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Abstract

This paper consider a Bayesian analysis of stochastic volatility models using a

class of symmetric normal scale mixtures, which provides an appealing robust alter-

native to the routine use of the normal distribution in this type of models. Specific

distributions examined include the normal, the Student-t, the slash and the variance

gamma distribution which are obtained as a sub-class of our proposed class of mod-

els. Under a Bayesian paradigm, we explore an efficient Markov chain Monte Carlo

(MCMC) algorithm for parameter estimation in this model. Moreover, the mixing

parameters obtained as a by-product of the scale mixture representation can be used

to identify possible outliers. The methods developed are applied to analyze daily

stock returns data on S&P500 index. We conclude that our proposed rich class of

normal scale mixture models provides an interesting robust alternative to the tra-

ditional normality assumptions often used to model thick-tailed stochastic volatility

data.
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1. Introduction

The stochastic volatility (SV) model was introduced by Tauchen and Pitts (1983)

and Taylor (1982) as a way to describe the time-varying volatility of asset returns. It

has emerged as an alternative to generalized autoregressive conditional heteroscedas-

ticity (GARCH) models of Bollerslev (1986), because it is directly connected to the

type of diffusion processes used in asset-pricing theory in finance (Melino and Turn-

bull 1990) and captures the main empirical properties often observed in daily series

of financial returns (Carnero et al. 2004) in a more appropriate way.

The SV model with a conditional normal distribution for the returns has been

extensively analyzed in the literature. From a Bayesian standpoint, several MCMC

based algorithms have been suggested for the estimation of the SV model. For exam-

ple, Jacquier et al. (1994) use the single-move Gibbs sampling within the Metropolis-

Hastings algorithm to sample from the log volatilities. Kim et al. (1998) and Mahieu

and Schotman (1998), among others, approximate the distribution of log-squared re-

turns with a discrete mixture of several normal distributions, allowing jointly drawing

on the components of the whole vector of log-volatilities. Shephard and Pitt (1997)

and Watanabe and Omori (2004) suggested the use of random blocks containing some

of the components of the log-volatilities in order to reduce the autocorrelation effec-

tively. However, in all of these, the normal distribution was assumed as the basis for

parameter inference.

Unfortunately, normality assumption is too restrictive and suffers from the lack

of robustness in the presence of outliers, which can have a significant effect on the

model-based inference. Thus, various generalizations of the standard SV model have

emerged and their model-fittings have been investigated. It has been specifically
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pointed out that asset returns data have heavier tails than those of normal distribu-

tion. See for instance, Mandelbrot (1963), Fama (1965), Liesenfeld and Jung (2000),

Chib et al. (2002), Jacquier et al. (2004) and Chen et al. (2008). In this context, the

SV model with Student-t errors (SV–t) is one of the most popular basic models to ac-

count for heavier tailed returns. In this paper, we extend the SV–t model by assuming

the flexible class of scale mixtures of normal (SMN) distribution (Andrews and Mal-

lows 1974; Lange and Sinsheimer 1993; Fernández and Steel 2000; Chow and Chan

2008). Interestingly, this rich class contains as proper elements the normal (SV–N),

the Student-t (SV–t), the slash (SV-S) and variance gamma (SV–VG) distribution.

All these distributions have heavier tails than the normal one, and thus can be used

for robust inference in these type of models. We refer to this generalization of the

SMN class for SV models as SV–SMN distributions. Our work is motivated by the

fact that the daily stock returns data on S&P500 index seems to present significant

heavy tail behavior as shown in Yu (2005). Inference in the class of SV–SMN models

is performed under a Bayesian paradigm via MCMC methods, which permits to ob-

tain the posterior distribution of parameters by simulation starting from reasonable

prior assumptions on the parameters. We simulate the log-volatilities and the shape

parameters by using the block sampler algorithm (Shephard and Pitt 1997; Watanabe

and Omori 2004) and the Metropolis-Hastings sampling, respectively.

