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Linear Mixed Models for Skew-Normal /
Independent bivariate responses with an
application to Periodontal Disease

Dipankar Bandyopadhyay?*, Victor H. LachosP®, Carlos A. Abanto-Valle® and
Pulak GhoslH

Bivariate clustered (correlated) data often encounteredn epidemiological and clinical research are routinely
analyzed under a linear mixed model framework with underlying normality assumptions of the random effects
and within-subject errors. However, such normality assumpions might be questionable if the data-set particularly
exhibit skewness and heavy tails. Using a Bayesian paradigmwe use the skew-normal/independent (SNI)
distribution as a tool for modeling clustered data with bivariate non-normal responses in a linear mixed model
framework. The SNI distribution is an attractive class of agymmetric thick-tailed parametric structure which
includes the skew-normal distribution as a special case. Wassume that the random effects follows multivariate
skew-normal/independent distributions and the random erors follow symmetric normal/independent distributions
which provides substantial robustness over the symmetric armal process in a linear mixed model framework.
Specific distributions obtained as special cases, viz. thkesw-t, the skew-slash and the skew-contaminated normal
distributions are compared, along with the default skew-nomal density. The methodology is illustrated through an
application to a real data which records the periodontal heéth status of an interesting population using periodontal
pocket depth (PPD) and clinical attachment level (CAL). Copright (© 2010 John Wiley & Sons, Ltd.
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1. Introduction

Periodontal disease usually refers to a collection of inflertory disease affecting tissues called periodontium that
surround and support the tooth and maintains them in thellagx{upper jaw) and mandibular (lower jaw) bones. If
left untreated, it can cause progressive bone loss aroendith with loosening and eventual loss. It is well docuradnt
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Figure 1. Histograms of tooth-level observed mean PPD and mean CAlesaverlayed with posterior predictive density estimatgag normal linear mixed model (NLMM)
and skew-normal (SN), skew(ST), skew-slash (SSL) and skew contaminated normal (S@N3itles as members of the SNILMM

that some 5% to 15% of any population is susceptible to seyereralized periodontitis worldwid&][ Being the primary
cause of adult tooth loss, it has been estimated that ab8atdd@.S. adults over the age of 35 experience early stages
of periodontal disease]. Periodontal progression is usually assessed by hygsoysmeasuring two correlated popular
bio-markers, viz. periodontal pocket depth (PPD) and ciihattachment level (CAL)Y].

The motivating data example for this paper comes from aadirstudy conducted at the Medical University of South
Carolina (MUSC) to determine the periodontal disease stattiype-2 diabetic Gullah-speaking African-Americanst F
an overall tooth level periodontal status, our bivariagpmse is the mean of the measurements, i.e. mean PPD and mean
CAL for the 6 sites observed simultaneously for each toostetkwithin a subject. More details on this data appears in
Section 2. With this type of multiple outcome measures, tideudying statistical question is to estimate the functitat
model their dependence on co-variates as well as to ineetibe relationship between these functions. Similaraain
and epidemiological studies often generate clustered dss/ongitudinal follow-up data with bivariate or multiiate
outcomes as primary endpoints which are routinely analys@ty multivariate linear mixed model][ In this paper, we
focus on a linear mixed effects model that accommodatestiik level clustering within subjects as well as the cotreta
among bivariate (PPD and CAL) measures and facilitateoldng of strength across all teeth when assessing the gffect
of co-variates, viz. age, gender, body mass index (obefitys, glycemic control (diabetic status), etc. on pesigel
disease progression. We seek to address the pertinentoiuédbw do potential co-variates influence periodontatss
of a particular tooth after accounting for subject-levelstéring?’. In traditional linear mixed model (LMM) analys
[5], the correlation due to clustered/repeated measures abjacs are usually accounted for through the inclusion of
random effects and within subject measurement-errorshndrie often assumed to be normally distributed. While such an
assumption makes data analysis amenable to popular seftikarSAS, the usual fidelity to normality assumptions has
been questionablé] 7, 8] when data exhibits non-normal behavior. Figure 1 showsdhedensity histogram plots of
tooth-level mean PPD (0-14mm) and mean CAL (0-12mm) in ota.dehe density histograms demonstrate considerable
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skewness along with (possible) thick tails. A common apgincedopted for data analysis in these situations is reggrtin
back to usual multivariate normality assumptions aftetadflié transformation of the response (viz. log transformpo
continuous scale. Although they may lead to reasonableraapiesults, they may be avoided when a suitable altaraati
theoretical model is available because data transformatimlers underlying data generation mechanisms due teceedu
information and often component-wise transformation dusdead to joint normality{]. Besides, transformations are
not universal, i.e. transforms used for one particular daag not be adapted for a different data. Moreover, mean PPD
and mean CAL can have zero values and this hinders the abitiigaf popular log transformations. This motivates
researchers to consider exploration of a more general negiedts framework that takes into account the flexibility in
distributional assumptions of random effects and measemnémrror to produce robust parameter estimates. The term
‘robustness’ is quite extensive; here robustness is aetligith respect to parameter estimation.

