt, 1997; Kim et al., 1998; Mahieu and

Schotman, 1998; Watanabe and Omori, 2004, among others). However, in all these aforementioned

works the normal distribution (basic SV model) has been assumed as the basis for parameter inference.

Although the basic SV model offers great flexibility in modeling data with time-varying variances, it

may suffer from a lack of robustness in the presence of extreme outlying observations. Thus, it is of

practical interest to explore frameworks with considerable flexibility in the distributional assumptions

of the model in order to get more reliable inferences. There has been considerable work in SV models

in this direction. See, for instance, Mandelbrot (1963); Fama (1965); Liesenfeld and Jung (2000); Chib

et al. (2002); Jacquier et al. (2004); Chen et al. (2008). More recently Abanto-Valle et al. (2009b)

have extended the basic SV model by assuming the flexible class of scale mixtures of normal (SMN)

distributions (Andrews and Mallows, 1974; Lange and Sinsheimer, 1993; Fernández and Steel, 2000;

Chow and Chan, 2008), where the popular SV model with Student-t errors is a particular member

of this class. However, the volatility of daily stock index returns has been estimated with SV models

but the results have relied on a extensive pre-modeling of these series in order to avoid the problem

of simultaneous estimation of the mean and variance. The SV in mean (SVM) model introduced by

Koopman and Uspensky (2002) deal with this serious problem by incorporates the unobserved volatil-

ity as explanatory variable in the mean equation of the returns and to propose a simulated maximum

likelihood algorithm to parameters estimation. Despite this model having sound experimental results,

it is also assumed that the innovations are normally distributed and hence parameters estimation

could be unduly affected by observations that are atypical. This motivate us to develop a wider class

of SVM models to accommodate long tails behavior.

Following Abanto-Valle et al. (2009b), in this article we propose to robustificate the specification

of the innovation returns in SVM models by introducing SMN distributions. We refer to this gen-

eralization as SVM-SMN models. Interestingly, this rich class contains as proper elements the SVM

with normal (SVM-N), Student-t (SVM-t), slash (SVM-S) and the contaminated normal (SVM-CN)

distributions. Indeed, the flexibility of the SVM with SMN distributions could fit time varying features
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in the mean of the returns and heavy-tails simultaneously. The estimation of such intricate models

is not straightforward since volatility now appears in both, the mean and the variance equation and

hence intensive computational methods are call for. Inference in this new class of SVM–SMN models

is performed under a Bayesian paradigm via MCMC methods, which permits to obtain the posterior

distribution of parameters by simulation, starting from reasonable prior assumptions on the parame-

ters. We simulate the log-volatilities and the shape parameters by using the block sampler algorithm

(Shephard and Pitt, 1997; Watanabe and Omori, 2004; Abanto-Valle et al., 2009a) and the Metropolis-

Hastings sampling, respectively.At the same time, is known that the stock returns may exhibit fairly

frequent and extreme outliers, thus we develop an Auxiliary Particle Filter (APF) algorithm based

on a second-order approximation to the density of returns, which appears to perform well in this

circumstances. This algorithm is also useful to obtain the filtered distribution and the log-likelihood

function used in model comparison.

The rest of the paper is structured as follows. Section 2 gives a brief description of the the SMN

distributions and the risk and return dynamics. Section 3 outlines the general class of the SVM–SMN

models as well as the Bayesian estimation procedure using MCMC methods. Additionally, we discuss

some technical details about Bayesian model selection and out-of-sample forecasting of aggregated

squared returns. Section 4 is devoted to application and model comparison among particular mem-

bers of the SVM–SMN models using the IBOVESPA data set. Some concluding remarks as well as

future developments are deferred to Section 5.

2 Preliminaries

In this section we present the SMN distributions and a brief discussion about the return and volatility

dynamic.

2.1 SMN distributions

Andrews and Mallows (1974) use the Laplace transform technique to prove that a continuous random

variable Y has a scale mixtures of normal (SMN) distribution if it can be expressed as follows

Y = µ + κ1/2(λ)Z, (1)

where µ is a location parameter, Z is a normal random variable with zero mean and variance σ2,

κ(λ) is a positive weight function, λ is a mixing positive random variable with density p(λ | ν), ν
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is a scalar or parameter vector indexing the distribution of λ. As in Lange and Sinsheimer (1993)

and Chow and Chan (2008), we restrict our attention to the case in that κ(λ) = 1/λ. Thus, given λ,

Y | λ ∼ N (µ, λ−1σ2) and the pdf of Y is given by

f(y | µ, σ2, ν) =
∫ ∞

0
N (y | µ, λ−1σ2)p(λ | ν)dλ. (2)

From a suitable choice of the mixing density p(. | ν), a rich class of continuous symmetric distributions

can be described by the density given in (2) that can readily accommodate thicker-tails than the normal

process. Note that when λ = 1 (a degenerate random variable), we retrieve the normal distribution.

Apart from the normal model, we explore three different types of heavy-tailed densities based on the

choice of the mixing density p(. | ν). These are as follows:

• The Student-t distribution, Y ∼ T (µ, σ2, ν)

The use of the Student-t distribution as an alternative robust model to the normal distribution

has frequently been suggested in the literature (Little, 1988; Lange et al., 1989). For the Student-

t distribution with location µ, scale σ and degrees of freedom ν, the pdf can be expressed in the

following SMN form:

f(y | µ, σ, ν) =
∫ ∞

0
N

(
y | µ,

σ2

λ

)
G(λ | ν

2
,
ν

2
)dλ. (3)

where G(. | a, b) is the Gamma density function. That is, Y ∼ Tp(µ, σ2, ν) is equivalent to the

following hierarchical form:

Y | µ, σ2, ν, λ ∼ N
(

µ,
σ2

λ

)
, λ | ν ∼ G(ν/2, ν/2). (4)

• The Slash distribution, Y ∼ S(µ, σ2, ν), ν > 0.

This distribution presents heavier tails than those of the normal distribution and it includes the

normal case when ν ↑ ∞. Its pdf is given by

f(y | µ, σ, ν) = ν

∫ 1

0
λν−1N

(
y | µ,

σ2

λ

)
dλ. (5)

Thus, the slash distribution is equivalent to the following hierarchical form:

Y | µ, σ2, ν, λ ∼ N
(

µ,
σ2

λ

)
, λ | ν ∼ Be(ν, 1), (6)

where Be(., .) denotes the beta distribution. The slash distribution has been mainly used in

simulation studies because it represents some extreme situations depending on the value of ν,

see for example Andrews et al. (1972), Gross (1973), Morgenthaler and Tukey (1991) and Wang

and Genton (2006).
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• The contaminated normal distribution, Y ∼ CN (µ, σ2, ν), ν ′ = (δ, γ).

Here, λ is a discrete random variable taking one of two states. The probability function of λ,

given the parameter vector ν ′ = (δ, γ), is denoted by

p(λ | ν) = δI(λ=γ) + (1− δ)I(λ=1), 0 ≤ δ < 1, 0 < γ < 1, (7)

It follows then that

f(y) = δN (y|µ, γ−1σ2) + (1− δ)N (y|µ, σ2). (8)

Parameter δ can be interpreted as the proportion of outliers while γ may be interpreted as a

scale factor. The contaminated normal distribution reduces to the normal one when γ = 1.