The rest of the paper is structured as follows. Section 2 gives a brief description

of SMN distributions. Section 3 outlines the general class of the SV–SMN models as

well the Bayesian estimation procedure using MCMC methods. Section 4 is devoted

to application and model comparison among particular members of the SV–SMN

class using the S&P500 index dataset. Some concluding remarks as well as future

developments are deferred to Section 5.
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2. SMN distribution

Scale mixtures of normal distribution, which play very important role in statistical

modeling, are derived by mixing a normally distributed random variable (Z) with a

non-negative scale random variable (λ), as follows

Y = µ+ κ1/2(λ)Z

where µ is a location parameter, λ is a positive valued mixing random variable with

probability density function (pdf) h(λ|ν), independent of Z ∼ N (0, σ2), where ν

is a scalar or parameter vector indexing the distribution of λ and κ(.) is a weight

function. As in Lange and Sinsheimer (1993) and Chow and Chan (2008), we restrict

our attention to the case in that κ(λ) = 1/λ in this paper. Thus, given λ, Y |λ ∼

N (µ, λ−1σ2) and the pdf of Y is given by

f(y|µ, σ2, ν) =

∫ ∞
0

N (y|µ, λ−1σ2)h(λ|ν)dλ, (1)

From a suitable choice of the mixing density h(.|ν), a rich class of continuous

symmetric and unimodal distribution can be described by the density given in (1) that

can readily accommodate a thicker-than-normal process. Note that when κ(λ) = 1

(a degenerate random variable), we retrieve the normal distribution. Apart from the

SV-Normal model, we explore 3 different types of heavy-tailed densities based on the

choice of the mixing density h(.|ν). These are as follows.

• The Student t–distribution, Y ∼ T (µ, σ2, ν)

The use of the t-distribution as an alternative robust model to the normal

distribution has frequently been suggested in the literature (Little (1988) and

Lange et al. (1989)). For the Student t-distribution with location µ, scale σ and

degrees of freedom ν, the pdf can be expressed in the following SMN form:

f(y|µ, σ, ν) =

∫ ∞
0

N
(
y|µ, σ

2

λ

)
G(λ|ν

2
,
ν

2
)dλ. (2)
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where G(.|a, b) is the Gamma density function of the form

G(λ|a, b) =
ba

Γ(a)
λa−1 exp (−bλ), λ, a, b > 0, (3)

and Γ(a) is the gamma function with argument a > 0. That is, Y ∼ tν(µ, σ) is

equivalent to the following hierarchical form:

Y |µ, σ2, ν, λ ∼ N
(
µ,
σ2

λ

)
, λ|ν ∼ G(ν/2, ν/2). (4)

• The slash distribution, Y ∼ S(µ, σ2, ν), ν > 0.

This distribution presents heavier tails than those of the normal distribution

and it includes the normal case when ν ↑ ∞. Its pdf is given by

f(y|µ, σ, ν) = ν

∫ 1

0

λν−1N
(
y|µ, σ

2

λ

)
du. (5)

Here the distribution of λ is Beta (Be(ν, 1)), with density

h(λ|ν) = νuν−1I(0,1). (6)

Thus, the slash distribution is equivalent to the following hierarchical form:

Y |µ, σ2, ν, λ ∼ N

(
µ,
σ2

λ

)
, λ|ν ∼ Be(ν, 1). (7)

The slash distribution has been mainly used in simulation studies because it

represents an extreme situation, see for example Andrews et al. (1972), Gross

(1973), and Morgenthaler and Tukey (1991).

• The variance gamma distribution, Y ∼ V G(µ, σ2, ν), ν > 0.