Considerable research has been done by introducing moilel@@arametric families that can accommodate normality
departures (skewness and heavy tails) and hence elimihatendéed of ad-hoc data transformatiod$)]] In the
context of LMM, the random effects distribution was relaxesing finite normal mixturess], smoothing [], a semi-
nonparametric (SNP) densit{]] or a thick-tailed normal/independent (NI) densiti@&][ Much of recent frequentist and
Bayesian advances in regression problems revolve aroemattitactive and popular skew-normal (elliptical) disitibns
[10, 13, 14, 15]. Related literature in this context is very rich [L6, 17] and the curious reader might choose to venture an
entire monographl[8] dedicated to discuss recent developments. Starting hétimiultivariate skew-normal (SN) density
[15], SN linear mixed models (SNLMM) were proposed B 9. A common feature of these classes of SNLMM’s is
that the normal linear mixed model (NLMM) is a special memibezach class.

In this article, we propose a parametric modeling of LMM fobust estimation using skew-normal/independent
(SNI) distributions under a Bayesian paradigm. We assumiladStribution for the random effects and a symmetric
normal/independent (NI) distributio27] for the within-subject errors, so that the skew-normaépendent linear mixed
model (SNILMM) is defined. The multivariate SNI distributi® used in this paper is developed primarily from the
multivariate SN density proposed iti4] for Bayesian regression problems and is different fromrihdtivariate SNI
densities developed ir2{)] motivated from the SN version proposedif]. However, the differences are only due to the
various parameterization®]] used and an unification of all skew-normal (elliptical) ieats is presented ir2pP]. Recent
Bayesian implementation of multivariate SN distributip®lanvolves skew-normal (SN) and sket(ST) densities using a
conditional stochastic representation. Starting from eginal stochastic representation as8n19], our SNI distributions
are amenable to Bayesian implementation and provides &dreithss of skew-thick-tailed densities particularlyaattive
for robust parametric inference and contains as properegiesmot only the SN, ST but also the skew-slash (SSL) and the
skew-contaminated normal (SCN) densities.

The rest of the paper unfolds as follows. Section 2 illussahe motivating data behind this research. In Section 3,
we introduce the SNI distributions for our bivariate resp@isetup and propose Bayesian inference and related model
comparison techniques. We apply our SNILMM to the periodbdata in Section 4 and use model selection tools to
determine the best model, comparing between the elemettits 8NI class as well as the traditional NLMM. Conclusions
and future developments are relegated to Section 5.

2. Periodontal disease data

The motivating data analyzed in this paper was collecteh facclinical study 23] conducted at the Medical University

of South Carolina (MUSC). The study was primarily aimed t@lere the relationship between periodontal disease
and diabetes level (determined by Hbalc, or ‘glycosylatmdglobin’) in Type-2 diabetic Gullah-speaking (or simply
Gullah) African-Americans (13 years or older) residing e tcoastal sea-islands of South Carolina. The substantial
evidence of adverse effects of diabetes on periodontatthfal] has been extensively explored in dental research. The
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2006 American Diabetes Association (ADA) Standards of MabdCare recommend diabetic patients strive to maintain
the HbAlc< 7, ideally between 4-62f]. Since this is part of an ongoing study, we selected 214pttiwith complete
covariate information.

To measure periodontal status/progression, dental higtgsensually record the periodontal pocket depth (PPD) and
clinical attachment level (CAL), both measured in mm usinganual probe for 6 surfaces per tooth (disto-buccal, mid-
buccal, mesio-buccal, disto-lingual, mid-lingual and rdmgual) for all 28 teeth per subject, except the thirdlans.
Figure 2(a) provides a pictoral description of the two measdor a single tooth. PPD is defined as the distance (in
mm) from the gingival margin to the base of the sulcus/poakeneasured by a periodontal probe. CEJ-GM, or gingival
recession is the distance between the free gingival margirttee cemento-enamel junctiodl[ The primary measure of
perio progression, CAL is defined as CALPPD— (CEJ-GM). B] Clearly, site-level PPD and CAL are correlated. In

@) (b)

Enamel

-~ Free gingival
margin ®

Attachment H
loss 2
3
13

mean PPD (in mm)

Figure 2. Panel (a): Graphical illustration of PPD and CAL measuresftooth. This figure was published iBental Hygiene: Theory and Practigelst edition, Michele L.
Darby and Margaret M. Walsh, Chapter 17 Page 471, CopyrigBt 8&unders Company (1995); Panel (b): Scatter plot of rR€ahvs mean CAL values

our data, we take the mean PPD and mean CAL measures as rgati@sdooth-level periodontal status clustered within
a subject. Note that CEJ-GM was recorded as negative whdrethgingival margin recessed below the cemento-enamel
junction (CEJ). From the raw plot of mean PPD and mean CAL gufé 2(b), we suspect some positive correlation
between the two response measures. Additionally sevebgcuevel covariates were also collected in the study, viz
Age (in years), Gender (1=Female, 0=Male), Body Mass Inae\dl (in kg/m?), glycemic status or Hbalc (1= High, 0

= controlled), etc. The mean age of the subjects is about &&yeith a range from 26-87 years. Female subjects seem to
be predominant (about 75%) in our data, which is not uncomimémis population€]. About 70% of subjects are obese
(BMI >= 30) and 65% are with Hbale= 7, an indicator of high glycemic level.