2.2 Returns and volatility dynamics

The relationships between expected returns and expected volatility have been extensively examined

over the past years. Theory generally predicts a positive relation between expected stock returns and

volatility if investors are risk averse. That is equity premium provides more compensation for risk

when volatility is relatively high. In other words, investors require a larger expected return from a

security that is riskier. Yet, empirical studies that attempt to test this important relation yield mixed

results. French et al. (1987) found a positive and significant relationship and studies such as Baillie and

DeGennaro (1990) and Theodossiou and Lee (1983) reported a positive but insignificant relationship

between stock market volatility and stock returns. Consistent with the asymmetric volatility argument

Nelson (1991), Glosten et al. (1993) and more recently Bekaert and Wu (2000), Wu (2001) and Brandt

and Kang (2004) report negative and often significant relationship between the volatility and return.

Overall, there appears to be stronger evidence of a negative relationship between unexpected returns

and innovations to the volatility process which French et al. (1987) interpret as indirect evidence of a

positive correlation between the expected risk premium and ex ante volatility. This theory, known as

the feedback volatility states that stock price reactions to unfavorable events tend to be larger than

reactions to favorable ones. More precisely, bad news decreases stock price and increases volatility,

therefore determining a further decrease of the price. On the other hand, good news increases stock

price and increases volatility, thus mitigating the initial effect on the price. An alternative explanation

for asymmetric volatility where causality runs in the opposite direction is the leverage effect put forward

by Black (1976) who asserts that a negative (positive) return shock lead to an increase (decrease) in

the firm’s financial leverage ratio which has an upward (downward) effect on the volatility of the

5



stock returns. However, it has been argued by Black (1976), Christie (1982), French et al. (1987)

and Schwert (1989) that leverage alone cannot account for the magnitude of the negative relationship.

For example, Campbell and Hentschel (1992) find evidence of both volatility feedback and leverage

effects, whereas Bekaert and Wu (2000) present results, which argued that the volatility feedback effect

dominates the leverage effect empirically. From an empirical perspective the fundamental difference

between the leverage and volatility feedback explanations lies in the causality: the leverage effect

explains why a negative return leads to higher subsequent volatility, whereas the volatility feedback

effect justifies how an increase in volatility may result in negative returns.

3 The heavy-tailed stochastic volatility in mean model

The SVM model (Koopman and Uspensky, 2002) formulated at the discrete-time is given by

yt = β0 + β1yt−1 + β2eht + e
ht
2 εt, (9a)

ht = α + φht−1 + σηηt, (9b)

where yt and ht are respectively the compounded return and the log-volatility at time t. The innova-

tions εt and ηt are assumed to be mutually independent and normally distributed with mean zero and

unit variance. As documented by Koopman and Uspensky (2002), the aim of the SVM model is to

simultaneously estimate the ex ante relation between returns and volatility and the volatility feedback

effect. We denote this basic model as the SVM-N.

In this article, we relax the normality assumption in equation (9a) by allowing the innovation εt

to have a fat-tailed distribution. This extension is important to capture the leptokurtosis observed in

many market returns. Here, we assume that εt follows a SMN distribution as follows:

εt ∼ SMN(0, 1, ν), ηt ∼ N (0, 1), (10)

εt and ηt assumed to be independent. We refer to this generalization as SVM-SMN models. It follows

from (1) that the set up defined in (9a)-(9b) and (10) can be written hierarchically as

yt = β0 + β1yt−1 + β2eht + e
ht
2 λ

− 1
2

t εt, (11a)

ht = α + φht−1 + σηηt, (11b)

λt ∼ p(λt), εt ∼ N (0, 1), ηt ∼ N (0, 1). (11c)

As illustrated in Section 2.1, this class of models includes the SVM with student-t (SVM-t), with slash

(SVM-S) and contaminated normal (SVM-CN) distributions as special cases. All these distributions
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have heavier tails than the normal density and thus provide an appealing robust alternative to the usual

Gaussian process in SVM models. The SVM-t and SVM-S models are obtained chosen the mixing

density as: λt ∼ G(ν
2 , ν

2 ) and λt ∼ Be(ν, 1). For the SVM-CN, λt follows a discrete distribution.

Under a Bayesian paradigm, we use MCMC methods to conduct the posterior analysis in the next

subsection. Conditionally to λt, some derivations are common to all members of the SVM-SMN family

(see Appendix for details).

3.1 Parameter estimation via MCMC

A Bayesian approach to parameter estimation in the SVM-SMN class of models defined by equations

(11a)-(11c) relies on MCMC techniques. We propose to construct an algorithm based on MCMC

simulation methods to make the Bayesian analysis feasible.

Let θ = (β0, β1, β2, α, φ, σ2,ν ′)′ be the full parameter vector of the entire class of SVM-SMN

models, h0:T = (h0, h1, . . . , hT )′ be the vector of the log volatilities, λ1:T = (λ1, . . . , λT )′ the mixing

variables and y0:T = (y0, . . . , yT )′ is the information available up to time T . The Bayesian approach

for estimating the parameters in the SVM-SMN models uses the data augmentation principle, which

considers h0:T and λ1:T as latent parameters. By using the Bayes’ theorem, the joint posterior density

of parameters and latent unobservable variables can be written as

p(h0:T , λ1:T , θ | y0:T ) ∝ p(y1:T | y0, θ,λ1:T ,h0:T )p(h0:T | θ)p(λ1:T | θ)p(θ), (12)

where

p(y1:T | y0,λ1:T ,h0:T ) =
T∏

t=1

p(yt | yt−1, θ, ht, λt), (13)

p(h0:T | θ) = p(h0 | θ)
T∏

t=1

p(ht | ht−1, θ), (14)

p(λ1:T | θ) =
T∏

t=1

p(λt | θ), (15)

and p(θ) is the prior distribution. We set the prior distribution of the hyperparameters in the

SVM–SMN class as: β0 ∼ N (β̄0, σ
2
β0

), β1 ∼ N(−1,1)(β̄1, σ
2
β1

), β2 ∼ N (β̄2, σ
2
β2

), α ∼ N (ᾱ, σ2
α),

φ ∼ N(−1,1)(φ̄, σ2
φ), and σ2

η ∼ IG(T0
2 , M0

2 ), where N(a,b)(., .) denotes the truncated normal distribu-

tion in the interval (a,b).
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Since the posterior density p(h0:T ,λ1:T ,θ | y0:T ) does not have closed form, we first sample the

parameters θ, followed by the latent variables λ1:T and h0:T using Gibbs sampling. The sampling

scheme is described by the following algorithm:

Algorithm 3.1

1. Set i = 0 and get starting values for the parameters θ(i) and the latent quantities λ
(i)
1:T and h(i)

0:T .

2. Generate θ(i) in turn from its full conditional distribution given y1:T , h(i−1)
0:T and λ

(i−1)
1:T

3. Draw λ
(i)
1:T ∼ p(λ1:T | θ(i),h(i−1)

0:T ,y0:T )

4. Generate h0:T by blocks as

i) For l = 1, . . . , K, the knots positions are generated as kl, the floor of [T×{(l+ul)/(K+2)}],
where the u′ls are independent realizations of the uniform random variable on the interval

(0,1).

ii) For l = 1, . . . ,K, generate hkl−1+1:kl−1 jointly conditional on ykl−1:kl−1, θ(i), λ
(i)
kl−1+1:kl−1,

h
(i−1)
kl−1

and h
(i−1)
kl

.

iii) For l = 1, . . . , K, drawn h
(i)
kl

conditional on y1:T , θ(i), h
(i)
kl−1 and h

(i)
kl+1

5. Set i = i + 1 and return to 2 until convergence is achieved.

As described by Algorithm 3.1, the Gibbs sampler requires to sample parameters and latent vari-

ables from their full conditionals. Sampling the log-volatilities h0:T in Step 4 due to the non linear

setup in the mean equation (11a) is the most difficult task. In order to avoid the higher correlations

due to the Markovian structure of the ht’s, we develop a multi-move block sampler (Shephard and

Pitt 1997; Watanabe and Omori 2004; Abanto-Valle et al. 2009a) in the next subsection to sample

the h0:T by blocks. Details on the full conditionals of θ and the latent variable λ1:T are given in the

appendix, some of them are easy to simulate from.

3.2 A block sampler algorithm

In order to simulate h0:T , we divide it into K + 1 blocks, hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)′ for

l = 1, . . . , K + 1, with k0 = 0 and kK+1 = T , where kl − 1 − kl−1 ≥ 2 is the size of the l−th block.

A suitable selection of K is important to obtain an efficient sampler that can reduce the correlation

imposed by the model in the sampling process.
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We sample the block of disturbances ηkl−1+1:kl−1 = (ηkl−1+1, . . . , ηkl−1)′ given the end conditions

hkl−1
and hkl

instead of hki−1+1:ki−1 = (hki−1+1, . . . , hki−1)′, exploring the fact that the innovations

ηt are i.i.d. with N (0, 1) distribution. In order to facilitate the exposition, suppose that ki−1 = t

and ki = t + k + 1 for the i−th block, such that t + k < T . Then ηt+1:t+k = (ηt+1, . . . , ηt+k)′ are

sampled at once from their full conditional distribution f(ηt+1:t+k|ht, ht+k+1,yt:t+k, λt+1:t+k, θ), which

is expressed in the log scale as

log f(ηt+1:t+k|ht, ht+k+1,yt:t+k,λt+1:t+k,θ) = const− 1
2σ2

η

t+k∑

r=t+1

η2
r +

t+k∑

r=t+1

l(hr)

− 1
2σ2

η

(ht+k+1 − α− φht+k)2. (16)

Denotes the first and second derivatives of l(hr) = log p(yr | yr−1, β0, β1, β2, λr, hr) with respect to hr

by l′ and l′′. As (16) does not have closed form, we use the Metropolis-Hastings acceptance-rejection

algorithm (Tierney, 1994; Chib, 1995) to sampling from. We propose to use the following artificial

Gaussian state space model as a proposal density to simulate the block ηt+1:t+k

ŷr = hr + εr, εr ∼ N (0, dr), r = t + 1, . . . , t + k (17)

hr = α + φhr−1 + σηηr, ηr ∼ N (0, 1). (18)

where the auxiliary variables dr and ŷr for r = t+1, . . . , t+k−1 and t+k = T are defined as follows:

dr = − 1

l
′′
F (ĥr)

,

ŷr = ĥr + drl
′
(ĥr), (19)

For r = t + k < T

dr =
σ2

η

φ2 − σ2
ηl
′′
F (ĥt+k)

,

ŷr = dr

[
l
′
(ĥr)− l

′′
F (ĥr)ĥr +

φ

σ2
η

(hr+1 − α)
]
. (20)

We obtain the measurement equation (17), by a second-order expansion of lr around some preliminary

estimate of ηr denoted by η̂r, where ĥr is the estimate of hr equivalent to η̂r. As l′′(hr) being

l′′(hr) = −1
2
λr(yr − β0 − β1yr−1 − β2e

ht)2e−hr

− β2λr(yr − β0 − β1yr−1 − β2e
hr)− β2

2λre
hr ,

which can be positive for some values of hr, we define l
′′
F (hr) as

l
′′
F (hr) = E[l

′′
(hr)] = −1

2
− β2

2λre
hr , (21)
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which is everywhere strictly negative. The expectation (21) is taken with respect to yr conditional on

hr and λr, β0, β1, β2 and yr−1. Since (17)-(18) defines a gaussian state space model, we can apply the

de Jong and Shephard’s simulation smoother (de Jong and Shephard, 1995) to perform the sampling.

We denote this density by g. Since f is not bounded by g, we use the Metropolis-Hastings acceptance-

rejection algorithm to sample from f as recommended by Chib (1995). In the SVM-N case, we use

the same procedure with λt = 1 for t = 1, . . . , T .

We select the expansion block ĥt+1:t+k as follows. Once an initial expansion block ĥt+1:t+k is

selected, we can calculate the auxiliary ŷt+1:t+k by using equations (19) and (20). In the MCMC

implementation, the previous sample of ht+1:t+k may be taken as an initial value of the ĥt+1:t+k.

Then, applying the Kalman filter and a disturbance smoother to the linear Gaussian state space

model consisting of equations (17) and (18) with the artificial ŷt+1:t+k yields the mean of ht+1:t+k

conditional on ĥt+1:t+k in the linear Gaussian state space model, which is used as the next ĥt+1:t+k.

By repeating the procedure until the smoothed estimates converge, we obtain the posterior mode of

ht+1:t+k. This is equivalent to the method of scoring to maximize the logarithm of the conditional

posterior density. Although, we have just noted that iterating the procedure achieves the mode, this

will slow our simulation algorithm if we have to iterate this procedure until full convergence. Instead

we suggest to use only five iterations of this procedure to provide reasonably good sequence ĥt+1:t+k

instead of an optimal one. The procedure is summarized in Algorithm 3.2.

Algorithm 3.2

1. Initialize ĥt+1:t+k.

2. Evaluate recursively l
′
(ĥr) and l

′′
F (ĥr) for r = t + 1, . . . , t + k

3. Conditional on the current values of the vector of parameters θ, λt+1:t+k, ht and ht+k+1 define

the auxiliary variables ŷr and dr using equations (19) or (20) for r = t + 1, . . . , t + k.

4. Consider the linear Gaussian state-space model in (17) and (18). Apply the Kalman Filter and

a disturbance smoother Koopman (1993) and obtain the posterior mean of ηt:t+k (ht:t+k) and

set η̂t:t+k (ĥt:t+k) to this value.

5. Return to step 2 and repeat the procedure until achieve convergence.
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Finally the knots conditions are updated from

h0 | h1, θ ∼ N (α + φh1, σ
2
η); (22)

hkl
| hkl−1, hkl+1,θ ∼ N

(
α(1− φ) + φ(hkl−1 + hkl+1)

1 + φ2
,

σ2
η

1 + φ2

)
, for l = 1, . . . , K (23)

3.3 Bayesian model selection

In this section, we describe two Bayesian model selection criteria: the deviance information criterion

(Spiegelhalter et al. 2002; Berg et al. 2004; Celeux et al. 2006) and the Bayesian predictive information

criterion (Ando, 2006, 2007).

3.3.1 Deviance information criterion

Spiegelhalter et al. (2002) introduced the deviance information criterion (DIC), defined as:

DIC = −2Eθ|y1:T
[log L(y1:T | θ)] + pD. (24)

The second term in (24) measures the complexity of the model by the effective number of parameters,

pD, defined as the difference between the posterior mean of the deviance and the deviance evaluated

at the posterior mean of the parameters:

pD = 2[log L(y1:T | θ̄)− Eθ|y1:T
[log L(y1:T | θ)]]. (25)

To calculate the DIC in the context of SVM-SMN models, the conditional likelihood L(y1:T | β0, β1, β2,

α, φ, σ2
η, ν, λ1:T ,h0:T ), defined in (13), is used in equation (24), where θ encompasses (β0, β1, β2, α, φ, σ2

η, ν
′)′,

λ1:T and h0:T .

As pointed by Stone (2002), Robert and Titterington (2002), Celeux et al. (2006) and Ando (2007),

the DIC suffers from some theoretical aspects. First, in the derivation of DIC, Spiegelhalter et al.

(2002, p.604) assumed that the specified parametric family of probability distributions that generate

future observations encompasses the true model. This assumption may not always hold true. Secondly,

the observed data are used both to construct the posterior distribution and to compute the posterior

mean of the expected log likelihood. The bias estimate of DIC tends to underestimate the true bias

considerably. To overcome these theoretical problems in DIC, recently Ando (2007) has proposed the

Bayesian predictive information criterion (BPIC) as an improved alternative of the DIC.
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3.3.2 Bayesian predictive information criterion

Let us consider z1:T = (z1, z2, . . . , zT )′ to be a new set of observations generated by the same mechanism

as that of the observed data y1:T drawn from the true model with unknown density s(z1:T ). Concerning

the concept of the future observations and the true model, we refer to Konishi and Kitagawa (1993).

To evaluate the relative fit of the Bayesian model to the true model s(z1:T ), Ando (2007) considered

the maximization of the posterior mean of the expected log-likelihood

η =
∫ [ ∫

log L(z1:T | θ)p(θ | y1:T )dθ

]
s(z1:T )dz1:T ,

where log L(. | θ) denotes the log-likelihood function. It is obvious that η depends on the model

fitted, and on the unknown true model s(z1:T ). A natural estimator of η is the posterior mean of the

log-likelihood,

η̂ =
∫

log L(y1:T | θ)p(θ | y1:T )dθ,

where L(y1:T | θ) =
∏T

t=1 p(yt | θ). As pointed by Ando (2006, 2007) the quantity η̂ is generally a

positively biased estimator of η, because the same data y1:T are used both to construct the posterior

distribution and to evaluate the posterior mean of the log-likelihood. Therefore, bias correction should

be considered, where the bias b is defined as: b =
∫

(η̂ − η)s(z1:T )dy1:T . Ando (2007) evaluated the

asymptotic bias as

T b̂ ≈ Eθ|y1:T
[log{L(y1:T | θ)p(θ)}]− log[L(y1:T | θ̂)p(θ̂)] + tr{J−1

T (θ̂)IT (θ̂)}+ 0.5q.

(26)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation with respect to the posterior distribu-

tion, θ̂ is the posterior mode, and

IT (θ̂) =
1
T

T∑

t=1

(
∂ηT (yt,θ)

∂θ

∂ηT (yt, θ)
∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1
T

T∑

t=1

(
∂2ηT (yt, θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
,

with ηT (yt, θ) = log p(yt | y1:t−1, θ)+log p(θ)/T. Thus, correcting the asymptotic bias of the posterior

mean of the log-likelihood, the Bayesian predictive information criterion (BPIC; Ando, 2006, 2007)

can be written as

BPIC = −2Eθ|y1:T
[log{L(y1:T | θ)}] + 2T b̂. (27)
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The best model is chosen as the one that has the minimum BPIC. To calculate the BPIC, in the

context of SV-SMN models, we use log{L(y1:T | θ)} =
∑T

t=1 log p(yt | y1:t−1, θ) and θ = (α, φ, σ2
η, ν)′.

Because p(yt | y1:t−1, θ) does not have closed form, it can be evaluated numerically by using the

auxiliary particle filter method (see Kim et al., 1998; Pitt and Shephard, 1999; Chib et al., 2002),

which is described next.

3.4 The Auxiliary Particle Filter

In this subsection, we revised the auxiliary particle filtering (APF) method of Pitt and Shephard

(1999), which allows us to draw samples from the filtering distribution p(ht | θ,y1:t) by numerical

approximation.

Let us consider the nonlinear dynamic representation of the SVM-SMN models. Suppose that the

parameter vector θ is known. Therefore, the evolution, updating and the predictive equations at each

t are given, respectively, by

p(ht | y0:t−1, θ) =
∫

p(ht | ht−1, θ)p(ht−1 | y0:t−1,θ)dht−1 (28)

p(ht | y0:t, θ) =
p(yt | ht)p(ht | ht−1, θ)

p(yt | y0:t−1,θ)
, (29)

p(yt | y0:t−1, θ) =
∫

p(yt | ht)p(ht | y0:t−1, θ)dht (30)

Let {(h(1)
t−1, w

(1)
t−1), . . . , (h

(N)
t−1, w

(N)
t−1)} ∼ p(ht−1 | θ,y1:t−1) be an approximate sample of p(ht−1|θ,y1:t−1),

i.e., the pdf p(ht−1|θ,y1:t−1), of the continuous random variable, ht−1, is approximated by a dis-

crete variable with random support. It then follows that the one-step ahead predictive distribution

p(ht | θ,y1:t−1) can be approximated as:

p̂(ht | θ,y0:t−1) =
N∑

i=1

p(ht | θ, h
(i)
t−1)w

(i)
t−1, (31)

where h
(i)
t−1 is a sample from p(ht−1 | θ,y1:t−1) with weight w

(i)
t−1 and p̂(ht | θ,y1:t−1) is the “empirical

prediction density”. The equation (31) can be combined with the measurement density to produce,

up to proportionality

p̂(ht | y0:t,θ) ∝ p(yt | ht, θ)
N∑

i=1

p(ht | θ, h
(i)
t−1)w

(i)
t−1 (32)

Pitt and Shephard (1999) pointed out that using p(ht | θ, ht−1) as a density approximating

p(ht | θ,y0:t) is not generally efficient because it constitutes a blind proposal that does not take

13



into account the information contained in yt. To improve the efficiency, we include this observation

in the approximating density. The nonlinear/non-Gaussian component of the measurement equation

then starts to play an important role, and certain algebraic manipulations need to be carried out to

use standard approximations. This can be accomplished by sampling and index k is sampled on the

mixture (32), which defines the particles at t−1 that are propagated to t. This correspond to sampling

from

p(ht, k | θ,y0:t) ∝ p(yt | θ, ht)p(ht | θ, ht−1w
(k)
t−1). (33)

We can sample first from p(k | y0:t) and then from p(ht | y0:t), obtaining a sample {(h(i)
t , k(i)), i =

1, . . . , N}. The marginal density p(ht | θ,y0:t) is obtained by dropping the index k. If the information

contained in p(ht, k | θ,y0:t) and the information in yt is carried forward by wt−1. One of the simplest

approach, described by Pitt and Shephard (1999) is to define

p(ht, k | θ,y0:t) ' g(ht, k) ∝ g(yt | ht, ϑ
k
t )p(ht | θ, hk

t−1)w
k
t−1 (34)

where ϑ
(k)
t = α + φh

(k)
t−1.

This recursive procedure needs to draw ht sequentially from the filtered distribution, p(ht | θ,y1:t),

which is updated as described in Algorithm 3.3.

Algorithm 3.3

1. Posterior at t− 1:

{(h(1)
t−1, w

(1)
t−1), . . . , (h

(i)
t−1, w

(i)
t−1), . . . , (h

(N)
t−1, w

(N)
t−1)} ∼ p(ht−1 | θ,y1:t−1)

2. For i = 1, . . . , N , calculate ϑ
(i)
t = α + φh

(i)
t−1

3. Sampling (k, ht):

For i = 1, . . . , N

Indicator: ki such that P (ki = k) ∝ g(yt | ϑ(ki)
t )w(ki)

t−1

Evolution:

h
(i)
t ∼ g(ht | yt, ϑ

(i)
t )

Weights: compute w
(i)
t as follows

w
(i)
t ∝ p(yt | θ, h

(i)
t )p(h(i)

t | θ, h(ki)
t−1)

g(yt | ϑ(ki)
t )g(h(i)

t | θ, yt, ϑ
(ki)
t )

=
p(yt | θ, hi

t)

g(yt | h(i)
t , ϑ

(ki)
t )
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4. Posterior at t:

{(h(1)
t , w

(1)
t ), . . . , (h(i)

t , w
(i)
t ), . . . , (h(N)

t , w
(N)
t )} ∼ p(ht | θ,y1:t)

Next, we give some technical details related to the out-of-sample forecasting of aggregated squared

returns in SV-SMN models. We refer to the reader to see Tauchen and Pitts (1983) for more details..

3.5 Out-of-sample forecasting of aggregated returns

The K−step ahead prediction density can be calculated using the composition method through the

following recursive procedure:

p(yT+K | y1:T ) =
∫ [

p(yT+K | λT+K , hT+K)p(λT+K | θ)

× p(hT+K | θ,y1:T )p(θ | y1:T )
]
dhT+KdλT+Kdθ,

p(hT+K | θ,y1:T ) =
∫

p(hT+K | θ, hT+K−1)p(hT+K−1 | θ,y1:T )dhT+K−1,

Evaluation of the last integrals is straightforward, by using Monte Carlo approximation. To initialize a

recursion, we use N draws {h(i)
T , θ(i)}N

i=1 from the MCMC sample. Then given these N draws, sample

h
(i)
T+k from p(hT+k | θ(i), h

(i)
T+k−1) and λ

(i)
T+k from p(λT+k | θ(i)), for i = 1, . . . , N and k = 1, . . . , K, by

using equations (11b) and (11c), respectively. Finally, sample y
(i)
T+k from p(yT+k | θ(i), λ

(i)
T+k, h

(i)
T+k),

for i = 1, . . . , N and k = 1, . . . , K. With draws from h
(i)
T+k and y

(i)
T+k, the aggregated daily squared

return (a common model-free indicator of volatility) can be calculated as V
(i)
K =

∑K
k=1 y

2(i)
T+k and the

aggregated volatility as, S
(i)
K =

∑K
k=1 ehT+k

(i)
, for i = 1, . . . , N , respectively.

4 Empirical Application

This section analyzes the daily closing prices for the IBOVESPA. The IBOVESPA is an index of

about 50 stocks that are traded on the São Paulo Stock, Mercantile & Futures Exchange. The index

is composed by a theoretical portfolio with the stocks that accounted for 80% of the volume traded in

the last 12 months and that were traded at least on 80% of the trading days. It is revised quarterly, in

order to keep its representativeness of the volume traded and in average the components of IBOVESPA

represent 70% of all the stock value traded. The data set was obtained from the Yahoo finance web

site available to download at http://finance.yahoo.com. The period of analysis is January 5, 1998

- October 3, 2005 which yields 1917 observations. Throughout, we will work with the compounded
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return expressed as a percentage, that is

yt = 100(log Pt − log Pt−1),

where Pt is the closing price on day t.

Table 1 summarize descriptive statistics for the IBOVESPA corrected compounded returns with the

time series plot in Figure 1. For the returns series, the basic statistics viz. the mean, standard devia-

tion, skewness and kurtosis are calculated to be 0.0579, 2.3345, 0.8346 and 19.1847, respectively. Some

extreme observations, explained by turbulences in financial markets occurred by August-Setembro,

1998 and January, 1999 (the Russian and Brazilian exchange rate crisis, respectively), contribute to

extent to the large kurtosis of the IBOVESPA returns. As a result, the IBOVESPA returns likely

shows a departure from the underlying normality assumption. Thus, we reanalyze this data with the

aim of providing robust inference by using the SMN class of distributions. In our analysis, we compare

between the SVM-N, SVM-t, SVM-S and SVM-CN models.

Table 1: Summary statistics for the IBOVESPA return series

mean s.d. max min skewness kurtosis

Returns 0.0579 2.3345 28.8324 -17.2082 0.8346 19.1847

In all cases, we simulated the ht’s in a multi-move fashion with stochastic knots based on the

method described in Section 3.1. We set the prior distributions of the common parameters as: β0 ∼
N (0.0, 100), β1 ∼ N(−1,1)(0.1, 100.0), β2 ∼ N (−0.1, 100.0), α ∼ N (0.0, 100.0), φ ∼ N(−1,1)(0.95, 100.0),

σ2
η ∼ IG(2.5, 0.025). The prior distributions on the shape parameters were chosen as: ν ∼ G(12.0, 0.8)

and ν ∼ G(2.0, 0.25) for the SVM-t model and the SVM-S model, respectively. For the SVM-CN, we

set δ ∼ Be(2, 2) and γ ∼ Be(2, 4). The initial values of the parameters are randomly generated from

the prior distributions. We set all the log-volatilities, ht, to be zero. Finally the initial λ1:T are gener-

ated from the prior p(λt | ν). All the calculations were performed running stand alone code developed

by the authors using an open source C++ library for statistical computation, the Scythe statistical

library (Pemstein et al., 2007), which is available for free download at http://scythe.wustl.edu.

For the block sampler algorithm, we set the number of blocks K to be 60 in such a way that each

block contained 32 h′ts on average. For the SVM-N, SVM-t and the SVM-S models, we conducted
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Table 2: Estimation results for the IBOVESPA returns. The first row: Posterior mean. The second

row: Posterior 95% credible interval in parentheses. The third row: CD statistics

Parameter SVM-N SVM-t SVM-S SVM-CN

0.2491 0.3004 0.3205 0.2798

β0 (0.1050,0.3976) (0.1419,0.4627) (0.1589,0.4889) (0.0783,0.4824)

-0.37 0.29 0.12 -0.92

0.0313 0.0289 0.0298 0.0396

β1 (-0.0122,0.0763) (-0.0162, 0.0746) (-0.0148,0.0750) (-0.0051,0.0833)

-0.12 -0.34 -0.70 1.80

-0.0402 -0.0616 -0.0959 -0.0612

β2 (-0.0772,-0.0046) (-0.1086,-0.0158) (-0.1701,-0.0297) (-0.1245,-0.0024)

1.12 -0.14 0.08 0.79

0.0235 0.0047 0.0116 0.0025

α (0.0093,0.0408) (0.0056,0.0321) (0.0032, 0.0225) (0.0002,0.0059)

-1.03 0.12 1.56 -1.32

0.9814 0.9851 0.9858 0.9977

φ (0.9686, 0.9919) (0.9735,0.9944) (0.9745,0.9947) (0.9950,0.9996)

1.05 0.02 -1.57 1.06

0.0173 0.0122 0.0109 0.0008

σ2
η (0.0102,0.0272) (0.0070, 0.0198) (0.0061,0.0182) (0.0006,0.0012)

-0.91 0.60 1.72 -0.71

– 16.2892 2.4657 –

ν – (10.7400,24.0800) (2.0880,2.7380) –

– 0.22 -0.55 –

– – – 0.1188

δ – – – (0.0277,0.3321)

– – – 1.64

– – – 0.2952

γ – – – (0.1488,0.4371)

– – – 0.10
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Figure 1: IBOVESPA compounded returns with sample period from January 5, 1998 to September

03, 2005. The left panel shows the plot of the raw series and the right panel plots the histogram of

returns.

the MCMC simulation for 50000 iterations. However, for the SVM-CN model, we use 210000 itera-

tions. In both cases, the first 10000 draws were discarded as a burn-in period. In order to reduce the

autocorrelation between successive values of the simulated chain, only every 10th (SVM-N, SVM-t

and SVM-S models) and 100th (SVM-CN model) values of the chain are stored. With the resulting

4000 (2000) values, we calculated the posterior means, the 95% credible intervals and the convergence

diagnostic (CD) statistics (Geweke, 1992). Table 2 summarizes the results. According to the CD

values, the null hypothesis that the sequence of 4000 (2000) draws is stationary is accepted at the 5%

level for all the parameters in all the models considered here.

From Table 2, the posterior mean and 95% interval of φ in the SVM-CN is placed on upward

compared to those of the other three models. However, for all the models, we found the posterior

means of φ are above from 0.9814, showing a higher persistence. We found that the persistence of

the SVM-t and the SVM-S are slightly different from the SVM-N model. The posterior mean of σ2
η

is smaller in the SVM-CN than those of the SVM-N, SVM-t and the SVM-S models, indicating than

the volatility of the SVM-CN is less variable than those of the other three models. We also found that

posterior mean of σ2
η of the SVM-t and the SVM-S model are smaller than the SVM-N case, too.

The posterior means together with the posterior 95% intervals of the three parameters, which

govern the mean process for each one of the four models are reported in Table 2. We observed that

in all the cases the posterior mean of β0 is always positive and statistically significant, because the

95% does not contain zero. We found that the posterior mean of β1 is positive and similar to the first

18



order autocorrelation not reported here. As the 95% posterior interval contains zero, so this coefficient

could be not significant. The β2 parameter, which measures both ex ante relationship between returns

and volatility and the volatility feedback effect, has a negative posterior mean for all the models. We

found β2 is statistically significant because in all the cases the 95% posterior credibility interval does

not contain zero. This result confirms previous results in the literature and it indicates that when

investors expect higher persistent levels of volatility in the future they require compensation for this

in the form higher expected returns.
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Figure 2: Density curves of the univariate normal, Student-t, slash, variance gamma and contaminated

normal distributions using the estimated tail-fatness parameter from the respective SVM model.

The magnitude of the tail fatness is measured by the shape parameter ν in the SVM-t and SVM-S

models. In the SVM-CN case it is measured by δ. The posterior mean of ν in the SVM-t model is

16.2892. In the SVM-S model, the posterior mean of ν is 2.4657. In the SVM-CN the posterior mean

of δ is 0.1188, which can be interpreted as the proportion of outlier present in the data set and γ as

an scale factor has posterior mean of 0.2952. These results seem to indicate that the measurement

error of the stock returns are better explained by heavy-tailed distributions.

The reason why the volatility of the SVM-SMN models is estimated to be more persistent and
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Table 3: IBOVESPA return data set. DIC: deviance information criterion, BPIC: Bayesian predictive

information criterion.

DIC BPIC

Model Value Ranking BPIC Ranking

SVM-N 8055.53 3 8229.62 4

SVM-t 8054.90 2 8165.19 2

SVM-S 8038.64 1 7960.33 1

SVM-CN 8076.36 4 8222.54 3

less variable can be understood by comparing the densities of this distributions consider here. To

illustrate the tail behavior, we plot the normal (N (0, 1)) density, Student’s-t (T (0, 1, ν)) density with

ν degrees of freedom, the slash (S(0, 1, ν)) density with shape parameter ν and the contaminated

normal (CN (0, 1, δ, γ)). We set ν, δ and γ as the posterior mean of the respective SVM model (see

Table 2 for details). Figure 2 depicts the four density curves (the student-t, slash and contaminated

normal have been rescaled to be comparable). All the distributions have fatter tail than the normal

distribution. Note that the slash distribution has fatter tail than the other distributions that we have

considered (see Figure 2 right panel). Therefore, the SVM of models considered here attributes a

relatively larger proportion of extreme return values to εt instead of ηt than of the SVM-N model,

making the volatility of the SVM-t, the SVM-S and the SVM-CN models less variables. It also increases

the persistence in volatility of these models. This interpretation is confirmed by comparing the

volatility estimates. In Figure 3, we plot the smoothed mean of e
ht
2 . The posterior smoothed mean

of e
ht
2 of the SVM-t, SVM-S and SVM-CN exhibit smoother movements than this from the SVM-

N model (solid line). Extreme returns such a Brazilian currency crisis in January, 1999 make the

differences clear. The models with heavy tails accommodate possible outliers in a somewhat different

way by inflating the variance e
ht
2 by λ−1

t e
ht
2 . This can have a substantial impact, for instance, in the

valuation of derivative instruments and several strategic or tactical asset allocation topics.

Next,we use the deviance information criterion (DIC) and the Bayesian predictive information

criterion (BPIC) to compare between all the competing models. In both cases, the best model has

the smallest DIC (BPIC). From Table 3, the BPIC criterion indicates that the SVM-SMN models

with heavy tails present better fit than the basic SVM-N model, with the SVM-S model relatively

better among all the considered models, suggesting that the IBOVESPA returns data demonstrate
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sufficient departure from underlying normality assumptions. As expected, the DIC also selects the

SVM-S model as the best model.
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Figure 3: IBOVESPA data set. Posterior smoothed mean of e
ht
2

We evaluate the SVM-SMN models by using the out-of-sample forecasting of the squared returns

aggregated over certain period of time. Based on the 1917 observations of returns used previously, we

calculate the forecast over the following 1, 2, . . . , 10 days as described in Section 3.5. Figure 4 plots

the posterior means and 95% posterior credibility interval of the aggregated squared returns together

with the realized values. The 95% posterior interval of the aggregated volatility, eht , are also plotted.

For all models (a)-(d), the 95% intervals of the aggregated squared returns are much wider than those

for the aggregated volatility. The 95% posterior credibility interval of the aggregated squared returns

for the SVM-S model does not include the realized values for days from 3, 4 and 10. The SVM-t

model shows different forecasts and, days 3, 4, 5, 7 and 10 are outside the 95% credibility intervals.

The SVM-CN include all the realized values of the aggregated squared returns for days from 1 to 10.

The SVM-N shows the worst behavior, it includes only the realized values for day 1.

The robustness aspects of the SVM-SMN models can be studied through the influence of out-

liers on the posterior distribution of the parameters. We consider only the SVM-t and the SVM-S

models for illustrative purposes. We study the influence of three contaminated observations on the
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Figure 4: IBOVESPA data set. Out-of-sample forecast of the aggregated squared returns for (a)

SVM-N, (b) SVM-t, (c) SVM-S and (d) SVM-CN models.
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posterior estimates of mean and 95% credible interval of model parameters. The observations in

t = 1566, 1582 and 1599, which corresponds to March 5, 2005, April 20, 2005 and May 16, 2005,

respectively, are contaminated by kyt, where k varies from -6 and 6 with increments of 0.5 units. In

Figures 5 and 6, we plot the posterior mean and 95% credible interval of φ and σ2
η, respectively, for

the SVM-N, the SVM-t and the SVM-S models. Clearly, the SVM-S and the SVM-t models are less

affected by variations of k than the SVM-N model, meaning substantial robustness of the estimates

over the usual normal process in presence of outlying observations.

−6 −4 −2 0 2 4 6

0.9
4

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

1.0
0 SVM−N

k

φ

−6 −4 −2 0 2 4 6

0.9
6

0.9
7

0.9
8

0.9
9

SVM−t

k

φ

−6 −4 −2 0 2 4 6

0.9
6

0.9
7

0.9
8

0.9
9

SVM−S

k

φ

Figure 5: Posterior mean (dashed line) and 95% credible interval (solid line) for φ of fitting the SVM-N,

SVM-t and SVM-S models for the IBOVESPA data set.

5 Conclusions

This article discusses a Bayesian implementation of a robust alternative to estimation in the stochastic

volatility in mean model, proposed by Koopman and Uspensky (2002), via MCMC methods. The SVM

enables us to investigate the dynamic relationship between returns and its time-varying volatility. The

Gaussian assumption of the mean innovation was replaced by univariate thick-tailed processes, known

as scale mixtures of normal distributions. We study three specific sub-classes, viz. the Student-t,

slash and the contaminated normal distributions and compare parameter estimates and model fit

with the default normal model. Under a Bayesian perspective, we constructed an algorithm based
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Figure 6: Posterior mean (dashed line) and 95% credible interval (solid line) for σ2 of fitting the

SVM-N, SV-t and SVM-S models for the IBOVESPA data set.

on Markov Chain Monte Carlo (MCMC) simulation methods to estimate all the parameters and

latent quantities in our proposed SVM-SMN model. We illustrate our methods through an empirical

application of the IBOVESPA return series, which shows that the SVM-S model provide better model

fitting than the SVM-N model in terms of parameter estimates, interpretation, robustness aspects and

out-of-sample forecast of the aggregated squared returns. The β2 estimate which measures both the

ex ante relationship between returns and volatility and the volatility feedback effect is found to be

negative. The results fall in line with those of French et al. (1987), who found similar relationship

between unexpected volatility dynamics and returns and confirm the hypothesis that investors require

higher expected returns when unanticipated increase in future volatility are highly persistent. This is

consistent with our findings of higher values of φ combined with larger negative values for the in-mean

parameter.

Our SVM-SMN models have shown considerable flexibility to accommodate outliers, however its

robustness aspects could be seriously affected by the presence of skewness. Lachos et al. (2009) have

recently proposed a remedy to incorporate skewness and heavy-tailedness simultaneously using scale

mixtures of skew-normal (SMSN) distributions. We conjecture that the methodology presented in

this paper can be undertaken under univariate and multivariate setting of SMSN distributions and
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should yield satisfactory results in situations where data exhibit non-normal behavior, although at the

expense of additional complexity in its implementation. Nevertheless, a deeper investigation of those

modifications is beyond the scope of the present paper, but provides stimulating topics for further

research.

Appendix A: The Full conditionals

In this appendix, we describe the full conditional distributions for the parameters and the mixing

latent variables λ1:T of the SV-SMN class of models.

Full conditional distribution of β0, β1 and β2

For parameters β0, β1 and β2, we set the priors distributions as: β0 ∼ N (β̄0, σ
2
β0

), β1 ∼ N(−1,1)(β̄1, σ
2
β1

),

β2 ∼ N (β̄2, σ
2
β2

). Using equation (9a), we have the full conditionals are given by

β0 | y0:T ,h1:T , λ1:T , β1, β2 ∼ N (
bβ0

aβ0

,
1

aβ0

) (35)

β1 | y0:T ,h1:T , λ1:T , β0, β1 ∼ N (
bβ1

aβ1

,
1

aβ1

)I|β2|<1 (36)

β2 | y0:T ,h1:T , λ1:T , β0, β1 ∼ N (
bβ2

aβ2

,
1

aβ2

) (37)

where aβ0 =
∑T

t=1 λte−ht + 1
σ2

β0

, bβ0 =
∑T

t=1 λte−ht(yt−β1yt−1−β2e
ht)+ β̄0

σ2
β0

, aβ1 =
∑T

t=1 λte−hty2
t−1 +

1
σ2

β1

, bβ1 =
∑T

t=1 λte−ht(yt − β0 − β2e
ht)yt−1 + β̄1

σ2
β1

, aβ2 =
∑T

t=1 λteht + 1
σ2

β0

and bβ2 =
∑T

t=1 λt(yt −
β0 − β1yt−1) + β̄2

σ2
β2

Full conditional distribution of α, φ and σ2
η

The prior distributions of the common parameters are set as: α ∼ N(ᾱ, σ2
α), φ ∼ N(−1,1)(φ̄, σ2

φ),

σ2
η ∼ IG(T0

2 , M0
2 ). Together with (14), we have the following full conditional for α:

p(α | h0:T , φ, σ2
η) ∝ exp{−aα

2 (α− bα
aα

)2}, (38)

which is the normal distribution with mean bα
aα

and variance 1
aα

, where aα = 1
σ2

α
+ T

σ2
η

+ 1+φ
σ2

η(1−φ)
and

bα = ᾱ
σ2

α
+ (1+φ)

σ2
η

h0 +
∑T

t=1(ht−φht−1)
σ2

η
. Similarly, by using (14), we have that the conditional posterior

of φ is given by

p(φ | h0:T , α, σ2
η) ∝ Q(φ) exp{− aφ

2σ2
η
(φ− bφ

aφ
)2}I|φ|<1 (39)
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where Qφ =
√

1− φ2 exp{− 1
2σ2

η
[(1−φ2)(h0− α

1−φ)2}, aφ =
∑T

t=1 h2
t−1 + σ2

η

σ2
φ
, bφ =

∑T
t=1 ht−1(ht−α)+

φ̄
σ2

η

σ2
φ

and I|φ|<1 is an indicator variable. As p(φ | h0:T , α, σ2
η) in (39) does not have closed form, we

sample from using the Metropolis-Hastings algorithm with truncated N(−1,1)(
bφ

aφ
,

σ2
η

aφ
) as the proposal

density.

From (14), the conditional posterior of σ2
η is IG(T1

2 , M1
2 ), where T1 = T0 + T + 1 and M1 =

M0 + [(1− φ2)(h0 − α
1−φ)2] +

∑T
t=1(ht − α− φht−1)2.

Full conditional of λt and ν

• SV-t case

As λt ∼ G(ν
2 , ν

2 ), the full conditional of λt is given by

p(λt | yt, yt−1, ht, ν) ∝ λ
ν+1
2
−1

t e−
λt
2

[(yt−β0−β1yt−1−β2eht )2e−ht+ν], (40)

which is the gamma distribution, G(ν+1
2 , [yt−β0−β1yt−1−β2eht ]2e−ht+ν

2 ).

We assume the prior distribution of ν as G(aν , bν)I2<ν≤40. Then, the full conditional of ν is

p(ν | λ1:T ) ∝

[
ν
2

]Tν
2

νaν−1e−
ν
2
[
∑T

t=1(λt−log λt)+2bν ]

[Γ(ν
2 )]T

I2<ν≤40. (41)

We sample ν by the Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994; Chib, 1995).

Let ν∗ denote the mode (or approximate mode) of p(ν | λ1:T ), and let `(ν) = log p(ν | λ1:T ). As `(ν) is

concave, we use the proposal densityN(2,40)(µν , σ
2
ν), where µν = ν∗−`′(ν∗)/`′′(ν∗) and σ2

ν = −1/`′′(ν∗).

`′(ν∗) and `′′(ν∗) are the first and second derivatives of `(ν) evaluated at ν = ν∗. To prove the

concavity of `(ν), we use the result of Abramowitz and Stegun (1970), in which the log Γ(ν) could be

approximated as

log Γ(ν) =
log(2π)

2
+

2ν − 1
2

log(ν)− ν +
θ

12ν
, 0 < θ < 1. (42)

Taking the second derivative of `(ν) from (41) and using (42), we have that

`′′(ν) = − Tθ

3ν3
− (T + 2aν − 2)

2ν2
< 0.

because in practical applications T ≥ 2.

• SV-S case

Using the fact that λt ∼ Be(ν, 1), we have the full conditional of λt given as

p(λt | yt, yt−1, ht, ν) ∝ λ
ν+ 1

2
−1

t e−
λt
2

[(yt−β0−β1yt−1−β2eht )2e−ht ]I0<λt<1, (43)
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that is λt ∼ G(0<λt<1)(ν + 1
2 , 1

2 [yt−β0−β1yt−1−β2eht ]2e−ht), the right truncated gamma distribution.

Assuming that a prior distribution of ν ∼ G(aν , bν), the full conditional distribution of ν is given by

p(ν | h0:T ,λ1:T ) ∝ νT+aν−1e−ν(bν−
∑T

t=1 log λt)Iν>1. (44)

Then, the full conditional of ν is Gν>1(T + aν , bν −
∑T

t=1 log λt), i.e. the left truncated gamma dis-

tribution. We simulate from the right and left truncated gamma distributions using the algorithm

proposed by Philippe (1997).

• SVM-CN case

Here λt is a discrete random variable and ν = (δ, γ)′. To sample from λt, we introduce an auxiliary

variable, St, such that P (St = 1) = δ and λt = γSt + 1− St. Using (8) with σ2 = 1, we have that the

full conditional of St is given by

p(St | δ, γ, β0, β1, β2, ht, yt, yt−1) ∝ δSt(1− δ)1−Stγ
St
2 e−

1
2
[e−ht (γSt+1−St)(yt−β0−β1yt−1−β2eht )2].(45)

That is, St | δ, γ, β0, β1, β2, ht has a Bernoulli distribution. We assume that δ ∼ Be(δ0, δ1) and

γ ∼ Be(γ0, γ1). Then, the full conditional of δ is given by

p(δ | γ,S1:T ) ∝ δδ0−1(1− δ)δ1−1
T∏

t=1

δSt(1− δ)1−St (46)

which is δ | γ,S1:T ∼ Be(δ∗0 , δ
∗
1), where δ∗0 = δ0 +

∑T
t=1 St and δ∗1 = δ1 + T − ∑T

t=1 St. The full

conditional of γ is given by

p(γ | β0, β1, β2,S1:T ,h1:T ,y0:T ) ∝ (1− γ)γ1−1γγ0−1+
∑T

t=1
St
2 e−

γ
2

∑T
t=1 e−htSt(yt−β0−β1yt−1−β2eht )2 .

(47)

As (47) does not have closed form, we can sample from using the Metropolis-Hastings algorithm. The

the right truncated gamma distribution G0<γ<1(γ0+
∑T

t=1
St
2 ,−1

2

∑T
t=1 e−htSt(yt−β0−β1yt−1−β2eht)2)

can be used as a proposal density.

Appendix B: Additionals details related to the APF algorithm

As documented by Smith and Santos (2006), for series such as stock returns, which exhibit fairly

frequent and extreme outliers, filters based on this first order approximation can be easliy break
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down. However, the APF based on the much rarely used second order approximation appears to

perform better in this circumstances.

The main modification considered is the definition of a second-order approximation around ϑt for

log p(yt | β0, β1, β2, yt−1, ht) = l(ht), which we designate as

log g(yt | ht, ϑ
k
t ) = l(ϑk

t ) + (ht − ϑk
t )l

′(ϑk
t ) +

1
2
l′′F (ϑk

t )(ht − ϑk
t )

2 (48)

We define l′′F (ϑk
t ) = −(l′(ϑk

t ))
2, we have l′′F (ϑk

t ) < 0 for all the values of ht. Rearranging equation (34),

we can express this as

g(ht, k | y0:t) ∝ g(yt | ϑk
t )g(ht | yt, ϑ

k
t )w

k
t−1,

where the factors are

g(yt | ϑk
t ) = exp{l(ϑk

t )− l′(ϑk
t )ϑ

k
t +

1
2
l′′F (ϑk

t )ϑ
2k
t − 1

2σ2
ϑ2k

t +
b2k
t

2ak
t

+
1
2

log ak
t }

and

g(ht | yt, ϑt, µ
k
t ) = N (ht | bk

t

ak
t

,
1
ak

t

)

where ak
t = 1

σ2
η
− l′′F (ϑk

t ) and bk
t = l′(ϑk

t )− l′′F (ϑk
t )ϑ

k
t + ϑk

t
σ2

η
and N (ht | bk

t

ak
t
, 1

ak
t
) denotes that the random

variable ht follows a normal distribution with mean bk
t

ak
t

and variance 1
ak

t
. Then, we could simulate the

index with probability proportional to g(yt | ϑk
t ) and then draw from g(ht | hk

t−1, yt, ϑ
k
t ). The resulting

reweighted sample’s second-stage weights are proportional to the, hopefully fairly even, weights

w
(i)
t ∝ p(yt | θ, h

(i)
t )p(h(i)

t | θ, h(ki)
t−1)

g(yt | ϑ(ki)
t )g(h(i)

t | θ, yt, ϑ
(ki)
t )

=
p(yt | θ, hi

t)

g(yt | h(i)
t , ϑ

(ki)
t )

.
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