The symmetric variance gamma (VG) distribution was first proposed by Madan

and Seneta (1990) to model share market returns. The VG distribution is

controlled by the shape parameter ν > 0, presents heavier tails than those of

the normal distribution and has a similar SMN density representation to the
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Student t-distribution. It can be shown that the VG density can be expressed

as

f(y|µ, σ, ν) =

∫ ∞
0

N

(
y|µ, σ

2

λ

)
IG(λ|ν

2
,
ν

2
)dλ. (8)

Thus, the VG distribution is equivalent to the following hierarchical form:

Y |µ, σ2, ν, λ ∼ N

(
µ,
σ2

λ

)
, λ|ν ∼ IG(

ν

2
,
ν

2
), (9)

where IG(a, b) is the inverse gamma distribution with pdf

IG(λ|a, b) =
ba

Γ(a)
λ−(a+1) exp

(
− b
λ

)
.

When ν = 2, the VG distribution is the Laplace distribution.

3. The heavy-tailed stochastic volatility model

Among the variants of the SV models, Taylor (1982, 1986) formulated the discrete-

time SV model given by

yt = e
ht
2 εt, (10a)

ht = α + φht−1 + σηηt, (10b)

where yt and ht are respectively the compounded return and the log-volatility at time

t. The innovations εt and ηt are assumed to be mutually independent and normally

distributed with mean zero and unit variance.

In this article, we modify the basic specification (the SV-N model) in order to cap-

ture heavy-tailed features in the marginal distribution of random errors, by replacing

the normality assumption of εt by the SMN class of distributions as follows:

εt ∼ SMN(0, 1, ν), ηt ∼ N (0, 1), (11)
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εt and ηt assumed to be independent. We refer to this generalization as SV-SMN.

It follows from (1) that the set up defined in (10a)-(10b) and (11) can be written

hierarchically as

yt = e
ht
2 λ
− 1

2
t εt, (12a)

ht = α + φht−1 + σηηt, (12b)

λt ∼ p(λt), εt ∼ N (0, 1), ηt ∼ N(0, 1). (12c)

As depicted in Section 2, this class of models includes the SV with student-t (SV-t),

with slash (SV-S) and with variance gamma distributions (SV-VG) as special cases.

All these distributions have heavier tails than the normal density and thus provide an

appealing robust alternative to the usual Gaussian process in SV models. The SV-t,

SV-S and SV-VG models are obtained chosen the mixing density as: λt ∼ IG(ν
2
, ν

2
),

λt ∼ Be(ν, 1) and λt ∼ IG(ν
2
, ν

2
) respectively, where G(., .), IG(., .) and Be(., .) denote

the gamma, inverse gamma and beta distributions respectively. Under a Bayesian

paradigm, we use MCMC methods to conduct the posterior analysis in the next

subsection. Conditionally to λt, some derivations are common to all members of the

SV-SMN family as will be seen next.

3.1. Parameter estimation via MCMC

A Bayesian approach to parameter estimation in the SV-SMN class of models

defined by equations (12a)-(12c) relies on MCMC techniques. We propose to construct

a novel algorithm based on MCMC simulation methods to make the Bayesian analysis

feasible.

Let θ be the entire parameter vector of the entire class of SV-SMN models, h0:T =

(h0, h1, . . . , hT )′ be the vector of the log volatilities, λ1:T = (λ1, . . . , λT )′ the mixing

variables and y1:T = (y1, . . . , yT )′ is the information available up time T . The Bayesian

approach for estimating the SV-SMN class of models uses the data augmentation
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principle, which considers h0:T and λ1:T as latent parameters. By using the Bayes’

theorem, the joint posterior density of parameters and latent variables can be written

as

p(h0:T ,λ1:T ,θ | y1:T ) ∝ p(y1:T | h0:T ,λ1:T )p(h0:T | θ)p(λ1:T | θ)p(θ), (13)

where

p(y1:T | λ1:T ,h0:T ) ∝
T∏
t=1

λ
1/2
t e−

ht+λty
2
t e
−ht

2 , (14)

p(h0:T | θ) ∝ e
− 1−φ2

2σ2
η

(h0− α
1−φ )2

T∏
t=1

e
− 1

2σ2
η

(ht−α−φht−1)2

, (15)

p(λ1:T | θ) =
T∏
t=1

p(λt), (16)

where p(θ) is the prior distribution. For the common parameters of the SV–SMN

class, the prior distributions are set as: α ∼ N (ᾱ, σ2
α), φ ∼ N(−1,1)(φ̄, σ

2
φ), and

σ2
η ∼ IG(T0

2
, M0

2
), where N(a,b)(., .) denotes the truncated normal distribution in the

interval (a,b).

