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Abstract

This paper is concerned with applications of pair-copulas in ¯nance, and bridges

the gap between theory and application. We give a broad view of the problem of

modeling multivariate ¯nancial log-returns using pair-copulas, gathering theoretical

and computational results scattered among many papers on canonical vines. We

show to the practitioner the advantages of modeling through pair-copulas and send

the message that this is a possible methodology to be implemented in a daily basis.

All steps (model selection, estimation, validation, simulations and applications) are

given in a level reached by all data analysts.
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Pair-Copulas Modeling in Finance

1 Introduction

The Basel II international capital framework has been, in some way, promoting the

development of more sophisticated statistical tools for ¯nance. Underlying each

tool there is always a probabilistic model assumption. For a long time, modeling

in ¯nance would just mean considering the multivariate normal distribution. This

was partially due to the fact that most of the important theoretical results in this

area were based on the normality assumption, and also due to the lack of suitable

alternative multivariate distributions and the restrictions imposed by the softwares

available. However, a simple exploratory analysis carried on any collection of log-

returns on indexes, stocks, portfolios, or bonds, will reveal signi¯cant departures

from normality.

Data on log-returns present some well known stylized facts and are characterized

by two special features: (I) each margin typically shows its own degree of asymmetry

and high kurtosis, as well as some speci¯c pattern of temporal dynamics. (II) the

dependence structure among pairs of variables will vary substantially, ranging from

independence to complex forms of non-linear dependence. No natural family of

multivariate distribution (for example, the elliptical family) would cover all of these

features. This is true if unconditional modeling is being considered and it also

applies to the errors distribution of sophisticated dynamic models.

A solution, by now popular, is the use of copulas, introduced by Sklar (1959)

and in ¯nance by Embrechts et al. (1999). Initially, marginal distributions are

¯tted, using the vast range of univariate models available. In a second step, the

dependence between variables is modeled using a copula. However, this approach

has also its limitations. Although we are able to ¯nd very good (conditional and

unconditional) univariate ¯ts tailored for each margin, when it comes to copula

¯tting, there are signi¯cant obstacles to solve the required optimization problem

over many dimensions, the so called \curse of dimensionality" (Scott, 1992). Most

of the available softwares deal only with the bivariate case. Even if we are able
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to ¯t a d-dimensional copula, d > 2, parametric copula families usually restrict all

pairs to possess the same type or strength of dependence. For example, in the case

of the t-copula, besides the correlation coe±cients, a single parameter, the number

of degrees of freedom, is used to compute the coe±cient of tail dependence for all

pairs, thus violating (II).

Pair-copulas, being a collection of potentially di®erent bivariate copulas, is a

°exible and very appealing concept. The method for construction is hierarchical,

where variables are sequentially incorporated into the conditioning sets, as one moves

from level 1 (tree 1) to tree d¡1. The composing bivariate copulas may vary freely,
from the parametric family to the parameters values. Therefore, all types and

strengths of dependence may be covered. Pair-copulas are easy to estimate and to

simulate being very appropriate for modeling in ¯nance.

Most existing papers on pair-copulas deal with theoretical details on their con-

struction and there still are some open questions. A few papers provide applications

in ¯nance, but most of them just ¯t a pair-copula to the data, see Min and Czado

(2008), Aas, Czado, Frigessi, and Bakken (2007), Berg and Aas (2008), Fischer,

KÄock, SchlÄuter and Weigert (2008), among others.

In this paper we go beyond inference and provide applications such as the pair-

copula construction of e±cient frontiers and risk computation. We consider both

conditional and unconditional models for the univariate ¯ts. The conditional models

are the well known combinations of ARFIMA and FIGARCH models (Section 4).

As unconditional univariate models we propose to use the very °exible skew-t family

(Section 3). Estimation of the models is based on the maximum likelihood method.

Applications will follow the ¯ts, and they intend to show how the pair-copulas

approach may be useful, since there are many applications in ¯nance which rely

on a good joint ¯t for the data. For example, computing risk measures estimates,

¯nding portfolios' optimal allocations, pricing derivatives, and so on.

The main objective of this paper is to show at a practitioner's level, how pair-

copulas modeling may be useful in ¯nance. The paper also gathers a collection of

important results which are scattered in many papers, thus the large number of

references provided. In summary, the contributions of this paper are (1) to show
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how a good multivariate (conditional or unconditional) ¯t for log-returns data may

be obtained with the help of the pair-copulas approach; (2) to propose the use of

the skew-t distribution as the unconditional model for the margins; (3) to show how

pair-copulas may be used on a daily basis in ¯nance, in particular for constructing

e±cient frontiers and computing the Value-at-Risk; (4) to show how parametric

replications of the data may be obtained and used to assess variability and construct

con¯dence intervals. In the case of the e±cient frontier, they allow for testing the

equality of e±cient portfolios and for testing if a portfolio re-balance is needed, or

if the inclusion of some other component would signi¯cantly improve the expected

return for the same risk level.

The remainder of this paper is organized as follows. In Section 2, we brie°y

review copulas and pair-copulas de¯nitions. In Section 3 we consider the e uncondi-

tional approach for the marginal ¯ts combined with the pair-copulas ¯t, and provide

an application in 3:1, where we obtain optimal portfolios and show how to construct

pair-copulas based replications of the e±cient frontier. In Section 4 we take the con-

ditional approach for the marginal ¯ts, and in 4:1 we provide the same application

carried in 3:1. Section 5 contains some concluding remarks.

2 Copulas and Pair-Copulas: a brief review

2.1 Copulas

Consider a stationary d-variate process (X1;t; X2;t; ¢ ¢ ¢ ; Xd;t)t2Z , Z a set of indices.

In the case the joint law of (X1;t; X2;t; ¢ ¢ ¢ ; Xd;t) is independent of t, the dependence
structure of X = (X1; X2; ¢ ¢ ¢ ; Xd) is given by its (constant) copula C. If X is a

continuous random vector with joint cumulative distribution function (c.d.f.) F with

density function f , and marginal c.d.f.s Fi with density functions fi, i = 1; 2; ¢ ¢ ¢ ; d,
then there exists a unique copula C pertaining to F , de¯ned on [0; 1]d such that

C(F1(x1); F2(x2); ¢ ¢ ¢ ; Fd(xd)) = F (x1; x2; ¢ ¢ ¢ ; xd) (1)

holds for any (x1; x2; ¢ ¢ ¢ ; xd) 2 <d (Sklar's theorem, Sklar (1959)).
Therefore a copula is a multivariate distribution with standard uniform margins.

Multivariate modeling through copulas allows for factoring the joint distribution
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into its marginal univariate distributions and a dependence structure, its copula.

By taking partial derivatives of (1) one obtains

f(x1; ¢ ¢ ¢ ; xd) = c1¢¢¢d(F1(x1); ¢ ¢ ¢ ; Fd(xd))
dY
i=1

fi(xi) (2)

for some d-dimensional copula density c1¢¢¢d. This decomposition allows for estimat-

ing the marginal distributions fi separated from the dependence structure given by

the d-variate copula. In practice, this fact simpli¯es both the speci¯cation of the

multivariate distribution and its estimation.

The copula C provides all information about the dependence structure of F , in-

dependently of the speci¯cation of the marginal distributions. It is invariant under

monotone increasing transformations of X, making the copula based dependence

measures interesting scale-free tools for studying dependence. For example, to mea-

sure monotone dependence (not necessarily linear) one may use the Spearman's rank

correlation (r)

r(X1; X2) = 12

Z 1

0

Z 1

0

u1u2dC(u1; u2)¡ 3: (3)

The rank correlation r is invariant under strictly increasing transformations. It

always exists in the interval [¡1; 1], does not depend on the marginal distributions,
the values §1 occur when the variables are functionally dependent, that is, when
they are modeled by on of the Fr¶echet limit copulas.

Until recently, the Pearson's product moment (linear) correlation ½ was the quan-

tity used to measure association between ¯nancial products. Although ½ is the

canonical measure in the Gaussian world, ½ is not a copula based dependence mea-

sure since it also depends on the marginal distributions. Besides the drawback of

measuring only linear correlation, ½ presents other weaknesses. A number of falla-

cies related to this quantity are by now well known, see, for example, Embrechts,

McNeil, and Straumann (1999). Note that

r(X1; X2) = ½(F1(X1); F2(X2));

so that in the copula environment the rank and the linear correlations coincide.
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Another important copula-based dependence concept is the coe±cient of upper

tail dependence de¯ned as

¸U = lim
®!0+

¸U(®) = lim
®!0+

PrfX1 > F¡11 (1¡ ®)jX2 > F¡12 (1¡ ®)g ;

provided a limit ¸U 2 [0; 1] exists. If ¸U 2 (0; 1], then X1 and X2 are said to

be asymptotically dependent in the upper tail. If ¸U = 0, they are asymptotically

independent. Similarly, the lower tail dependence coe±cient is given by

¸L = lim
®!0+

¸L(®) = lim
®!0+

PrfX1 < F¡11 (®)jX2 < F¡12 (®)g ;

provided a limit ¸L 2 [0; 1] exists. The coe±cient of tail dependence measures the
amount of dependence in the upper (lower) quadrant tail of a bivariate distribu-

tion. In ¯nance it is related to the strength of association during extreme events.

The copula derived from the multivariate normal distribution does not have tail

dependence. Therefore, if it is assumed for modeling log-returns, for many pairs of

variables it will underestimate joint risks.

Let C be the copula of (X1; X2). It follows that

¸U = lim
u"1
C(u; u)

1¡ u ; where C(u1; u2) = PrfU1 > u1; U2 > u2g and ¸L = limu#0
C(u; u)

u
:

Other concepts of tail dependence do exist, including the concept of multivariate

tail dependence (Joe, 1996, IMS volume).

Parametric estimation of copulas are usually accomplished in two steps, sug-

gested by decomposition (2). In the ¯rst step, conditional (or unconditional) mod-

els are ¯tted to each margin, and the standardized innovations distributions Fi, i =

1; ¢ ¢ ¢ ; d, (which may as well be the empirical distribution) are estimated. Through
the probability integral transformation based on the bFi, the pseudo uniform(0; 1)
data are obtained and used in the second step to estimate the best parametric

copula family.

Copula parameters are usually estimated by maximum likelihood (Joe, 1997),

but may also be obtained through the robust and minimum distance estimators

(Tsukahara (2005), Mendes, Melo and Nelsen (2007)), or semi parametrically (Van-

denhende and Lambert (2005). Goodness of ¯ts may be assessed visually through
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pp-plots or based on some formal goodness of ¯t (GOF) test, usually based on the

minimization of some criterion. GOF tests have been proposed in Wang and Wells

(2000), Breymann, Dias & Embrechts (2003), Chen, Fan & Patton (2004), Gen-

est, Quessy, and R¶emillard. (2006), the PIT algorithm (Rosenblatt, 1952), Berg &

Bakken (2006). It seems that the most accepted idea is to transform the data into a

set of independent and standard uniform variables, and to calculate some measure

of distance, such as the Anderson-Darling or the Kolmogorov-Smirnov distance be-

tween the transformed variables and the uniform distribution. For a discussion on

goodness-of-¯t tests see Genest, R¶emillard, and Beaudoin (2007).

2.2 Pair-Copulas

The decomposition of a multivariate distribution in a cascade of pair-copulas was

originally proposed by Joe (1996), and later discussed in detail by Bedford and

Cooke (2001, 2002), Kurowicka and Cooke (2006) and Aas, Czado, Frigessi, and

Bakken (2007).

Consider again the joint distribution F with density f and with strictly contin-

uous marginal c.d.f.s F1; ¢ ¢ ¢ ; Fd with densities fi. First note that any multivariate
density function may be uniquely (up to relabel of variables) decomposed as

f(x1; :::; xd) = fd(xd) ¢ f(xd¡1jxd) ¢ f(xd¡2jxd¡1; xd) ¢ ¢ ¢ f(x1jx2; :::; xd): (4)

The conditional densities in (4) may be written as functions of the corresponding

copula densities. That is, for every j

f(x j v1; v2; ¢ ¢ ¢ ; vd) = cxvj jv¡j(F (x j v¡j); F (vj j v¡j)) ¢ f(x j v¡j); (5)

where v¡j denotes the d-dimensional vector v excluding the jth component. Note

that cxvj jv¡j(¢; ¢) is a bivariate marginal copula density. For example, when d = 3,

f(x1jx2; x3) = c13j2(F (x1jx2); F (x3jx2)) ¢ f(x1jx2)

and

f(x2jx3) = c23(F (x2); F (x3)) ¢ f(x2):
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Expressing all conditional densities in (4) by means of (5) we derive a decomposi-

tion for f(x1; ¢ ¢ ¢ ; xd) that only consists of univariate marginal distributions and bi-
variate copulas. Thus we obtain the pair-copula decomposition for the d-dimensional

copula c1¢¢¢d, a factorization of a d-dimensional copula based only in bivariate copu-

las. Given a speci¯c factorization there are many possible reparametrizations. This

is a very °exible and natural way of constructing a higher dimensional copula.

The conditional c.d.f.s needed in the pair-copulas construction are given (Joe,

1996) by

F (x j v) = @Cx;vj jv¡j(F (x j v¡j); F (vj j v¡j))
@F (vj j v¡j) :

For the special case (unconditional) when v is univariate, and x and v are standard

uniform, we have

F (x j v) = @Cxv(x; v;£)

@v

where £ is the set of copula parameters.

For large d, the number of possible pair-copula constructions is very large. As

shown in Bedfort and Cooke (2001) and Kurowicka and Cooke (2004), there are 240

di®erent decompositions when d = 5. In these papers the authors have introduced

a systematic way for obtaining the decompositions, which are graphical models

denominated regular vines. They help understanding the conditional speci¯cations

made for the joint distribution. Special cases are the hierarchical Canonical vines

(C-vines) and the D-vines. Each of these graphical models gives a speci¯c way of

decomposing the density f(x1; ¢ ¢ ¢ ; xd). For example, for a D-vine, f() is equal to
dY
k=1

f(xk)
d¡1Y
j=1

d¡jY
i=1

ci;i+jji+1;:::;i+j¡1(F (xijxi+1; :::; xi+j¡1); F (xi+jjxi+1; :::; xi+j¡1)):

In a D-vine there are d¡ 1 hierarchical trees with increasing conditioning sets, and
there are d(d ¡ 1)=2 bivariate copulas. For a detailed description see Aas, Czado,
Frigessi, and Bakken (2007). Figure 1 shows the D-vine decomposition for d = 6.

It consists of 5 nested trees, where tree Tj possess 7 ¡ j nodes and 6 ¡ j edges
corresponding to a pair-copula.
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1 2 3 4 65 T112

45 56 T2

13|2 24|3 35|4 46|5

14|23 25|34 36|45

T3

15|234 26|345
16|2345

T4

T5

12 23

23 34 45 56

13|2 24|3 35|4 46|5

15|234 26|345

14|23 25|34 26|45

34

Figure 1: Six-dimensional D-vine.

It is not essential that all the bivariate copulas involved belong to the same

family. This is exactly what we are searching for, since, recall, our objective is to

construct (or estimate) a multivariate distribution which best represents the data

at hand, which might be composed by completely di®erent margins (symmetric,

asymmetric, with di®erent dynamic structures, and so on) and, more importantly,

could be pair-wise joined by more complex dependence structures possessing linear

and/or non-linear forms of dependence, including tail dependence, or could be joined

independently.

For example, one may combine the following types of (bivariate) copulas: Gaus-

sian (no tail dependence, elliptical); t-student (equal lower and upper tail depen-

dence, elliptical); Clayton (lower tail dependence, Archimedean); Gumbel (upper

tail dependence, Archimedean); BB7 (di®erent lower and upper tail dependence,

Archimedean). See Joe (1997) for a copula catalogue.

Simulations from both Canonical and D-vine pair-copulas can be easily imple-

mented and run fast. Maximum likelihood estimators depend on (i) the choice of

factorization and (ii) on the choice of pair-copula families. Algorithms implementa-

tion is straightforward. For smaller dimensions we may compute the log-likelihood
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of all possible decompositions. For d >= 5, and for a D-vine, a speci¯c decomposi-

tion may be chosen. One possibility is to look for the pairs of variables having the

stronger tail dependence, and let those determine the decomposition to estimate. To

this end, a t-copula may be ¯tted to all pairs and pairs would be ranked according

to the smaller number of degrees of freedom.

3 Pair-Copulas based unconditional modeling of log-returns

We present applications using a data set of a global portfolio from the perspective

of an emerging market investor located in Brazil. We chose this perspective because

of the higher volatility of Latin American stock markets and their greater potential

interdependence with the major markets. Thus we use a 6-dimensional contempo-

raneous daily log-returns composed by (1) a Brazilian composite hedge fund index

(the ACI, Arsenal Composite Index); (2) a long-term in°ation-indexed Brazilian

treasury bonds index (the IMA-C index, computed by the Brazilian Association of

Financial Institutions, Andima); (3) a Brazilian stock index with the 100 largest

capitalization companies (IBRX); (4) an index of large world stocks computed by

MSCI (WLDLg); (5) an index of small capitalization world companies computed by

MSCI (WLDSm); and (6) an index of total returns on US treasury bonds computed

by Lehman Brothers Barra (LBTBond). All daily log-returns in US dollars are de-

picted in Figure 2. There are 1629 6-dimensional observations from January 2, 2002

to October 20, 2008. We observe that the hedge fund index ACI presents a lower

volatility than the long run treasury bond indexes (IMA-C and LBTBond).

In this section we take the unconditional approach for modelling the margins.

The ¯ts will be based on the °exible skew-t distribution (Hansen 1994), previously

used by Patton (2006), Rockinger and Jondeau (2003), Fantazzini (2006), in the

context of dynamic modeling. It generalizes the widely used normal distribution and

its most common alternative, the t-student distribution, providing great °exibility

since it covers left and right skewness and heavy tails.

The skew-t density has a closed form and the implementation of the maximum

likelihood method is still feasible because there are only 4 parameters to estimate
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Figure 2: Series of daily log-returns: ACI, IMAC, IBRX, WLDLQ, WLDSM, LBT-

BOND.

(¹, ¾, ¸, º). The parameter ¹ equals the population mean and the parameter ¾

equals the standard deviation (it exists if º > 2). When the skewness parameter

¸ is zero the symmetric case is recovered. Its mode is smaller (larger) than ¹ in

the case of right (left) skewness. Figure 3 shows the skew-t density for º = 4 and

¸ = ¡0:6; 0:0; 0:6.
The zero mean unit variance skew-t c.d.f. (see Fantazzini, 2006) is given by

G(y; º; ¸)

8>>><>>>:=
(1¡ ¸)GT

³q
º
º¡2(

by+a
1¡¸ ); º

´
; for y < ¡a

b

(1¡ ¸)=2 for y = ¡a
b

(1 + ¸)GT

³q
º
º¡2(

by+a
1+¸

); º
´
¡ ¸; for y > ¡a

b

(6)

where GT (t; º) represents the c.d.f. of the symmetric t-student with º degrees of
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Figure 3: Skew-t with º = 4, and ¸ = ¡0:6; 0:0; 0:6, respectively, solid, dotted, and dashed
lines.

freedom, and where

c =
¡(º+1

2
)

¡(º=2)
p
¼(º ¡ 2)

b =
p
1 + 3¸2 ¡ a2

a = 4¸c(
º ¡ 2
º ¡ 1):

The maximum likelihood estimates of the skew-t distributions ¯tted to each vari-

able are given in Table 1. In this table we also provide the classical sample estimates

of location and standard deviation, actually, maximum likelihood estimates under

the univariate normal distribution.

Using the skew-t c.d.f. (6), the 6 transformed standard uniform series are ob-

tained and used to estimate the pair-copulas. We estimate a D-vine, and to help

choosing the variables in tree 1 we examined the scatterplots of all pairs and ranked

the pairs according the smaller number of degrees of freedom associated with a

t-copula ¯t.
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Table 1: Skew-t parameters estimates and sample estimates of location and scale.

Estimates ACI IMAC IBRX WLDLG WLDSM LBTBOND

Sample Mean 0.0645 0.0821 0.0738 -0.0048 0.0088 0.0186

Skew-t b¹ 0.0655 0.0811 0.0745 -0.0065 0.0143 0.0247

Skew-t b̧ -0.1522 0.1537 -0.1437 0.0447 0.0269 0.1164

Skew-t bº 3.3170 3.0000 5.3971 3.0000 3.8503 3.0000

Sample St. Deviation 0.1131 0.1853 1.6930 1.1638 1.1629 1.0891

Skew-t b¾ 0.1159 0.1251 1.6920 1.1942 1.1228 1.1295

Having decided about the order of variables in tree 1, the D-vine decomposition

follows. To estimate the pair-copulas (5 unconditional and 10 conditional) we con-

sidered as possible candidates four copula families: Normal, t-student, BB7, and

the product copula, which models independence. Step by step instructions on how

to perform the estimation is given in Aas, Czado, Frigessi, and Bakken (2006).

To help selecting the best copula ¯t we compared the penalized log-likelihood,

examined the pp-plots based on the estimated and the empirical copula, and com-

puted a GOF test statistic. Anyone of the GOF tests cited in subsection 2.1 could be

applied. Actually, there is no general agreement on the best copulas GOF test. We

used the one suggested by Genest and R¶emillard (2005) and Genest, R¶emillard and

Beaudoin (2007). The test is based on the squared distance between the estimated

and the empirical copula. The limiting distribution of the test statistic depends on

the parameters values and approximate p-values are obtained through bootstrap.

The chosen pair-copula decomposition along with best copula ¯ts are shown

in Exhibit 1. The upper and lower tail dependence coe±cients computed for each

estimated bivariate copula are also shown in Exhibit 1. Joe (1997) gives the formula

of the tail dependence coe±cient for several families. In the case of the t-copula,

see Embrechts et al. (2001). We note that such accurate and tailored estimation of

the data dependence structure, in particular of its complex pattern of dependence

in the tails, would not be possible using a d-dimensional copula. The stock indexes

of large and small world companies show the strongest dependence during stressful

times.

All copulas in tree 1 possess positive upper and lower tail dependence coe±cients
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and, according to Joe, Li, and Nikoloulopoulos (2008), in this case we say that the

D-vine modeling the log-returns has multivariate upper and lower tail dependence.

IM & IB
BB7 Copula
(0:005; 0:032)

IB & AC
BB7 Copula
(0:216; 0:169)

A
A
AU

¢
¢
¢®

A
A
AU

AC & LB
t Copula

(0:006; 0:006)

¢
¢
¢®

A
A
AU

LB & WL
t Copula

(0:251; 0:251)

¢
¢
¢®

A
A
AU

WL & WS
t Copula

(0:688; 0:688)

¢
¢
¢®

IM&ACjIB
t Copula

(:0001; :0001)

A
A
AU

IB&LBjAC
t Copula

(0:011; 0:011)

A
A
AU

¢
¢
¢®

AC&WLjLB
t Copula

(0:028; 0:028)

A
A
AU

¢
¢
¢®

LB&WSjWL
t Copula

(0:000; 0:000)

¢
¢
¢®

IM&LBjIB,AC
t Copula

(0:000; 0:000)

A
A
AU

IB&WLjLB,AC
t Copula

(0:078; 0:078)

A
A
AU

¢
¢
¢®

AC&WSjLB,WL
BB7 Copula
(0:001; 0:029)

¢
¢
¢®

IM&WLjLB,AC,IB
t Copula

(0:000; 0:000)

IB&WSjLB,AC,WL
BB7 Copula
(0:018; 0:017)

A
A
AU

¢
¢
¢®

IM&WSjLB,AC,WL,IB
t Copula

(0:000; 0:000)

Exhibit 1: D-vine decomposition, best copula ¯ts with ¸L and ¸U estimates. Notation in

¯gure: IM: IMAC; AC: ACI; IB: IBRX; LB: LBTBOND; WL: WLDLG; WS: WLDSM.

For the applications that follow we need to compute the unconditional rank

correlation matrix. To obtain the rank correlation coe±cients we use (3) and the

estimated pair-copulas. The ¯ts in tree 1 result in 5 unconditional rank correlations.

From ¯ts in tree 2 through 5 we obtain conditional rank correlations. These condi-

tional rank correlations are considered constant, not depending on the value of the
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conditioning variables, as proved in Kurowicka and Cooke (2001) for elliptical and

copulas in general. This leads to another important result in Misiewicz, Kurowicka,

and Cooke (2000): for elliptical copulas conditional linear and conditional rank cor-

relations are equal provided the conditional correlations are constant (recall that,

by de¯nition, for copulas, the unconditional linear and rank correlations are equal).

An important issue is the relation between conditional rank correlation and par-

tial correlations. Partial rank correlations are de¯ned in Yule and Kendall (1965).

Their importance have been stressed in Cooke and Bedford (1995), where the au-

thors show that there exists a one-to-one relation between partial correlations on a

D-vine and correlation matrices. Kurowicka and Cooke (2001) show that the D-vine

partial correlation matrix obtained from the ¯ts uniquely determines the correla-

tion matrix, and every full rank correlation matrix may be decomposed in this way

(Bedford and Cooke, 1999).

Kurowicka and Cooke (2001) proved th equality of constant conditional correla-

tions and partial correlations for elliptical and other copulas. They also studied the

relation between the conditional correlation and the conditional rank correlation.

Table 2: Pair-copulas rank correlations and sample correlations.

ACI IMAC IBRX WLDLG WLDSM LBTBOND

ACI 1.000 0.185 0.342 -0.117 -0.088 -0.453

IMAC 0.211 1.000 0.110 0.019 0.020 -0.054

IBRX 0.435 0.112 1.000 0.223 0.240 -0.360

WLDLG -0.093 0.022 0.197 1.000 0.924 0.479

WLDSM -0.080 0.024 0.197 0.938 1.000 0.458

LBTBOND -0.465 -0.069 -0.373 0.571 0.596 1.000

Above diagonal: Pair-copulas rank correlations. Below diagonal: sample correlations.

All above cited results form the basis for using formula (7), which links the

partial and the unconditional correlations,

½12;3:::d =
½12;4:::d ¡ ½13;4:::d½23;4:::dq
(1¡ ½213;4:::d)(1¡ ½223;4:::d)

; (7)

to inductively compute the unconditional (rank or linear) correlations. The ¯nal

unconditional rank estimates are given above diagonal of Table 2.
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To validate the ¯ts we now simulate 2000 observations from the ¯tted D-vine

using the algorithm given in Aas, Czado, Frigessi, and Bakken (2007). We compute

the sample rank correlations from the simulated data and compare with those given

above diagonal of Table 2. The sum of the squares of the di®erences between the

15 rank correlations is 0.0110123, validating the ¯t.

3.1 Application: E±cient Frontiers

Constructing the e±cient frontier (EF) corresponding to optimal portfolios accord-

ing to the Markowitz Mean Variance methodology (MV) requires just point esti-

mates for the means, variances, and the linear correlation coe±cients as inputs in

the quadratic optimization problem. However it would be interesting to measure

dependence beyond correlations and capture all possible di®erent types of linear and

non-linear associations among the portfolio components, and to incorporate this in

the MV methodology. It would also be desirable to assess the variability of the

e±cient frontiers. All this translates to accurately estimating the multivariate dis-

tribution implied by the underlying assets, a task done in the previous subsection,

through pair-copulas.

The widely used inputs are the classical sample mean and sample covariance

matrix (from now on this approach will be referred to as classical). The classical

approach possesses good properties if the data do come from a multivariate normal

distribution, which, as it is well known, is usually not the case for log-returns data.

Outside the Gaussian world the classical estimates loose e±ciency and may become

biased (Hampel et al., 1986) and this leads to questionable results.

Scherer and Martin (2007) obtain robust versions of Markowitz mean-variance

optimal portfolios using some well known robust estimates of covariance such as the

MCD of Rousseeaw (see Rousseeaw and Leroy, 1887), and other robust alternatives

have been proposed, for example, Mendes and Leal (2005). However all cited alter-

natives di®er just on the estimation method of the inputs, in particular of the linear

correlation coe±cient.

In this application we propose to use the location and standard deviation es-

timates provided by the skew-t model, and the rank correlations provided by the
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Figure 4: Unconditional rank correlations and sample correlations.

pair-copula decomposition. Figure 4 shows the ellipsoids associated with the rank

and sample correlations. For this particular data set there are no striking di®erences

(for example, a change of sign) between the correlation estimates. Even though, as

we shall see, the resulting e±cient frontiers will be quite di®erent.

Using the MV algorithm and the two sets of inputs we construct the classical and

the pair-copula based e±cient frontiers containing 20 optimal linear combinations

of the 6 series of log-returns. They are shown on the left hand side of Figure 5.

We observe that the classical one is below and to the right of the pair-copula based

e±cient frontier.

An appealing feature of the pair-copula modeling strategy is that it allows for

simulations of the ¯tted data distribution, providing replications of any quantity of

interest. Here we compute parametric replications of the pair-copula based e±cient

frontier. Let br represent the set of all rank correlations estimates rij,i; j = 1; ¢ ¢ ¢ ; 6.
Let µ represent the set of parameters from the pair-copula decomposition, and letbµ represent their estimates. Let ± represent the set of parameters from the skew-t
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Figure 5: E±cient frontiers: On the left hand side, classical in black, and skew-t-rank

correlations based in blue. On the right hand side, replications of the PC-based EF.

distribution, ± = (¸; º; ¹; ¾), and let b± represent their estimates. For the generation,
we assume that bµ and b± are the true parameters values and implement the following
parametric bootstrap algorithm:

For k = 1; ¢ ¢ ¢ ; B, B large,

1. Using algorithm given in Aas, Czado, Frigessi, and Bakken (2007), simu-

late 1629£ 6 observations from the estimated pair-copula assuming bµ as
true value.

2. Apply the corresponding inverses of the skew-t c.d.f.s to each margin,

assuming b± as true values, obtaining a 6-dimensional sampleX(k), a repli-

cation of the original data.

3. Apply the whole estimation procedure (marginal and pair-copula ¯ts) on

X(k), obtaning a new set of inputs b¹(k), b¾(k), and br(k), for the construction
of the 20 portfolios based e±cient frontier EF(k).

18



On its right hand side, Figure 5 shows the original pair-copula based EF and its

parametric replications, along with the classical FE. The ¯lled circles correspond to

minimum risk portfolio. The set of all replications of some speci¯c portfolio (in the

¯gure, the number 1) give rise to a (1¡®)% con¯dence level convex hull containing
statistically equivalent portfolios. It is also possible to draw the replications of the

classical EF to verify if the corresponding convex hulls have an intersection. This

would be useful for portfolio re-balancing and testing. See Mendes and Leal (2009)

where the authors propose a method for replicating the classical FE and use square

distances to test equality of portfolios.
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Figure 6: Replications of weights for each variable and for portfolios ranked 1 and 7.

We also provide in Figure 6 the boxplots of the weights from the replications for

portfolios ranked 1 (P.1) and 7 (P.7), and for each variable. As expected, portfolios

possessing smaller risks show less variability in the plane risk £ return (Figure 5),
and are more stable in the d-dimensional space of the weights (Figure 6). Actually,

the stability of weights of a given rank portfolio, over the convex hull of replications,

19



just con¯rms that equivalent portfolios showing di®erent return £ risk values in

general have similar weights composition. Yet, the utility of a EF construction is

not the return/risk values of the portfolio but rather their weights compositions.

4 Pair-Copulas based conditional modeling of log-returns

Log-returns typically present temporal dependences in the mean and in the volatility.

In this section, we ¯rst process the data using some ARFIMA-FIGARCH ¯lter

obtaining the standardized residuals, and then apply all estimation steps of previous

section on the ¯ltered data.

Let rt represent the return at day t. The models speci¯cation is

rt = ¹t + ¾t²t

¹t = Á0 +

pX
j=1

Ájrt¡j +
qX
i=1

µi¹t¡i

¾2t = ®0 +
mX
j=1

®jr
2
t¡j +

sX
i=1

¯i¾
2
t¡i

E[²t] = 0 var(²t) = 1:

For each series of log-returns we ¯t the best ARMA-FIEGARCH model, considering

as conditional distributions either the Normal or the tº , where º denote the numbers

of degrees of freedom. Table 3 give the estimates.

Table 3: Maximum likelihood estimates (standard errors) of the ARMA-FIEGARCH mod-

els ¯tted to the log-return series.

Parameter ACI IMAC IBRX WLDLG WLDSM LBTBOND

Á0 0.0694 (0.002) 0.0648 (0.002) 0.0941 (0.041) 0.0011 (0.018) 0.0178 (0.022) -0.0328 (0.019)

MA(1) | | 0.0784 (0.027) 0.0183 (0.006) 0.0808 (0.026) 0.1225 (0.027)

®0 | -0.1961 (0.025) 0.0026 (0.000) -0.0797 (0.017) 0.1275 (0.019) 0.0308 (0.010) 0.0305 (0.007)

®1 | 0.2237 (0.027) 0.7169 (0.077) 0.1155 (0.024) 0.8641 (0.019) 0.1338 (0.021) 0.1840 (0.026)

¯1 0.7695 (0.078) 0.2623 (0.036) 0.8120 (0.092) | 0.8472 (0.021) 0.7721 (0.024)

Leverage Term -0.0267 (0.010) | -0.0634 (0.016) | | 0.2692 (0.064)

Fraction d 0.4533 (0.084) | 0.3751 (0.125) | | |

² Distribution Normal t4 Normal t7 t8 t15

AIC Criterion -3094.533 -2808.539 6049.564 4262.349 4450.753 3878.671
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We compute the standardized residuals from the d univariate ¯ts. The d ¯ltered

series are now free of temporal dependences in the ¯rst and second moments. To

these i.i.d. series we apply the unconditional approach of the previous section.

Table 4 show estimates of parameters of the skew-t distribution ¯tted to the

marginal estimated innovations series. Of course the ¹ estimates are close to zero

and the ¾ estimates are close to one. Although the series still present skewness and

kurtosis, they are smaller than those estimated for the raw data.

Table 4: Skew-t parameters estimates and sample estimates of location and scale.

Estimates ACI IMAC IBRX WLDLG WLDSM LBTBOND

Sample Mean -0.0007 0.0731 -0.0017 -0.0066 -0.0100 0.0309

Skew-t b¹ 0.00003 0.0749 -0.0005 -0.0070 -0.0110 0.0300

Skew-t b̧ -0.0995 0.0536 -0.1288 0.0442 -0.0033 0.0599

Skew-t bº 6.8976 3.0000 13.2032 6.9746 8.3890 15.4386

Sample St. Deviation 0.9970 1.4722 0.9970 1.0003 1.0009 1.0029

Skew-t b¾ 0.9980 1.1352 0.9961 1.0005 0.9973 1.0029

Table 5: Pair-copulas rank correlations (above diagonal) and sample correlations (below).

ACI IMAC IBRX WLDLG WLDSM LBTBOND

ACI 1.000 0.140 0.244 -0.134 -0.113 -0.434

IMAC 0.134 1.000 0.114 0.009 0.012 -0.062

IBRX 0.291 0.097 1.000 0.242 0.244 -0.337

WLDLG -0.150 0.020 0.227 1.000 0.918 0.428

WLDSM -0.118 0.025 0.239 0.923 1.000 0.411

LBTBOND -0.451 -0.049 -0.364 0.449 0.435 1.000

The D-vine is ¯tted to the transformed standard uniform data obtained from the

residuals from the skew-t ¯t. Recall that under the conditional approach the pair-

copula represents the dependence structure of the d-dimensional errors distribution,

which are free of temporal dependences. The copula families found as best ¯ts are

practically the same given in Figure 3, the only di®erence being the conditional

copula of IMAC & ACI given IBRX which is now Gaussian, although all show

smaller tail dependence. The unconditional copulas in tree 1, for example, have
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lower and upper tail dependence coe±cients equal to (0:104; 0:101) for the IBRX

& ACI, (0:149; 0:149) for LBTBOND & WLDLG, and (0:505; 0:505) for WLDLG

& WLDSM. Likewise the unconditional case, the multivariate distribution of the

¯ltered data has tail dependence.

Next we compute the rank correlation matrix. They are given in Table 4. We

observe that, for most pairs, the values of the correlation coe±cients (pair-copulas

based) are slightly smaller. This shows that the volatility is in many cases respon-

sible for the contagion and that it may (slightly) increase dependence.

4.1 E±cient Frontier

As expected, the position on the risk £ return plane of the e±cient frontier asso-

ciated with the ¯ltered data is quite di®erent from the previous one based on the

original data. This is mostly due to changes in the means and standard deviations

estimates. However, it would be interesting to examine the portfolios compositions

to assess the e®ect of volatility on the weigths.
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Figure 7: Weights composing the 20 portfolios for the e±cient frontiers based on the

¯ltered and original data.

Figure 7 shows the weights of the 20 portfolios in the e±cient frontiers based on

the ¯ltered and original data. Tests using the weights and based on distances could
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be applied to test equality of some compositions.

5 Conclusions

In this paper we have explored the potentials of pair-copulas modeling using de-

pendent ¯nancial data. A fully °exible multivariate distribution was obtained by

combining univariate ¯ts and D-vines.

Our marginal speci¯cations included the asymmetric and high kurtosis uncon-

ditional skew-t probabilistic model, as well as conditional models, combined with

pair-copulas possessing di®erent strengths of upper and lower tail dependence. This

results in a powerful model allowing for an accurate estimation of any quantity of

interest, such as optimal portfolios and risk measures. An examination of the tail

loss distributions shows that substantial di®erences result from the °exible pair-

copula speci¯cation. Moreover, parametric replications of the ¯tted multivariate

distribution may be used to assess variablity of the estimates.

The pair-copulas ¯eld still needs research on tests for choosing among copula

families and among decompositions, and more powerful goodness-of-¯t tests. Fur-

ther research topics include time-varying pair-copulas.
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