3. Statistical Model and Bayesian Inference

3.1. Skew-normal independent distributions

We start with the definition of the SN distribution proposed14] as an alternative talf)] for straightforward Bayesian
inference. Ap x 1 random vectorY follows a SN distribution withp x 1 location vectorpu, p x p positive definite
dispersion matrix andp x p asymmetry matrixA = Diag(\) where Diag-) is a diagonal matrixA = (A1,...,\,) ",
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written asY ~ SN, ,(p, X, A), if its pdf is given by

fy) = 2°6p(y;, QDL (ATQ  (y — p); A), 1)

where Q=X+ AA", A= (I, +A'S7'A) 1 =1, - ATQ7'A, 1, is the p x p identity matrix, ¢,(.; u, X) and
,(.;X) are, respectively, the probability density function (paf)V,(x, ) and cumulative distribution function (cdf)
of N, (0, X). Following [21], we use the notatioS N, ,, since both the symmetric kerngl and the skewing functiot®,,
are p-variates. Note that fax = 0,,,, (or A = 0,,x1) where0,,, and0,.; are respectively @ x p matrix and ap x 1
vector of zeroes,1) reduces to the symmetri¥, (p, 3)-pdf, while for non zero values ok, it produces a perturbed
(asymmetric) family ofV,(pt, X)-pdf’s.

Following [20], we define a SNI distribution as a process of phdimensional random vector

Y =p+U"Y?%Z, 2)

whereU is a positive random variable with cdf (u|v) and pdfh(u|v), which is independent of th&N,, ,(0, X, A)
random vectoZ. Here the parameter is a scalar or vector indexing the distribution@f GivenU = v, Y follows a
multivariate skew—normal distribution with location veci:, scale matrixu~'> and asymmetry matrix—'/2A, i.e.,
Y|U =u~ SN, ,(pu,u"'2,u"/2A). Thus,U is affecting boths andA. From (1), the marginal pdf ot is:

fy) = 2 /()m%(y;u,uln)@p(ul“ﬁn1(yu>;A>dH<u|u>. 3)

The notationY ~ SNI, ,(n, 2, A, H) will be used wherlY has pdf 8). WhenA = 0, the SNI distributions reduces to
the respective normal-independent (\N2y], represented by the pdf(y) = f0°° bp(y; yu™ ' )dH (u;v). We will use
the notationY ~ NI, (u, X, H) whenY has distribution in the NI class. The asymmetrical class MF @istributions
includes the skew; the skew-slash and the skew contaminated normal diswoilmt all of which accommodates
heavy tails than the SN and can be used for robust inferenge.nfore technical details on skew-normal and
skew-normal/independent distributions, we refer to thpgement A available adit t p: / / peopl e. nusc. edu/ ~
bandyopd/ Suppl enent SNI Dent al . pdf

3.2. Skew-normal/independent linear mixed models

Now, we summarize the linear mixed model (LMM) for our peoothl progression data with bivariate correlated
responses. Let! = (Y1, V5, ....Y, )T andY{ = (v, Y5, ....YC )T be the measurements (in mm) of tooth-level
mean PPD and CAL, respectively, for subje¢t = 1,...,n). Here,m” andm® denotes the number of teeth accounted
for within a particular mouth, without loss of generality ioh is 28 (excluding the third molars). Any missing tooth
measurements were not included in the study. )Lfa’tandxic be them? x p; andm® x p, design matrix associated
with the fixed effects3” and 8 of the two markers respectively adf” andZ¢ be the corresponding:” x ¢; and

m€ x ¢, design matrices associated with the random effeftandb¢ respectively. Thus, we have our bivariate LMM:

YET_[x oo\ [en ), [zF o ][er ], [e
YO T o x¢ || g° o z{ || bf e |

wheree!” ande{" are the within-subject residuals for the mean PPD and medn @&pectively. For robust estimation,
we modelb; ande; simultaneously as

Y, = + 4

ind. .
(bz—rv ezT)T ~ SNIni+q-,ni+q (Oni+¢b 2b€i7A‘bei7H) L= 17 s N (5)

Statist. Med201Q 001-15 Copyright® 2010 John Wiley & Sons, Ltd. www.sim.ordJg]
Prepared usingimauth.cls



Statistics
in Medicine D. BANDYOPADHYAY ET AL.

whereY,., = Diag(D, ¥;) and X; = Diag(c?1,,»,031,,c) with Diag(A, B) denoting a block diagonal matrix whose
elements are the square matrideandB; ¢ = ¢1 + ¢2, n; = mI” + m¢, the matrixD = D(«) is the dispersion matrix
corresponding to within-subject variability and depemgdon the unknown parameter, A,., = diag A, 0,,, x», ), With

A = Diag(A) andX = (\q,...,A,) . Thus the vectoA is the only parameter involved in the asymmetry matrix. FBjna