Since the posterior density p(h0:T ,λ1:T ,θ | y0:T ,v0:T ) does not have closed form,

we first sample the parameters θ, followed by the latent variables λ1:T and h0:T using

Gibbs sampling. The sampling scheme is described by the following algorithm:.

Algorithm 3.1

1. Set i = 0 and get starting values for the parameters θ(i), the states λ
(i)
1:T and

h
(i)
0:T

2. Draw θ(i+1) ∼ p(θ | h(i)
0:T ,λ

(i)
1:T ,y1:T )

3. Draw λ
(i+1)
1:T ∼ p(λ1:T | θ(i+1),h

(i)
0:T ,y1:T )

4. Draw h
(i+1)
0:T ∼ p(h0:T | θ(i+1),λ

(i+1)
1:T ,y1:T )
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5. Set i = i+ 1 and return to 2 until convergence is achieved.

As described by algorithm 3.1, the Gibbs sampler requires to sample parameters and

latent variables from their full conditionals. Sampling the log-volatilities h0:T in Step

4 is the more difficult task due to the non linear setup in the mean equation (12a). In

order to avoid the higher correlations due to the Markovian structure of the ht’s, we

develop a multi-move sampler (Shephard and Pitt 1997; Watanabe and Omori 2004;

Omori and Watanabe 2008; Abanto-Valle et al. 2008) in the next section to sample

the h0:T by blocks. Details on the full conditionals of θ and the latent variable λ1:T

are given in the appendix, some of them are easy to simulate from.

3.2. Multi-move algorithm

In order to simulate h0:T , we consider a two-step process: first, we simulate h0

conditional on h1:T , next h1:T conditional on h0. In our block sampler, we divide

h1:T into K + 1 blocks, hki−1+1:ki−1 = (hki−1+1, . . . , hki−1)′ for i = 1, . . . , K + 1, with

k0 = 0 and kK+1 = T , where ki − ki−1 ≥ 2 is the size of the i−th block. Following

Shephard and Pitt (1997) and Omori and Watanabe (2008), the K knots (k1, . . . , kK)

are generated randomly using

ki = int[T × {(i+ ui)/(K + 2)}], i = 1, . . . , K., (17)

where the u′is are independent realizations of the uniform random variable on the

interval (0,1) and int[x] represents the floor of x. We sample the block of distur-

bances ηki−1+1:ki−1 = (ηki−1+1, . . . , ηki−1) instead of hki−1+1:ki−1 = (hki−1+1, . . . , hki−1),

exploring the fact that the innovations ηt are i.i.d. with N (0, 1).

Suppose that ki−1 = t and ki = t+ k + 1 for the i−th block, such that t+ k < T .

Then ηt+1:t+k = (ηt+1, . . . , ηt+k) are sampled at once from their full conditional dis-

tribution f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,λt+1:t+k,θ), which is expressed in the log scale
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as

log f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,λt+1:t+k,θ) =

= const− 1
2σ2
η

∑t+k
r=t+1 η

2
r +

∑t+k
r=t+1 l(hr)−

1
2σ2
η
(ht+k+1 − α− φht+k)2, (18)

where l(hr) is the log of f(yr | hr, λr) given by

l(hr) = const− hr
2
− 1

2
λry

2
re
−hr .

Note that when t + k = T , the last term in (18) is omitted and we denote the first

and second derivatives of l(hr) with respect to hr by l′ and l′′. Next, we apply a

Taylor’s series expansion to
∑t+k

r=t+1 l(hr) in equation (18) around some preliminary

estimate of ηt:t+k, denoted by η̂t:t+k. After some simple but tedious algebra, we have

the approximate normal density g as follows

log f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,λt+1:t+k,θ)

= const− 1

2σ2
η

∑t+k
r=t+1 η

2
r + 1

2

∑t+k−1
r=t+1 l

′′
(ĥr)

(
ĥr − l

′
(ĥr)

l′′ (ĥr)
− hr

)2

−
φ2 − l′′(ĥt+k)σ2

η

2σ2
η

{
σ2
η

φ2 − l′′F (ĥt+k

(
l
′
(ĥt+k)− l

′′
(ĥt+k)ĥt+k +

φ− αSt+k+1

σ2
η

ht+k+1

)
− ht+k

}2

= log g, (19)

where ĥt+1:t+k is the estimate of ht+1:t+k corresponding to η̂t+1:t+k.

From (19), we define auxiliary variables dr and ŷr for r = t + 1, . . . , t + k − 1 as

follows:

dr = − 1

l′′(ĥr)
,

ŷr = ĥr + drl
′
(ĥr), (20)
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For r = t+ k < T

dr =
σ2
η

φ− σ2
ηl
′′(ĥt+k)

ŷr = dr

[
l
′
(ĥr)− l

′′
(ĥr)ĥr +

(φ− α)

σ2
η

hr+1

]
, (21)

and when r = t+ k = T we use (20) to define the auxiliary variables.

The resulting normalized density in (19), defined as g, is a k-dimensional normal

density, which is the exact density of ηt+1:t+k conditional on ŷt+1:t+k in the linear

Gaussian state space model:

ŷr = hr + εr, εr ∼ N(0, dr), (22)

hr = α + φhr−1 + σηηr, ηr ∼ N(0, 1) (23)

Applying the de Jong and Shepard (1995) simulation smoother to this model with

the artificial ŷt+1:t+k enables us to sample ηt+1:t+k from the density g. Since f is

not bounded byg, we use the Metropolis-Hastings acceptance-rejection algorithm to

sample from f (Tierney, 1994; Chib, 1995). In the SV-N case, we use the same

procedure with λt = 1 for t = 1, . . . , T .

We select the expansion block ĥt+1:t+k as follows. Once an initial expansion block

ĥt+1:t+k is selected, we can calculate the artificial ŷt+1:t+k. Then, we apply the Kalman

filter and a disturbance smoother to the linear Gaussian state space model consisting

of equations (22) and (23) with the artificial ĥt+1:t+k to obtain the mean of ĥt+1:t+k

conditional on ŷt+1:t+k in the linear Gaussian state space model. This is used as the

next value of ĥt+1:t+k. In this article, we use five iterations of this procedure to obtain

a reasonable sequence of ĥt+1:t+k.

3.3. Bayesian model selection

In this section, we describe two Bayesian model selection criteria: the deviance

information criterion (Spiegelhalter et al. 2002; Berg et al. 2004; Celeux et al. 2006)
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and the Bayesian predictive information criterion (Ando, 2006, 2007).

3.3.1. Deviance information criterion

Spiegelhalter et al. (2002) introduced the deviance information criterion (DIC)

defined as:

DIC = −2Eθ|y1:T
[logL(y1:T | θ)] + pD. (24)

The second term in (24) measures the complexity of the model by the effective number

of parameters, pD, defined as the difference between the posterior mean of the deviance

and the deviance evaluated at the posterior mean of the parameters:

pD = 2[logL(y1:T | θ̄)− Eθ|y1:T
[logL(y1:T | θ)]]. (25)

In the context of the SV-SMN class of models, θ encompasses the parameter vector

(α, φ, σ2
η, ν)′, λ1:T and h0:T . Berg et al. (2004) proposed to use the deviance informa-

tion criterion (DIC) to compare several specifications of the SV models.

As pointed by Stone (2002), Robert and Titterington (2002), Celeux et al. (2006)

and Ando (2007), the DIC suffers from some theoretical aspects. First, in the deriva-

tion of DIC, Spiegelhalter et al. (2002, p.604) assumed that the specified parametric

family of probability distributions that generate future observations encompasses the

true model. This assumption does not always hold. Secondly, the observed data

are used both to construct the posterior distribution and to compute the posterior

mean of the expected log likelihood. The bias estimate of DIC tends to underesti-

mate the true bias considerably. To overcome theoretical problems in DIC, Ando

(2007) recently proposed the Bayesian predictive information criterion (BPIC) as an

improvement over the DIC.
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3.3.2. Bayesian predictive information criterion

Let us consider z1:T = (z1, z2, . . . , zT )′ to be a new set of observations generated

by the same mechanism as that of the observed data y1:T drawn from the true model

s(z1:T ). To evaluate the relative fit of the Bayesian model to the true model s(z1:T ),

Ando (2007) considered the maximization of the posterior mean of the expected log-

likelihood

η =

∫ [ ∫
logL(z1:T | θ)p(θ | y1:T )s(z1:T )dz1:T

]
It is obvious that η depends on the model fitted, and on the unknown true model

s(z1:T ). A natural estimator of η is the posterior mean of the log-likelihood,

η̂ =

∫
logL(y1:T | θ)p(θ | y1:T )

where L(y1:T | θ) =
∏T

t=1 p(yt | θ). As pointed by Ando (2006, 2007) the quantity,

η̂ is generally a positively biased estimator of η, because the same data y1:T are used

both to construct the posterior distribution and to evaluate the posterior mean of the

log-likelihood. Therefore, bias correction should be considered, where the bias b is

defined as: b =
∫

(η̂ − η)s(z1:T )dy1:T . Ando (2007) evaluated the asymptotic bias as

T b̂ ≈ Eθ|y1:T
[log{L(y1:T | θ)p(θ)}]− log[L(y1:T | θ̂)p(θ̂)] + tr{J−1

n (θ̂)In(θ̂)}+ 0.5q.

(26)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation with respect to the

posterior distribution, θ̂ is the posterior mode, and

In(θ̂) =
1

T

T∑
t=1

(
∂ηT (yt,θ)

∂θ

∂ηT (yt,θ)

∂θ′

)∣∣∣∣
θ=

ˆθ

Jn(θ̂) =
1

T

T∑
t=1

(
∂2ηT (yt,θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
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with ηT (yt,θ) = log p(yt | y1:t−1,θ) + log p(θ)/T. Correcting the asymptotic bias of

the posterior mean of the log-likelihood, the Bayesian predictive information criterion

(BPIC; Ando, 2006, 2007) is given by

BPIC = −2Eθ|y1:T
[log{L(y1:T | θ)] + 2T b̂. (27)

The best model is chosen as the minimizer of BPIC. In the context of the SV-SMN

class of models, θ = (α, φ, σ2
η, ν)′ and log p(yt | y1:t−1,θ) is evaluated numerically

using the auxiliary particle filter method (Kim et al. 1998; Pitt and Shephard 1999;

Chib et al. 2002).

4. Empirical Application

This section analyzes the daily closing prices for the S&P500 stock market index1.

The S&P500 index contains the stocks of 500 Large-Cap corporations, most of which

are American, and is used in reference not only to the index but also to the 500

companies that have their common stock included in the index. The period of analysis

is January 5, 1999 - September 05, 2008 which yields 2432 observations. Throughout,

we will work with the mean corrected returns computed as

yt = 100

{
(logPt − logPt−1)− 1

T

T∑
j=1

(logPj − logPj−1)

}
where Pt is the closing price on day t.

Table 1 summarize descriptive statistics for the corrected compounded returns; the

time series plot are showed in Figure 4. For the returns series, the basic statistics

viz. the mean, standard deviation, skewness and kurtosis are calculated to be 0.00,

1.13, 0.06 and 5.04, respectively. