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Abstract

This paper is concerned with extreme value density estimation. The generalized Pareto

distribution (GPD) beyond a given threshold is combined with a nonparametric estima-

tion approach above the threshold. This semiparametric setup is shown to generalize a

few existing approaches and enables density estimation over the complete sample space.

Estimation is performed via the Bayesian paradigm, which helps identify model compo-

nents. Estimation of all model parameters, including the threshold and higher quantiles,

and prediction for future observations are provided. Simulation studies suggests a few

useful guidelines to evaluate the relevance of the proposed procedures. Models are then

applied to environmental data sets. The paper is concluded with a few directions for

future work.
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1. Introduction

Extreme value theory was shown to provide a very useful tool in many areas of appli-

cation where precise knowledge of the tail behavior of a distribution is of central interest.

The areas where most impact was achieved are environmental science and finance. Prob-

lems associated with large amounts of rain have always plagued the society due to the

social and economic loss they potentially inflict. Understanding their pattern of occur-

rence specially for higher values allows for prevention and/or mitigation of their potentially

harmful effects. Similar reasoning applies to other environmental variables such as wind

speed, sea tides and river flows. Applications to finance are even more obvious since they

are directly related to money. Risk management involves dealing with potential loss both

in actuarial applications and in stock market trading (Embrechts et al, 1997).

A fundamental result to this end was proved by Pickands (1975). He showed that the

limiting distribution of exceedances over suitably large thresholds behaves in a very stable

fashion, converging to a the generalized Pareto distribution (GPD). The result does not

provide any information below the threshold.

There are many possibilities for handling both parts (below and above the threshold)

and for combining them. Mixture of distributions and extreme value theory will be used

as building blocks in our modeling strategy. Therefore, the main ideas behind these

approaches are briefly introduced next.

1.1. Mixture of distributions

Mixture models provide an interesting illustration of the development of more complex

models that was helped by the advance in computationally complex methods. Finite mix-

ture of normal distributions are used in nonparametric density estimation by Titterington

et al. (1985), Diebolt and Robert (1994), Roeder and Wasserman (1997) and Richardson

and Green (1997), to name a few.

In many applications, data is restricted to positive values. In these cases, a more

appropriate basis for building a mixture model is the Gamma family of distributions.
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Based on theoretical results by De Vore e Lorenz (1993) and Asmussen (1987), Wiper et

al. (2001) used mixtures of Gamma densities to approximate any density defined over

[0,∞). See also Dalal and Hall (1983) and Dey et al. (1995) for related work.

The mixture model used in this paper is denoted by MGk with distribution function

(d.f.) H and density h defined as

h(x | θ, p) =
k∑

j=1

pjfG(x | µj, ηj) (1)

where θ = (µ, η) denote the Gamma parameters µ = (µ1, . . . , µk) and η = (η1, . . . , ηk), p =

(p1, . . . , pk) denotes the mixture weights and fG is the density of the Gamma distribution

given by

fG(x|µ, η) =
(η/µ)η

Γ(η)
xη−1 exp(−(η/µ)x), for x > 0. (2)

The µj´s and ηj´s can take any positive value and the pjs must be non-negative and add

up to 1. Note that the parametrization is in terms of the mean µ and the shape parameter

η. This choice will simplify model specifications in the sequel.

The papers above provide theoretical and empirical evidence that mixture of Gamma

densities can be used for density estimation. They will cover adequately the data span

but are not designed for handling extrapolation towards the tail of the distribution where

little or no data is available. This shortcoming will be illustrated later on in this paper.

Extreme value theory provide a precise description of the tail, designed to overcome these

difficulties.

1.2. Extreme Value Theory

Extreme value theory is designed to describe atypical situations that may have a

substantial impact in the phenomenon under study. The classical result in this area

is the Fisher-Tippet (1928) theorem. It establishes the three possible distributions for

maxima of blocks of observations. von Mises (1954) and Jenkinson (1955) unified these

distributions is a single class called generalized extreme value (GEV).
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Pickands (1975) proved that if X is a random variable whose distribution function F

is in the domain of attraction of a GEV distribution, then as u →∞, the conditional d.f.

F (x|u) = P (X ≤ u + x|X > u) is that of a GPD. In addition to u, the GPD depends

on a scale parameter σ and a shape parameter ξ. Let the parameter vector be denoted

Ψ = (ξ, σ, u) and I denote the indicator of ξ < 0, ie, it is 1 if ξ < 0 is true and 0, if ξ ≥ 0.

The density of the GPD can be written as

g(x|Ψ) =

 1
σ

(
1 + ξ (x−u)

σ

)−(1+ξ)/ξ

, for 0 ≤ x− u ≤ (−1)I
(

σ
ξ

)1/I

(when ξ 6= 0)

1
σ

exp{−(x− u)/σ}, for 0 ≤ x− u (when ξ = 0)
, (3)

and g(x|Ψ) = 0, otherwise. Thus, the GPD is always bounded from below by u, is bounded

from above by u−σ/ξ if ξ < 0 and unbounded from above if ξ ≥ 0. Hereafter, description

of GPD will concentrated over its range Cξ of possible values to simplify notation.

If, for example, X is maxima over a given set of observations, then it belongs to

the domain of attraction of the GEV distribution. Hence, based on this theorem, its

larger values (beyond a suitably large threshold u) can be approximated by a GPD. Thus,

extrapolation around and beyond the largest observed order statistics can be made. This

is in sharp contrast with non-parametric approaches such as mixtures of distribution where

no sound basis for inference in these tail regions exist as they rely on the data information

which is scarce or absent.

Smith (1985) proposed parameter estimation via maximum likelihood. He showed that

they do not obey the regularity conditions if ξ ∈ (−1,−0.5), and do not exist if ξ < −1.

According to Coles and Tawn (1996), situations where ξ < −0.5 are extremely rare in

environmental data. It is also worth noting that the scale parameter and the threshold are

related. If the threshold is changed to u′ > u, then the new exceedances are also described

by a GPD with same shape parameter ξ and scale parameter σ′ = σ + ξ(u′ − u). The

next section describes how this lack of identification may be partially resolved through

appropriate model specifications.

Extreme value theory is also concerned with determination of higher quantiles, ie.,

q-values satisfying P (X > q) = p for small values of p. The theory above allows also
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estimation of these higher quantiles beyond the threshold as they are simply functions of

the GPD parameters. The d.f. of the GPD is given by

G(x|ξ, σ, u) =

 1−
(
1 + ξ (x−u)

σ

)−1/ξ

, if ξ 6= 0

1− exp{−(x− u)/σ}, if ξ = 0
,

for x ∈ Cξ. Thus, q can be found by inversion of the equation p = G(q | ξ, σ, u) for any

given probability p ∈ [0, 1]. This gives

q =
((1− p)−ξ − 1)σ

ξ
.

These quantiles are important design parameters specially in extreme cases with p ap-

proaching 0 and we shall concentrate on their estimation. They will also illustrate the

advantage of incorporation of the GPD into the model.

1.3. Related work

Different approaches have been proposed in the literature recently under the Bayesian

paradigm. Bermudez et al. (2001) suggest an approach that only considers the probability

cumulated up to the threshold and estimates it based on the data frequency. Frigessi et

al. (2002) considers mixture of two distributions: GPD and Weibull, with data dependent

weights. Tancredi et al. (2003) uses a mixture of uniform densities for the central part

of the data and the number of observations beyond the threshold is a parameter to be

estimated. Behrens et al. (2004) uses a Gamma distribution below the threshold and a

GPD above it. The threshold is a parameter to be estimated. This paper builds on their

work by applying a mixture of Gamma densities to the central part. It will be shown that

this generalization provides gains in flexibility and adequacy.

1.4. Outline of the paper

Section 2 will present our model for extreme data analysis, based on a combination

of mixture of Gamma below the threshold and GPD for the tail. Inference procedure is

carried out via MCMC and some computational details are also provided there. Section
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3 illustrates the method with a few simulated examples. This exercise will also provide a

useful benchmark for the model comparisons carried out. Section 4 presents two applica-

tions to extreme data analysis: river flow levels in Puerto Rico and rainfall in Portugal.

The results are compared with those obtained with other approaches. Section 5 draws

some concluding remarks and points at possible extensions.

2. Model

In view of the introductory discussion, it seems reasonable to contemplate a model that

incorporates the flexibility of the mixture of Gamma for when there is data to estimate it

and uses the GPD for the tail of the distribution. The result of Pickands (1975) suggests

one would expect to get better results, specially in the tail, by using (3) instead of a

simple mixture of Gamma when data on maxima is involved.

Let h be the density of a MGk as in (1) and g be the density of the GPD, as in (3).

The density of our proposed model, denoted by MGPDk, is given by

f(x|θ, p, Ψ) =

 h(x | µ, η, p), if x ≤ u

[1−H(u | µ, η, p)] g(x|Ψ), if x > u
(4)

where H is the d.f. of the mixture of Gammas, already presented in Section 1. Typical

forms for this density are shown in Figure 1. Notice that model specification allows for

a discontinuity of the density at the threshold. Continuity constraints could be imposed

but this is an unnecessary condition. The nonparametric nature of the central part of the

density allows for appropriate adaptation. As a result, the density shows no noticeable

break for typical real data applications and all relevant calculations can be made without

any theoretical or applied difficulties.

The advantage of this model formulation is flexibility. A non-parametric approach

with only mild continuity assumptions is considered for the center of the distribution

without imposing any specific parametric form or constraints such as unimodality. A

parametric approach can be safely assumed for the tail due to its theoretical backing. The

combination of these two blocks gives rise to the semi-parametric nature of our approach.
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The flexibility is also present in the choice of the threshold, performed through parametric

estimation. This allows for the division of the sample space into two data regimes: the

central part and the tail. This task is performed automatically, incorporating uncertainty

about all model components, and is governed by the data.

Figure 1

Recall from Section 1.2 that the GPD parameters are not uniquely identified. The

model (4) introduces an important element to help identification. Provided enough data

is observed, The Gamma mixture for the central part of the distribution can be sepa-

rated from the GPD and this change can be picked up from the likelihood. As a result,

clear identification of the threshold is obtained thus leading to correct identification of the

other GPD parameters. This is not an easy task and, as will be shown, requires a substan-

tial amount of data information. When there is no such information, mild probabilistic

constraints in the form of a prior distribution provide a suitable complement.

Once again, it is important to obtain higher quantiles of this distribution. This is

another advantage of this class of distributions over the Gamma mixture MGk. The

p-quantile q, satisfying P (X < q) = p, is obtained for this latter class of models after

solving

p = H(q | µ, η, p) =
k∑

j=1

pj

∫ q

0

fG(x | µj, ηj)dx. (5)

There is no explicit solution for (5) analytically. These quantiles must be computed

numerically. In this work, this was achieved by an exhaustive search over a range of

values.

Another advantage of the MGPDk class is the case with which higher quantiles can

be obtained. For values beyond the threshold, the d.f. of the MGPDk model is given by

F (x | θ, p, Ψ) = H(u | µ, η, p) + [1−H(u | µ, η, p)] G(x|Ψ).

Therefore, it is straightforward to obtain the p-quantile as

q =
((1− p∗)−ξ − 1)σ

ξ
, (6)
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where

p∗ =
p−H(u | µ, η, p)

1−H(u | µ, η, p)
.

Note that this quantile is a highly nonlinear funcion of the model parameters. Therefore,

its posterior distribution can only be obtained via approximating techniques. Once this

distribution is (approximately) obtained for any given probability p, it can provide useful

information about the extreme behavior of the data both in terms of point estimates

through posterior means or medians and in terms of uncertainty through their credibility

intervals.

2.1. Prior distribution

A relevant aspect of mixture models is the inherent lack of identifiability. Therefore,

some restriction must be imposed to allow identification of the model parameters. Diebolt

and Robert (1994) and Frühwirth-Schnatter (2001) among others impose order restrictions

over the means in Gaussian mixtures. This procedure is also applied here as in Wiper et

al. (2001) and the parameter space is hereafter restricted to C(µ) = {µ|0 < µ1 < µ2 <

· · · < µk}. Therefore, the prior for µ is taken in the form

p(µ1, . . . , µk) = K
k∏

i=1

fIG(µi | ai/bi, bi)I(µ1 < µ2 < . . . < µk),

where K−1 =
∫

C(µ)

∏k
i=1 p(µi)d(µ1, . . . , µk) and fIG is the inverse Gamma density with

parameters defined as in the corresponding Gamma.

The prior for shape parameters η is taken as a product of Gamma distributions with

η ∼ G(cj/dj, cj), for some positive constants cj and dj, for j = 1, . . . , k. The prior for

weights is taken as p ∼ Dk(γ1, . . . , γk), where Dk(w1, . . . , wk) represents the Dirichlet

distribution with density proportional to
∏k

i=1 pwi
i .

There are many possibilities available for the GPD parameters σ and ξ. Coles and

Tawn (1996) define Gamma prior distributions for quantiles based on expert opinion.

They then used the relation between the quantiles and the parameters to induce their
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priors. Castellanos and Cabras (2007) obtained the non-informative prior for (σ, ξ) as

π(σ, ξ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2, ξ > −0.5, σ > 0. (7)

They also showed that this prior leads to proper posterior distributions.

The prior distribution for the threshold was taken as a normal distribution N(µu, σ
2
u),

as suggested by Behrens et al. (2004). Care must be exercised when specifying these

models hyperparameters. The mean µu may have a strong influence over the resulting

inference. Thus, the recommendation is that it should be placed around suitably large

order statistics of the sample. Also, this prior should not be too concentrated unless there

is substantial prior knowledge about this parameter. This is rarely the case since this is

an artificial parameter, governing only when approximation of the tail by the GPD can be

safely assumed. It should not be made entirely vague either because of the identification

issue referred to in Section 1.2. Once again, it seems reasonable to have the threshold

concentrated around the upper end of the sample. In doing that, it also rules out the

possibility of a negative value for the threshold for all practical purposes. An alternative

is to truncate the prior from below to avoid negative values but this was not needed in

our applications.

2.2. Posterior and predictive distributions

Assuming the presence of a sample x = (x1, . . . , xn) from (4), the posterior density is

obtained in the log scale as

log π(θ, p, Ψ|x) = Z +
∑

i:xi≥u

log

(
k∑

j=1

pjfG(xi|µj, ηj)

)
+
∑

i:xi≥u

log

[
1−

k∑
j=1

pjFG(u|µj, ηj)

]

−
∑

i:xi≥u

[
log(σ)− 1 + ξ

ξ
log

(
1 +

ξ(xi − u)

σ

)]

+
k∑

j=1

[(cj − 1) log(η)− djηj − (aj + 1) log(µ)− bj/µj]

− 1

2

(
u− µu

σu

)2

− log(σ)− log(1 + ξ)− (1/2) log(1 + 2ξ), (8)
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where Z is a normalizing constant, the first two lines above come from the likelihood and

the remaining ones come from the prior.

Inference cannot be performed analytically and approximating MCMC methods are

used. Parameters were separated into blocks and each block was updated according to

a Metropolis rule, since none has a full conditional density in recognizable form. Unlike

previous work on mixtures (eg. Diebolt and Robert (1994) and Wiper et al. (2001)), the

introduction of latent variables indicating the mixture components does not lead to full

conditional distributions that can be easily sampled from. This difficulty is mainly due

to the combination of the mixture with another distribution for the tail. Details of the

sampling algorithm are provided in the Appendix. Proposal variances were tuned with

a variation of the method proposed by Roberts and Rosenthal (2006), with variances

smaller than their target value since our blocks are multidimensional.

Prediction for a new observation is as important as parameter and quantile estimation.

Different combinations of parameters may lead to the same, undistinguishable predictions.

These evaluations are better performed through the predictive density. For any given data

set x, the density for a new observation xn+1 is given by

f(xn+1|x) =

∫
f(xn+1, θ, p, Ψ|x)dθdpdΨ

=

∫
f(xn+1|θ, p, Ψ)p(θ, p, Ψ|x)dθdpdΨ

= E(θ,p,Ψ)|x (f(xn+1|θ, p, Ψ)) .

This integration can not be performed analytically and Monte Carlo approximation may

be used instead. This gives f̂(xn+1|x) = 1
I

∑I
i=1 f(xn+1|θ(i), p(i), Ψ(i)), where (θ(i), p(i), Ψ(i))

is a value sampled from π(θ, p, Ψ|x), for i = 1, · · · , I. For model MGPDk, f(xn+1 |

θ(i), p(i), Ψ(i)) is given by (4). The expression of the sampling density simplifies to (1) for

model MGk.
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3. Simulations

Simulations based on samples from the proposed model were made with a number of

purposes. Initially they can provide empirical evidence of model identifiability. But it

also allows for appropriate validation of model selection criteria used. This latter exercise

will enable the use of these criteria for the analysis of real data in the next Section. The

rationale behind this idea is that if the criteria appropriately selects the correct model

when we know which one it is, then it should behave well in practical situations, when we

do not know which, if any, is the best model.

It could be argued that mixture models MGk are capable of handling any positive

data by selecting an appropriately large number of components in the mixture. If that

were true, models MPGDk would be an unnecessary complication. The exercises in this

section will show that in practice clear gains are obtained with models MPGDk when

extreme data is present.

The simulation exercise was performed with samples of sizes 1,000 and 10,000. The

exercises are based on mixture of two Gamma distributions with µ = (2, 8) and η = (4, 8).

Different values were used for the GPD tail with σ = 2, 3 and 5, ξ = −0.4 and 0.4 and

threshold at the 90% and 99% data quantiles. When the threshold is set at a very

high value (99% quantile), reliable estimation can only be performed for larger data sets

(n = 10, 000). For this threshold, only the results with larger data sets are reported.

Prior distribution for mixture parameters were µj ∼ IG(2.1, 5.5) and ηj ∼ G(6, 0.5),

for j = 1, . . . , k, and π(p) ∼ Dk(1, . . . , 1). These distribution have mean around the

actual parameter value but with large variance to represent lack of information. Prior

distribution for the GPD parameters was given by Jeffreys prior for (ξ, σ) and for the

threshold was used a normal distribution with mean given by actual value and a suitably

large variance. This is reasonably vague but does provide some information. The prior

variance for the threshold was chosen in a way that the 95% credibility intervals for the

threshold range a priori from around the 50% to the 99% data quantiles. Thus, they

are only mildly informative, giving enough flexibility for influence of the likelihood. Very
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large variances for the threshold could also be considered and cause no problem to the

inference for large data sets. Problems associated with such vague prior distributions for

small to moderate sample sizes are illustrated in the next Section.

Figures 2, 3 and 4 show the predictive densities in three of the simulation exercises.

They clearly show the inadequacy of model MGPD1 with predictions far from the true

density. Results from models MGPD2 and MGPD3 are undistinguishable and very close

to the true density, specially when n = 10, 000 (see Figures 3 and 4). The models MGk

involving only mixtures of Gamma provide a good fit in the central part of the distribution

but do not perform so well in the tail, as expected. This is illustrated in Figures 2 and

specially 3 and 4 for the best fit model in this class according to deviance information

criterion (DIC) (Spiegelhalter et al., 2002).

Figure 2

Figure 3

Figure 4

Figures 5, 6 and 7 show posterior histograms of the tail parameters for the above

examples with k = 2. Parameters are well estimated with actual values close to their

respective point estimates and comfortably inside their 95% credibility intervals for the

simulations with threshold at 90% data quantile. Notice also that the credibility intervals

concentrate more around true values as sample sizes increase, as expected. Tail estimation

is virtually unchanged when 3 components are used in the Gamma mixture. When only

one Gamma distribution is used, the threshold is not well estimated and this affects

also the estimation of the other tail parameters. Estimation is not as precise when the

threshold is located at the 99% data quantile, as shown in Figure 7. The predictive density

however is well estimated, as shown in Figure 4 .

Figure 5

Figure 6

Figure 7

Figures 8 and 9 illustrates the effect of large prior variances for the threshold for
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sample size 1,000 and 10,000. Figure 8 shows that suitable values are required for the

prior variance for the threshold to ensure appropriate inference with good recovery of the

true value, when n = 1, 000. Large prior variances may lead to erroneous estimation,

indicating possible divergence. For larger data sets (n = 10, 000), the specific value of the

prior variance for the threshold does not seem to affect the posterior inference. Figure 9

shows that the threshold is well estimated and point and interval estimates are virtually

the same for a large range of values for the prior variance for the threshold. This is a clear

indication that the likelihood here is strong enough to correctly identify the true values.

The prior variance for the threshold affects the posterior correlation. When σ2
u = 10,

it changed from 0.08 when n = 1, 000 to 0.69, when n = 10, 000. Despite the correlation,

all parameters are well within their respective 95% posterior credibility interval limits.

Similar results were obtained in other situations for a variety of values for the GPD

parameters.

Figure 8

Figure 9

Table 1 and 2 shows the fit results of different models to a number of data generating

conditions. It shows that in most cases, the best fitted models are the true ones, indicating

the model ability to identify itself correctly. Table 1 shows that 75% of the results (9 out

of 12) with the DIC identified the model correctly. This figure is slightly increased to

10 out of 12 with the BIC (Schwarz, 1978) . Theses figures also indicate that BIC and

DIC seem to provide reliable sources for comparison of model fit even in these mixture

settings. It can also be noticed that the DIC identifies the correct number of effective

parameters through its Pd component, as shown in Table 1.

A good example is the exercise with n = 1, 000, σ = 3 and ξ = 0.4. The effective

number of components is basically the same for k = 2 and k = 3. Figure 10 shows that

when the true model has k = 2 components, and a model MGPD3 is estimated, the

weight of the 3rd component is about 0. Also, the weights of the first two components

mimic the weights of model MGPD2. In other words, the correct model is recovered.
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Figure 10

Table 1

Table 2 shows the performance of the different models for data generated with thresh-

old at the 99% data quantile. Model MGPD2 obtained the best performance and no

model in the MGk class outperforms it.

Table 2

One of the main interests in extreme data analysis is the correct identification of

extreme points or higher quantiles. These were also estimated for all models considered

and also compared against the true and the empirical quantiles. Table 3 shows some of

these results. None of the methods seem to outstand when n = 1, 000. The empirical

estimate is better in 5 of them, while the MGPD is better in 4 and the MG in 3. The

situation changes when n = 10, 000. The MGPD estimates outperforms even the empirical

estimates with better performance in 8 of the 12 simulations. A direct comparison between

the MGPD and MG classes shows indifference between them when n = 1, 000 and vast

superiority of the MGPD when n = 10, 000 in 11 out of the 12 simulations. These results

seem to indicate that the MGPD class is appropriate for the study extreme values data

and that its superiority over mixtures of Gamma distributions is more evident for larger

data sets.

Table 3

This section serves a few purposes. The first and most obvious one is to ensure that

the model is capable to identify data generated from itself. One could have anticipated

that using only a mixture of Gamma densities would provide a fit just as adequate by

enlarging the number of components on the mixture. The exercises performed in this

section seem to indicate that this is not true. Also, the specification of mildly informative

prior distribution for the threshold was discussed and shown to lead to sensible inference

without the need for strong prior inputs. Basic assumptions about the threshold, available

in any problem, are enough to ensure appropriate inference. In passing, the results indicate

that DIC and BIC are reliable sources of comparison, even in these mixture settings.

14



4. Applications

This section shows results of real data analyses of extreme data from environmental

sciences: river flow levels in Puerto Rico and pluviometric levels in Portugal. Comparisons

of the models proposed here against verions of those in Wiper et al. (2001) and Behrens

et al. (2004) are also carried out.

4.1. River flow in Puerto Rico

This analysis is based on datasets consisting in the measurement of the levels of flow

of two rivers located in Northeast Puerto Rico in ft3/s: Fajardo and Esṕırito Santo. The

data was recorded daily from April 1967 to September 2002 and is freely available from

www.waterdata.usgs.gov. We analysed fortnightly maxima data.

Figure 11 shows the predictive density of the three classes of models where differences

are apparent. Model MGPD3 presents higher values up to around 200. Model MG3

follows model MGPD3 closer than model MGPD1 but gets away around the most likely

threshold locations. All models place the mean posterior threshold at around the 80%

data quantile.

Figure 11

Fit measures are provided in Table 4. According to the BIC, model MG2 was the best

fit for both rivers while according to the DIC, model MGPD3 was the best fit for both

rivers. In any case, there is clear indication of relevance of using mixtures for the central

part of the data.

Table 4

4.2. Pluviometric levels in Portugal

This analysis is based on datasets consisting in the measurement of the amount of

rain in two monitoring stations in Portugal: Barcelos, in the North, and Grândola, in the

South. These two station were chosen to characterize contrasting climatological patterns

between a rainier region (North) and a drier region (South). The data was recorded daily

from 1931 to 2008 and is freely available from www.snirh.pt. We analyzed fortnightly
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maxima data. Figure 12 presents the mean amount of rain in the different regions of

Portugal between 1940 and 1997.

Figure 12

Figure 13 shows the predictive density of the three classes of models where differences

are apparent. Model MGPD1 estimates a very low threshold, resulting in a prediction

that is not compatible with the data histogram. The predictive densities for models

MGPD3 and MG3 are close in the central part of the distribution.

Figure 13

Table 5 presents the measures of fit for data from the two stations. The models pro-

posed here presented superior performance for both rivers and for both assessment criteria:

BIC and DIC. These results provide substantial evidence of their potential relevance in

practical data analyses.

Table 5

4.3. Estimation of higher quantiles

Precise determination of higher quantiles is one of the main interests in extreme data

analysis. These quantiles were evaluated for both data sets. Illustration of this task is

provided below for river Esṕırito Santo and for station Barcelos in Table 6.

According to our preferred model, Esṕırito Santo river flows above 2, 718 ft3/s occur

on average with 0.1% probability or around once every 10 years. Figure 14 shows the

posterior histogram for the 99.9% quantile, denoted qx,0.999. The distribution is skew as

expected and concentrated around the corresponding data quantile. It may be compared

against the corresponding quantile estimated by maximum likelihood (ML) methods, as in

Coles et al. (1994). Setting the threshold value at the 3 posterior quartiles, the respective

ML estimates of qx,0.999 are given by 2, 607, 2, 509 and 2, 562 ft3/s. In this case, the

posterior point estimate of this quantile is closer to the classical estimate obtained with

the a choice of the threshold at its lower tail.

Figure 14
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Similarly, rainfall levels around Barcelos station that are above 185 mm occur on

average with 0.01% probability or around once each century. Figure 15 shows the pos-

terior histogram for the 99.99% quantile, denoted qx,0.9999. The distribution is also skew

as expected and concentrated around the corresponding data quantile. It may also be

compared against the corresponding quantile estimated by maximum likelihood (ML)

methods. Setting the threshold value at the 3 posterior quartiles, the respective ML es-

timates of qx,0.9999 are given by 148, 150 and 152 mm. In this case, the posterior point

estimate of this higher quantile is closer to the classical estimate obtained with a choice

of the threshold at its upper tail. No such choice is required to obtain the posterior dis-

tribution or its mean since these are based on integration over the other parameters, thus

automatically incorporating their uncertainty.

Figure 14

Figure 15

Table 6

In the absence of knowledge of the true quantiles, comparisons can be made using the

empirical quantile as benchmark to compare with. Results are inconclusive for the data

of river Esṕırito Santo with alternation between models MG and MGPD. Results are

very clear for the Barcelos station with all higher quantiles from the MGPD class closer

to the empirical estimates than the estimates from the MG class. These results provide

further reassurance that the models proposed here provide sensible results and can be

used for extreme value data analysis.

5. Conclusion

This paper presents a methodology for extreme value estimation based on a complete

model for the entire sample space. Presence of a model component that takes into ac-

count theoretical results about the limiting behavior of extremes seem to improve the

performance of the models. Additionally, the region where extreme behavior takes place

is explicitly characterized through threshold estimation. This may prove useful for prac-
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titioners wishing to establish the extreme region.

Simulation results suggest that this class of models can be identified from the data

even in the presence of vague prior information. The only exception is the threshold

that requires some form of prior information. This should not be too much of a problem

because the threshold is usually located in the region of higher empirical quantiles and

this information suffices for correct identification. Simulation also showed that BIC and

DIC provide sound indication of model performance in these mixture settings.

These models may be improved and extended in a number of directions. Cabras et al.

(2008) considered the inclusion of covariates in a GPD model formulation. One natural

extension would be the consideration of a regression structure for the GPD component

on our models. Another extension is the consideration of temporal data dependence.

Initial efforts in this direction were proposed by Lopes (2007). Further developments

in this direction to include trend and seasonality can provide useful additions to the

understanding of these processes.
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Appendix: MCMC algorithm

Sampling was made in blocks with Metropolis-Hastings proposals for each block due

to unrecognizable form of the respective full conditionals. Each GPD parameter was

sampled separately, the pair (µ, η) for each mixture component was sampled in a block

and the weights p were sampled in a single block.

Details of the MCMC sampling scheme are given below. At iteration s, parameters

are updated as follows:

• ξ: Proposal transition kernel for ξ is given by a truncated normal

ξ∗ | ξ(s) ∼ N(ξ(s), Vξ)I(−σ(s)(M − u(s)),∞),

where Vξ is a variance appropriately chosen to ensure chain mixing and M =

max(x1, . . . , xn). So, ξ(j+1) = ξ∗ with probability αξ, where

αξ = min

{
1,

π(Θ∗|x)Φ((ξ(s) + σ(s)/(M − u(s))/
√

Vξ))

π(Θ̃|x)Φ((ξ∗ + σ(s)/(M − u(s))/
√

Vξ))

}
,
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where Φ is the d.f. of the standard normal distribution, Θ∗ = (µ(s), η(s), p(s), u(s), σ(s), ξ∗)

and Θ̃ = (µ(s), η(s), p(s), u(s), σ(s), ξ(s)).

• σ

If ξ(s+1) > 0, then σ∗ is sampled from the Gamma distribution G(σ(s), σ(s)2/Vσ),

where Vσ is the variance of the proposal distribution appropriately chosen to ensure

chain mixing.

If ξ(s+1) < 0, then σ∗ is sampled from a N(σ(s), Vσ)I(−ξ(s+1)(M − u(s)),∞)

So, σ(s+1) = σ∗ with probability ασ where, if ξ(s+1) < 0,

ασ = min

{
1,

π(Θ∗|x)Φ((σ(s) + ξ(s+1)(M − u(s))/
√

Vσ))

π(Θ̃|x)Φ((σ∗ + ξ(s+1)(M − u(s))/
√

Vσ))

}
,

and if ξ(s+1) > 0,

ασ = min

{
1,

π(Θ∗|x)fG(σ(s)|σ∗, σ∗2/Vσ)

π(Θ̃|x)fG(σ∗|σ(s), σ(s)2/Vσ)

}
,

where Θ∗ = (µ(s), η(s), p(s), u(s), σ∗, ξ(s+1)) and Θ̃ = (µ(s), η(s), p(s), u(s), σ(s), ξ(s+1)).

• u

The threshold u∗ is sampled from a N(u(s), Vu)I(a(s+1),∞) distribution where a(s+1) =

min(x1, . . . , xn) if ξ(s+1) ≥ 0 and a(s+1) = M +σ(s+1)/ξ(s+1), if ξ(s+1) < 0. The lower

limit of the truncation is chosen to satisfy the sample space of the GPD in (3). Vu

is the variance chosen to ensure appropriate chain mixing. Then, accept u(s+1) = u∗

with probability αu, where

αu = min

{
1,

π(Θ∗|x)Φ((u(s) − a(s+1))/
√

Vu)

π(Θ̃|x)Φ((u∗ − a(s+1))/
√

Vu)

}
,

where Θ∗ = (µ(s), η(s), p(s), u∗, σ(s+1), ξ(s+1)) and Θ̃ = (µ(s), η(s), p(s), u(s), σ(s+1), ξ(s+1)).

• (µj, ηj) For j = 1, ..., k

Since ηj is positive, the proposal kernel is taken as the Gamma distribution

η∗j |η
(s)
j ∼ G(η

(s)
j , η

(s)2

j /Vηj
),
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where η
(s)
j is the value ηj at iteration s and Vηj

is the variance chosen to ensure

appropriate chain mixing. Note that E(η∗j | η
(s)
j ) = η

(s)
j , and V ar(η∗j | η

(s)
j ) = Vηj

,

j = 1, . . . , k.

Since µj is also positive, the proposal kernel is taken as the Gamma distribution

µ∗
j |µ

(s)
j ∼ G(µ

(s)
j , µ

(s)2

j /Vµj
)I(µ

(s+1)
1 < . . . < µ

(s+1)
j−1 < µ

(s)
j . . . < µ

(s)
k ),

where µ
(s)
j is the value of µj at iteration s and Vµj

is the variance chosen to ensure

appropriate chain mixing.

The values η
(s+1)
j = η∗j and µ

(s+1)
j = µ∗

j are accepted with probability αµj ,ηj
, where

αµj ,ηj
= min

{
1,

π(Θ∗|x)fG(µ(s)
j |µ∗

j , µ
∗2
j /Vµ)fG(η(s)

j |η∗j , η∗2j /Vη)I(µ(s+1)
1 < . . . < µ∗

j . . . < µ
(s)
k )

π(Θ̃|x)fG(µ∗
j |µ

(s)
j , µ

(s)2
j /Vµ)fG(η∗j |η

(s)
j , η

(s)2
j /Vη)I(µ(s+1)

1 < . . . < µ
(s)
j . . . < µ

(s)
k )

}
,

where Θ∗ = (η
(s+1)
<j , η∗j , η

(s)
>j , µ

(s+1)
<j , µ∗

j , µ
(s)
>j , p

(s), u(s+1), σ(s+1), ξ(s+1)) and

Θ̃ = (η
(s+1)
<j , η

(s)
≥j , µ

(s+1)
<j , µ

(s)
≥j , p

(s), u(s+1), σ(s+1), ξ(s+1)).

• p

The vector of weights is proposed from a Dirichlet distribution p∗ ∼ Dk(Vpp
(s)
1 , . . . , Vpp

(s)
k ).

So, p(s+1) = p∗ with probability

αp = min

{
1,

π(Θ∗|x)fD(p(s)|p∗)
π(Θ̃|x)fD(p∗|p(s))

}
,

where Θ∗ = (η(s+1), µ(s+1), p∗, u(s+1), σ(s+1), ξ(s+1)) and Θ̃ = (η(s+1), µ(s+1), p(s), u(s+1), σ(s+1), ξ(s+1)).
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σ = 2 σ = 3 σ = 5

k Pd DIC BIC k Pd DIC BIC k Pd DIC BIC

n=1000

ξ = 0.4

1 0.77 4653.7 4691.5 1 3.61 4603.9 4648.1 1 4.58 4699.8 4747.6

2 6.79 4468.2 4542.5 2 7.81 4547.1 4624.6 2 4.70 4660.6 4728.1

3 6.50 4469.1 4563.1 3 7.83 4547.4 4645.4 3 4.17 4662.5 4749.3

3* 7.70 4466.6 4543.9 3* 7.41 4552.2 4628.4 3* 2.68 4684.8 4742.3

ξ = −0.4

1 2.85 4388.9 4435.3 1 3.56 4462.7 4510.1 1 5.08 4754.9 4807.6

2 6.77 4345.5 4421.7 2 6.53 4426.3 4501.9 2 8.81 4522.6 4603.8

3 6.61 4345.8 4442.3 3 6.76 4425.7 4522.6 3 9.03 4522.1 4624.6

2* 5.18 4366.1 4418.1 2* 5.27 4440.9 4493.1 2* 5.12 4556.0 4607.9

n=10000

ξ = 0.4

1 -0.95 46817 46857 1 2.04 47610 47665 1 6.55 48621 48691

2 7.77 44718 44814 2 5.68 45530 45621 2 7.20 46548 46644

3 4.61 44727 44842 3 4.67 45534 45649 3 7.07 46548 46671

4* 7.68 44734 44859 3* 7.17 45560 45656 5* 9.98 46594 46753

ξ = −0.4

1 5.71 45372 45440 1 1.79 44416 44467 1 3.06 47215 47275

2 8.65 43171 43272 2 7.51 43986 44083 2 7.80 45008 45106

3 8.57 43172 43300 3 4.32 43997 44112 3 7.57 45009 45133

5* 8.94 43211 43368 2* 4.79 44064 44129 4* 6.81 45057 45181

Table 1: Measures of fit for the simulations with threshold set at the 90% data quantile. ∗ indicates the

best MGk model, ie, with smallest DIC value.
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σ = 2 σ = 3 σ = 5

k Pd DIC BIC k Pd DIC BIC k Pd DIC BIC

n=10000

ξ = 0.4

1 5.41 46656 46718 1 -0.56 46771 46813 1 3.54 46906 46967

2 4.08 44623 44708 2 6.76 44696 44791 2 6.28 44799 44893

3 3.93 44623 44736 3 7.18 44695 44819 3 7.01 44798 44921

4* 9.39 47116 47244 3* 5.65 44731 44824 4* 6.67 44855 44978

ξ = −0.4

1 3.04 44535 44592 1 2.04 47610 47665 1 1.01 46415 46469

2 6.13 44104 44198 2 5.23 44187 44279 2 5.74 44288 44381

3 5.78 44105 44226 3 3.28 44193 44307 3 5.52 44289 44409

5* 5.40 44122 44272 3* 5.07 44204 44298 5* 8.13 44307 44462

Table 2: Measures of fit for the simulations with threshold set at the 99% data quantile. ∗ indicates the

best MGk model, ie, with smallest DIC value.
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Prob T E 1 2 3 MGk T E 1 2 3 MGk

n=1000 n=10000

σ = 2

0.95 10.4 10.5 10.0 10.4 10.4 10.5 10.7 10.7 10.0 10.7 10.7 10.8

0.99 16.4 15.1 15.0 16.0 16.0 15.2 16.6 16.4 15.2 16.4 16.4 16.5

0.999 35.4 33.8 42.8 44.4 46.2 37.3 35.6 32.0 30.4 33.6 33.8 32.5

0.9999 83.1 54.0 5950.0 710.3 516.8 65.2 83.3 60.0 65.5 74.6 75.5 47.7

σ = 3

0.95 11.2 11.3 12.5 11.0 11.0 11.1 11.5 11.5 10.4 11.4 11.4 11.4

0.99 20.2 18.3 20.0 19.8 19.9 19.0 20.4 20.1 18.0 20.0 19.9 21.4

0.999 48.7 46.3 35.9 54.3 56.8 48.8 48.9 43.5 42.3 47.2 46.7 41.2

0.9999 120.2 76.8 54.9 183.3 209.8 85.0 120.5 85.4 103.7 116.2 113.7 60.4

σ = 5

0.95 12.8 12.9 13.8 12.5 12.4 12.4 13.1 13.1 11.4 13.0 13.0 12.8

0.99 27.8 24.6 26.0 27.4 27.6 29.0 28.0 27.4 24.2 27.3 27.3 29.7

0.999 75.2 71.3 53.5 92.1 96.1 64.4 75.5 66.4 63.2 71.0 70.8 53.7

0.9999 194.5 121.7 100.8 363.0 402.9 109.6 194.7 136.3 157.0 177.1 176.1 77.5

Table 3: Quantiles of simulations with ξ = 0.4 and threshold set at the 90% data quantile. Prob =

P (X ≤ q), T = True, E= Empirical, 1 = MGPD1, 2 = MGPD2, 3 = MGPD3. MGk refers to the best

model in this class.
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Esṕırito Santo Fajardo

k Pd DIC BIC Pd DIC BIC

MGk

1 2.12 11330 11353 2.01 11441 11463

2 3.87 11275 11322 4.65 11310 11355

3 3.87 11275 11342 4.53 11307 11371

4 4.68 11273 11362 9.31 11293 11391

5 11.04 11288 11410 7.22 11265 11382

MGPDk

1 0.83 11299 11336 1.05 11327 11361

2 4.11 11264 11329 0.53 11327 11380

3 6.71 11255 11349 6.28 11264 11357

4 5.32 11265 11377 6.89 11268 11384

Table 4: Fit measures for the rivers Fajardo and Esṕırito Santo.
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Barcelos Grândola

k Pd DIC BIC Pd DIC BIC

MGk

1 2.02 8149 8172 1.98 6676 6701

2 3.94 7951 8001 4.21 6391 6442

3 4.50 7931 8003 4.18 6391 6462

4 3.88 7933 8022 4.26 6391 6483

5 4.55 7868 7980 4.05 6391 6503

MGPDk

1 3.41 8143 8184.1 0.20 4491 4522

2 5.76 7639 7712 5.31 4325 4397

3 7.08 7612 7709 7.01 4304 4400

4 6.63 7614 7729 6.42 4303 4417

Table 5: Fit measures for the stations Barcelos and Grândola
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Esṕırito Santo (in ft3/s) Barcelos (in mm)

Prob E 1 2 3 MGk E 1 2 3 MGk

0.95 798 793.29 813.52 807.54 842.7 73.1 74.54 77.54 73.29 74.71

0.99 1360 1426.04 1450.79 1443.85 1398.8 99.4 101.73 105.38 102.24 104.09

0.999 2600 2677.56 2726.55 2718.29 2197.0 117.5 137.84 139.91 137.77 151.50

0.9999 N/A 4612.30 4734.16 4710.35 3014.0 143.5 171.41 176.12 184.54 233.00

Table 6: Higher quantiles for river Esṕırito Santo and Barcelos station. Prob= P (X ≤ q), E = Empirical,

1 = MGPD1, 2 = MGPD2, 3=MGPD3. MGk refers to the best model in this class.
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Figure 1: Probability density function of the proposed model for a number of parameter values: (a) -

σ = 2 and ξ = −0.4; (b) - σ = 2 and ξ = 0.4; (c) - σ = 3 and ξ = −0.4; (d) - σ = 3 and ξ = 0.4.

The central part is based on a mixture of 2 Gamma distributions. The dashed lines represent

the continuation of the mixture of Gamma densities beyond the threshold.
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Figure 2: Predictive density for data simulated with ξ = 0.4, σ = 3, n = 1, 000 and threshold set at 8.85,

the 90% data quantile. Left panel: full density; right panel: detail of density in the tail. Full line is true

density, dashed lines are predictive densities from MGPDk, k = 1, 2, 3 and dotted line is the predictive

density from model MG3, the best in the MGk class. Vertical line indicates location of the threshold.
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Figure 3: Predictive density for data simulated with ξ = 0.4, σ = 5, n = 10, 000 and threshold set at 9.08

(the 90% data quantile). Left panel: full density; right panel: detail of density in the tail. Full line

is true density, dashed lines are predictive densities from MGPDk, k = 1, 2, 3 and dotted line

is the predictive density from model MG5, the best in the MGk class. Vertical line indicates

location of the threshold.
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Figure 4: Predictive density for data simulated with ξ = 0.4, σ = 2, n = 10, 000 and threshold set at

13.97 (the 99% data quantile). Left panel: full density; right panel: detail of density in the tail. Full

line is true density, dashed lines are predictive densities from MGPDk, k = 1, 2, 3 and dotted line is the

predictive density from model MG3, the best in the MGk class. Vertical line indicates location of the

threshold.
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Figure 5: Posterior histogram of GPD parameters when ξ = 0.4, σ = 3, n = 1, 000 and threshold set

at 8.85 (the 90% data quantile). From left to right: u, σ and ξ. Vertical lines indicates location of true

values.
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Figure 6: Posterior histogram of GPD parameters when ξ = 0.4, σ = 5 and n = 10, 000 and threshold

set at 9.08 (the 90% data quantile). From left to right: u, σ and ξ. Vertical lines indicates location of

true values.
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Figure 7: Posterior histogram of GPD parameters when ξ = 0.4, σ = 2, n = 10, 000 and threshold set

at 13.97 (the 99% data quantile). From left to right: u, σ and ξ. Vertical lines indicates location of true

values.
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Figure 8: Predictive density for data (represented in histogram form) simulated with k = 2, σ = 2,

ξ = 0.4, u = 8.85 and n = 1, 000. Left panel: full density; right panel: density around the true thresohld

value. The full line indicates the true density, the dashed line is the predictive density for model with

prior variance σ2
u = 10 for the threshold, the dotted line is the predictive density for model with prior

variance σ2
u = 10, 000 for the threshold. Vertical lines indicates location of threshold: full - true; dashed

- model with σ2
u = 10. The 95% posterior credibility interval for the threshold is (8.06,11.97), when

σ2
u = 10.
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Figure 9: Predictive density for data (represented in histogram form) simulated with k = 2, σ = 2,

ξ = 0.4, u = 9.08 and n = 10, 000. Left panel: full density; right panel: densidade around the true

thresohld value. The full line indicates the true density and, the dashed line is the predictive density for

σ2
u = 10 and the dotted line is the predictive density for σ2

u = 10, 000. Vertical lines indicates location of

threshold: full - true; dashed - model with σ2
u = 10, dotted - model with σ2

u = 10, 000. The 95% posterior

credibility interval for the threshold are (8.73,10.14), when σ2
u = 10, and (8.76,10.18), when σ2

u = 10, 000.

38



Figure 10: Trace plots of weights p when n = 1, 000, σ = 3 e ξ = 0.4: left - weights from model MGPD2;

right - weights from model MGPD3.
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Figure 11: Predictive densities for data from Esṕırito Santo river: full line - MGPD3; dashed line -

MGPD1, dotted line - MG3, vertical lines: respective posterior means of the threshold.
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Figure 12: mean pluviometric levels in Portugal, with location of two stations used in the analysis.
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Figure 13: Predictive densities for data from Barcelos station: full line - MGPD3; dashed line - MGPD1,

dotted line - MG3, vertical lines: respective posterior means of the threshold.

42



Figure 14: Posterior histogram of the 99.9% quantile of river Esṕırito Santo, under MGPD3. Vertical

lines: full - posterior mean; dashed - empirical. The posterior standard deviation of the 99.9% quantile

is 560.157 ft3/s.
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Figure 15: Posterior histogram of the 99.99% quantile of Barcelos station, under MGPD3. Vertical lines:

full - posterior mean; dashed - empirical. The posterior standard deviation of the 99.9% quantile is 22.51

mm.
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