H = H(-|v) is the cdf-generator that determines the spe6ifiZ model that we are assuming. Integrating out the variable
u;, it follows from (2) and the stochastic representation A-1 in Supplement A, tha

b, = (b7, bY) “&" SNI, ,(0,D, A, H), & = (€,67) ™' Nl (0,5, H),i = 1,...,n.
In this modeling, we consider a bivariate generalizatiothefclassical NLMM where the random errors are assumed to
follow a NI distribution (with mean zero) and the random effeare assumed to follow a multivariate SNI distribution.
As in [20], since for each = 1,...,n, b; ande; are indexed by the same mixing factdy, they are not independent
in general. The independence corresponds to the case 8ghen (i = 1,...,n), so that the SNILMM reduces to the
SNLMM as defined in19]. However, from 2) and A-1 in Supplement A, conditional dry, b; ande; are uncorrelated,
sinceCouv(b;, &) = E{b,e;} = E{E{b;e] |U;}} = E{E{b;|U;}E{e;|U;}} = 0.

Our main focus is to provide inference for= (3", 8%,02,062,a™,A",vT)T. Under the SNILMM proposition
defined in §)—(5), the marginal distribution oY; is given by

f(yil0) = 2q/0 b, (yi; X B, u; "0, @, (U;/QA:‘I’fl(yi - XiB); Am) dH (u;|v), (6)

where ¥, =%, + Z,QZ], A, =1,— A, U7'A;, B8=(8",8°)T and A; =Z,A, with Q=D +AAT, A=
Diag(A1, ..., A\q), WhereX; = diagXy;, X2;), Z; = diag(Z?, Z¢). The proof follows from Theorem 1 given il
We call attention to the fact that the marginal distribu@f the response vectors given &) (loes not belong to the SNI
class introduced in3), since in generak; # q, i.e. the SNl is not closed under linear transformation® 3jecific forms
of the marginal distributions oY for the sub-classes of our SNILMM are presented in SuppléBewailable in the link

provided in Section 3.1.

3.3. Priors and joint posterior distributions

In this sub-section, we describe our choice of priors anda@ated posterior distributions of model parameters to
implement Bayesian inference for our SNILMM. A key featuffetiis model is that it can be formulated in a flexible
hierarchical representation. Fror®) @nd the marginal stochastic representation of a SN randmtor (see Appendix
A-1), it follows that the SNILMM defined by4) and €) can be written hierarchically as:

Yilbi, T =t Ui =u; "% N, (XiB+Ziby,uj'Sy), @)
bi|Ti = t;,U; =u; " Ny(At;,u; ' D), ®)
TilU; =wi % TN, (0,u; "I RY), ©)

Ui N H(uilw), (10)

i=1,...,n, whereX; = Diag(Xy;, X2;), 8 = (Bp,Bc) ", Z; = Diag(ZF, Z%), R’ denotes the Euclidean vector space
of all p-tuples of positive real numbers afidV, (i, X; A) denotes a-variate truncated normal distribution fof, (z¢, )
lying within the hyperplane\. Definingy = (y/,...,y,))".b=(b],....b] )T, t = (t1,...,t,) ", u= (u1,...,u,)"
andl4;(.) to be the indicator function of the set A, it follows that thentplete likelihood function associated with
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(y",b",t7,u,)T is given by

L(Bly.b,u,t) o []lén, (vii XiB + Ziby, u; "Ei)¢g(bi; At u; D)

i=1

X g (i3 0,y Ty Ly (6) o (ui ). (11)

Now, to complete the Bayesian specification of the model, @erio put prior distribution on all the unknown parameters
in 6. Since we have no prior information from historical data mni previous experiments, we assign conjugate but
weakly informative priors to obtain well defined and propesteriors. A popular choice to ensure posterior propriety i
a LMM is to consider proper (but diffuse) conditionally cagpte priors like non-informative Normal priors (with larg
variance) for the fixed-effects, inverse gamma priors fongle variance components and inverse Wishart priors fer th
variance-covariance matrix, as suggeste®in B2). In general, we choose:

B ~ N(BoSp),

op o~ IG(1:/2,T3/2), k=1,2,
~ IWy(Tp, ),

A~ N, Ao,Sy),

where N(.,.) is the multivariate normal density,G(a,b) is the inverse gamma density with parametersind b

and IW,(Ty, ) is the g-variate inverse Wishart distribution whéFg is a ¢ x ¢ positive definite scale matrix and
hyperparameter;, is the degrees of freedom. The prior distributionofvith densityr(v), depends on the particular SNI
distribution we use. The specific distributions, i.e. ske(&T), skew-slash (SSL) and skew contaminated normal (SCN)
are discussed in Appendix A and related prior choices arerites! in more details in Section 4. Assuming elements of
the parameter vector to be independent, the joint prioridigion of all unknown parameters is given by

2
m(0) = m(B) <H ﬂoi)) T(A)m (D)7 (v). 12)
k=1
Combining the likelihood functioni(l) and the prior distributions, the joint posterior disttiion for 6 is now,

m(B8,01,05, D, A, b, u, tly) o H[d’m(}’i;xz’5+Zibiau;lzi)gbq(bi;Ativu;lD)

=1

X g (6550, 4 )L ggy (60 huil )} (6). (13)

Distribution (L3) is analytically intractable but MCMC methods such as thebSisampler and Metropolis-Hastings
algorithm can be used to draw samples, from which featuresan§inal posterior distribution of interest can be infdrre
Givenu, all conditional posterior distributions are as in a stadddNLMM and have the same form for any element
of the SNI class. An outline of the conditional posteriorsaifmodel parameters including and v (for specific SNI
distributions) are given in the Appendix.

3.4. Model selection and goodness-of-fit

To select our best fitting model and related goodness of fiéessssents, we compare among the SN, ST, SSL and
SCN models as well as the NLMM using Bayesian model selec¢tiots. Specifically, we consider both deviance-based
criterion [28] and measures based on posterior predictive performate [

The DIC [28] is a deviance-based measure appropriate for Bayesianlseldetion and is defined as DKE D + pp,
whereD is the posterior expectation of the deviance summarizindehbt, p, is a measure of model complexity defined
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asD — D(®), whereD(®) is the deviance computed at the posterior mean of paramatei® denote the parameter
space. Analogous to the AIC, the DIC summarizes the relditieetween a model and the ‘true model’ generating the
data conditional on the data clusters, i.e, the study stjeing a single number summary with smaller values inligat
better fit.

We also consider model selection based on predictive peaioce of competing models. df,. denotes the predictive
data vector, then the posterior predictive distributiogiien by:

Py ly) = / p(,,|©)p(O]y)de. (14)

One can obtain predictive data easily from a converged postsample and samples from the posterior predictive
distribution are replicates of the observed model genérd#ta. Using a squared-error loss functi@f]] we compare
competing models based on the expected total predictivianiey (ETPD) defined by

ETPD=E{Y (v, — v}’ lu5} + ED (W5, — v5) 5}

where,y;, . denote a replicate of the observgd, the summations are taken over all observations and thectatjuns
taken over the full posterior of all model parameters. Santib DIC, this criterion chooses the model where the pradict
values are centered near observed values, i.e. with thestgaedictive variation.

To determine model adequacy after selecting the best madelse a discrepancy measure based on (14). If the
observed value is extreme relative to the reference disioib (the posterior predictive distribution), there isrsaconcern
with respect to assessment of model-fit to the data. D@@ﬁandyfj to be the observed data on tooth-level mean CAL
and PPD scores respectively. The discrepancy measuredsetmedel and data is computed as a summary statii]c [
using model parameters and data defined as

3 (i — E{y};1©})?

T"(y,®) =
( ) Var{yfﬂ@}

) k = P7 C7 (15)

0]

The Bayesian p-value/ posterior predictive p-valB@ p%; is defined as the number of tim&4(y,,., ©) exceedd *(y, ©)
out of L simulated draws i.e)%, = Pr(T*(y,,., ®) > T*(y, ®)|y), wherey,,. denotes a simulated draw from (14). A very
large p-value> 0.95) or a very small(< 0.05) both signals model misspecification, i.e. the observedepatvould be
unlikely to be seen in replications of the data under thetnodel [30]

4. Data analysis and findings

In this section, we apply our method to the periodontal datcdbed in Section 2. Our SNI class of distribution allows
continuous variation from symmetry to asymmetry and accodutes practical values of kurtosis. We posit 5 competing
models with latent (unobserved) random effects and randoonsefrom the SNI class. The models are as follows:
Model 1 (N): Normal distribution for the latent random effect and ramderror.
Model 2 (SN} Skew-normal distribution for the latent random effect aodmal distribution for the random error (SN).
Model 3 (ST). Skewt+ distribution for the latent random effect and Studedistribution for the random error.
Model 4 (SSL) Skew-slash distribution for the latent random effect dadlsdistribution for the random error.
Model 5 (SCN} Skew contaminated normal distribution for the latent @nckffect and contaminated-normal distribution
for the random error.

In the absence of historical data/experiment, we specdygtaral weakly-informative priors for all model parameté&s
obtain well-defined (proper) posteriors following the resnendations in31, 32]. The components g8” and3“ were
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Table 1.Model comparison using DIC and ETPD criteria

Criterion N SN ST SSL SCN
D 20815.2 20805.7 17686.0 17732.2 18700.0
DD 384.85 383.56 587.43 563.73 565.24
DIC 21200.05 21189.26 18273.43 18295.93 19265.24
ETPD 2.31 2.24 2.196 2.27 2.251

assigned independent NormalPrecision= 0.01) priors. For the scale parametet, k = 1,2, we assign a moderately
diffuse 1G(0.01,0.01), so that the distribution has mean 1. The prior for the vagacovariance matrib is taken to be
weakly-informative Inverse-Wishart with covarian®g = Diag((0.01,0.01) ") andr;(degrees of freedomy 6. For the
asymmetry parameters and )., independent Norm@), Precision= 0.01) are used to accommodate either positive or
negative skewness and allow the data to determine it, ajthbistogram plots reveal right skewness. Prior choice/for
follows exactly as in33]. For the ST distribution, we chooseas Ex[0.1)I; (2.} (i.€. exponential density truncated at
2) to reflect a prior o (thet degrees of freedom parameter) with a well defined and finitienee ofY". For the SSL
distribution, the prior forv is a Gammeéu, b) with small positive values of andb (a = 0.01,b = 0.001), primarily to
ensure conjugacy. For the SCN distributions (v, 2)T and once again for posterior conjugaeyis chosen as (9, 1)
andwv, as Betdl, 1)(= U(0,1)).

For each of the models, we ran 2 chains with widely dispensigidli values. For all the 4 models, viz. N, SN, ST and
SSL, we used 80000 iterations with an initial burn-in of 300Bowever for the SCN model, convergence was achieved
at 60000 iterations. The complexity of the SNI structure enifested in the relatively high burn-in size. Howeversthi
is straightforward to program withininBUGS and associated code is available from the first author orestqBRosterior
convergence was assessed using trace plots, autocameiddits and the Gelman-Rubin scale-reduction fa&qg0].

To reduce autocorrelation among successive Markov drawgjsed a spacing of 5. After discarding the initial burn-in
samples, we used the remaining samples to compute theipogt@rameter estimates.

Table1 presents the comparison among the 5 competing models usiygsin model choice criterion. Note that all
the skewed versions produced better fit (in terms of DIC anBE)Tthan the NLMM. In particular, the sket(ST) model
(with the smallestD) produces the best fit among the competing skew models. Then®8lel is a close competitor
with a lowerpp. Comparing ETPD values, the ST model outperforms all othedets, though not substantially. We
select Model 3 (ST) as our best fitting LMM. Figure 1 shows thmethed posterior predictive densities overlayed on
raw data histograms for our competing models. From theis,dtso quite clear that our class of SNI densities provide
a substantial better fit to our data over the NLMM. Also amdmg 4 competing models, the density for the ST model
seems to produce a better fit to the raw data histogram forthettesponses. The posterior meap®fandp$ for the ST
model are 0.494 and 0.517 respectively, indicating no dMexzk of fit using our omnibus statistid ). Table2 provides
posterior estimates of asymmetry parametais )\, ), the variance components of random err@r$, o3), the variance-
covariance matriXD) andv specific to ST, SSL and SCN distributions. In particular, wevile estimates of posterior
mean, standard deviation (SD) and 95% credible intervalsf¢Cthe ST (our best fitting model) and mean and SD for
the other models. Interestingly, both and)\, are significant and positive for all the 4 fitted models prawcevidence of
moderate right-skewness for our data. Figure 3 shows thelmig for the parameters and\, for all the 4 models. Note
that the CI does not include zero for all the models, configmpnsitive asymmetry of the bivariate responses with mean
CAL to be more right-skewed than mean PPD. In particulaimrege (95% CI) of\; and )\, for the ST model is 0.3965
(0.3359, 0.4981) and 0.5959 (0.5431, 0.6637) respectikeyre 4 plots the marginal posterior densities of the patar
v for ST and SSL densities amd= (1, v2) for the SCN density. All density plots shows some degreeighf asymmetry
confirming non-normal nature. For the ST and SSly; éket degrees of freedom): ~o (say 30), it approaches the normal
density. However, the posterior mean estimate fifr ST and SSL model are 3.82 and 1.04 respectively, whicfircos
its sufficient disparity from the normal framework. Alsogtbhontaminated normal density normal density when the
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Figure 3. Box plot of asymmetry parameter for the 4 fitted models. Thaenpow is forA; and the lower row fol,.

Table 2.Posterior parameter estimates of fitting asymmetries andn@e components to the periodontal progression
data. SD, 2,5% and 97.5% represents standard deviationeandrpiles from the posterior distributions of parameters
respectivelys denotes parameter significance.

SN ST SSL SCN

Parameter mean SD mean SD 2.5% 97.5% mean SD mean SD
A1 0.4862°  0.0575 0.3965° 0.0391  0.3359  0.4981 0.2635° 0.0306 0.3701°  0.0327
A2 0.7138°  0.0765 0.5959° 0.0286  0.5431 0.6637 0.3619° 0.08373 0.5032°  0.0416
Uf 0.4353 0.0095 0.2464 0.0131  0.2221  0.2731 0.1612 0.0098 328.3 0.0108
ol 0.6889 0.015 0.3546 0.0188 0.3204  0.3938 0.1123 0.0067 86.22 0.0064
D1 0.4177 0.0522 0.1477 0.023 0.109 0.1971 0.0698 0.0121 9.1540.0209
D12 0.5273 0.0642 0.177 0.0263 0.1311  0.2322 0.0797 0.0126 1P.19 0.0246
D23 0.6747 0.0987 0.2238 0.0442  0.1467 0.3193 0.098 0.0185 8P.23 0.0347

v (v1for SCN) 3.82 0.368 3.1171 4.552 1.041 0.0366 0.3388 0.0338
12 0.2404 0.0079

proportion of contaminants (posterior estimatefis 0. For the SCN model, the posterior meamwpis about 0.34 while
the posterior density of, has a mode around 0.247. The estimate of the within-subgeiztnces-? andos2 for both mean
PPD and mean CAL are smaller in the skewed class of modelsmagared to the NLMM (not shown here), primarily
because of interrelation between high variability, heailg tas well as skewness. Tald@rovides posterior estimates of
the fixed-effects parameters obtained by fitting our SNI ned&imilar to Table2 , we provide posterior mean, SD and
95% Cl's for the ST model and the posterior mean and SD for theronodels. For the ST model, the glycemic control
(as determined by Hbalc) is positive and significant, irtdigethat mean PPD and mean CAL values seems to be higher
for elevated levels of Hbalc controlling for the other caasas. Although Hbalc is not significant in all other competi
models, it was significant in the mean PPD regression for the&lel. Estimates of 95% CI's for almost all fixed effects
parameters (for both PPD and CAL regressions) in the ST mueled tighter as compared to all other competing models.
This is expected, because the ST density seems to providmdbe precise fit to this data set. The estimated overall
posterior correlation between mean PPD and mean CAL olatdiom fitting the ST model is 0.378 which also confirms

WWW.Sim.org Copyright© 2010 John Wiley & Sons, Ltd. Statist. Med201Q 001-15
Prepared usingimauth.cls



Statistics
D. BANDYOPADHYAY ET AL. in Medicine

< o~
- —
@ S
F =z @
2 < z
<3 [} ©o
[=] < (=)
S 4
<
o~
S 7 o~
o
s — o
e T T T T T T T T T T T
25 30 35 40 45 50 55 0.95 1.05 1.15 1.25
v (Degrees of freedom) — t Density v — Slash Density
N o 3
S - S
o -
= 2 8
@ 7]
§ © g
a a o
o~
<« -
o
o~ —
o o
T T T T T T T T T T
0.20 0.25 0.30 0.35 0.40 0.45 0.22 0.24 0.26 0.28
v; — Contaminated Normal Density v, — Contaminated Normal Density

Figure 4. Marginal posterior densities estimates of parametéor all 4 distributions. The upper panel display plots foewkt and skew-slash densities and the lower panel for
skew contaminated normal density.

Table 3.Posterior estimates of fixed effects of fitting S-SNI modelshe periodontal progression data. SD, 2.5% and
97.5% represents respectively the standard deviation arckptiles from the posterior distributions of parameters
denotes parameter significance.

SN ST SSL SCN
Parameter mean SD mean SD 2.5% 97.5% mean SD mean SD
Int” 1.665° 0.3639  1.6231° 0.1984 1.175 1.983 1.733° 0.2427  1.744° 0.2691
Gendef’ -0.034 0.0978 -0.009 0.0861 -0.175 0.180 -0.0018 0.0791 049. 0.0889
Age” -0.001 0.0048 -0.004 0.0025 -0.009  0.0001 -0.0048 0.0031.0043  0.0035

BMI P 0.0012 0.0049 -0.001 0.0036  -0.007 0.007 -0.0025 0.0043 0023.  0.0048
Hbald” 0.0730 0.1093 0.1514° 0.0648 0.0169 0.2849 0.1604° 0.0798 0.1594 0.071
Int® 1.025°  0.4657  1.102° 0.2184 0.651 1.48  1.138° 0.2715 1.215°  0.2937
Gendef’ -0.0868  0.1359 -0.051 0.0858  -0.237  0.1598 -0.024 0.102 070. 0.1129
Age® 0.0031 0.0062 -0.001 0.003 -0.006 0.004 -0.0018 0.0032 009.0 0.0041
BMI 0.0067 0.007 0.004 0.0042  -0.003 0.013 0.0019 0.0052 0.0010.0059
Hba1¢ 0.1101 0.1432  0.1594° 0.073 0.0221  0.3096 0.157 0.0891 0.1346 0.0904

some degree of positive association between the two measumehierarchical GLMMs, use of weakly-informative pgor
can lead to inference which are sensitB2[34] to the choice of priors on hyperparameters. To investigateissue, we
conducted sensitivity analysis on the routine use of iresgg@mma prior 35] on variance components as well as the
inverse-Wishart prior of the variance-covariance matrxall the results, we focused our attention on the estimatio

the fixed effects parametefd” and3“. We considered an array of weakly-informative to highly sisformative choice

of priors. In particular, we took? ~ IG(10%*,10%1), i = 1,2, wherex; € {—4,—3,—2,—1,0,1,2} and the prior choice

on the scale matriP to be Inverse-Wishart with covarian@e= Diag((k, k) "), wherek = 0.001 and0.0001. Although

we notice slight changes in the values of fixed effects esémas well as model comparison measures, results were quite
robust on the overall and did not change any conclusionsdagpour best fitted model, the posterior estimatex ahd

v and the strength of correlation between mean PPD and mean CAL
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5. Conclusions

Using a Bayesian linear mixed model framework, this papesicters a class of multivariate skew-normal/independent
(SNI) regression models to jointly analyze mean PPD and n@ah as determinants of periodontal progression.
Our class of SNI models contains as a subclass some integdathnily of models, viz. skew; skew-slash and skew
contaminated normal densities. The nice hierarchicalgrtation given in (7-10) provides easy model implemgmtat
using conventional Bayesian software likenBUGS and thus might appeal to an applied researcher. Using seiitaddel
choice criterion, the skewmodel provided the best fit to this data among other competindels. Since the data exhibit
some degree of right-skewness in both components of itgiafearesponse, substantial improvement in model fit is
observed by shifting away from the traditional normalitg@sptions.

Our approach motivated by a parametric class of skew-degsire relatively easy to implement and provides an
interesting alternative to other computationally chajiely semiparametric or fully nonparametric modeld,[36].
Although the wonderful memoirlB] provides many alternative expositions of skew-ellipticeodels, we specifically
choose the skew-elliptical distributions starting frone tbkew-normal representation df4] due to straightforward
Bayesian analysis through hierarchical representations.

Our current analysis is focussed on exploring a ‘cluster¥dss-sectional periodontal progression data. However,
often subjects who are brought in for periodontal asseswrar subjected to randomized treatments and subsequent
longitudinal followups. We plan to explore our class of SiNelar mixed models under these longitudinal frameworkoAls
periodontal progression is often believed to be associaitdatent (within-mouth) spatial structure37 and a diseased
tooth seem to influence its neighboring tooth more than themeghbors while accounting periodontal progression.
Methods to incorporate spatial dependencies in our claS§bfinear mixed models will be considered elsewhere.
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APPENDIX: Outline of conditional posterior distributions

Under the full model as described ih3), givenu, the full conditional distribution o8, 0%, 03, D, A\, b;, t;,i = 1,...,n,
are given as
Blb,u,t,07,05, D, A ~ Ny(Az'ag, Agl), 1)

whereA; =85! + 37w, X! B, X; andag = S5 B, + Y1, wiX] E; (yi — Ziby);

N+ 7 Ty +Z?:1 Uili;criuki
2 ’ 2
whereN; =37 mP, No =37, m¢, pwy =yF - XZP:@P — ZFPbF andp,, = y¢ — Xz‘C:@C — Z¢bY;

oilb,u,t,3,D, A ~ IG(

), k=1,2, 2

Alb,u,t,8,0%,03,D ~ N(Ex'pa, T1H), ©)

wherep, =Sy A, + D0 uby, Ba =D w2 + S1Y

Db,u,t,8,07,05, A ~ IW,((T; " + > ui(bi — At;)(b; — At;)) ")~ 7 + n); 4)

i=1
bilUi,ti,,@,U%70’§,D,A ~ Nq(A(:L'lai7 ui_lAb_il)7 (5)

whereA,; = (Z/ 2, 'Z; + DY) anda; = Z/ ;' (y; - X;8) + ;D 'A, i =1,...,n;
ti|ﬁ70—%70—§)Da)‘abiaui ~ TNq(A;lativ u;lA;laRz-)a (6)

whereA; = (I, + A'D"'A),a; = A" D 'b,.
Conditional posteriors for specific SNI cases follows.
e The ST distribution
Herev is a scalar and whem = 1, the models is skew-Cauchy. We adopt a truncated expohpribafor » of the form
E(g)]l(gm). The density of the conditional posterior distributiong¢akhe form:

u;|0,b,t,y ~ Gamma(n; + 2q +v)/2;v/2+ C;/2),

whereC; = (yi - X6 — Zibi)TEjl(yi - X0 — Zlbl) + (bl — Ati)TD_l(bi — Ati) + t;rti.
The full conditional posterior density ofis:

n

1
T(v|0—y, b, u,t,y) o< i (V) x Gamm&% +1, 5 Z(ul —logu;) + 0)I{(2,00)}
=1
wherer; (v) = (2"/?T'(v/2))~™, which does not have a closed form but a Metropolis-Hastimgsjection sampling step
can be utilized to obtain draws from
e The SSL distribution
To ensure conjugacy, a Gam(nab) distribution with small positive values afandb (b < a) can be adopted as a prior

for v. The full conditional posterior density of eaghis:
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and

n

v|@_p),t,b,u,y ~ Gamma(n + a,b — Z log u;)){(0,00)} (¥)-

i=1
e The SCN distribution
A U(0,1) distribution is used as a prior for, and an independent Bétab) is adopted as prior far,. The conditional
distribution of eachy; is proportional to

1/11/;7i+q exp{—%ygci}, if u; =10 7
(1- Vl)exp{—%Ci}, if u;, =1,

and the conditional probabilities are obtained readily bitable normalization. The full conditional posterior difet
proportion of outliers/ is:

1—V2 + 1—V2

_ n . o — nu
V1|0(_U1),b,u,t,y, vy ~ Beta (a+ n=din ul;b Liiz1 Ui 2>

and the conditional posterior densityafis:

= 24=1% Dim1 ui) Do Ui — nwy

m(12]0,b,u,t,y, 1) < 1y 1=y x (1 —11) 11—

)

Similarly, a Metropolis—Hastings proposadl] can be used to updatg.
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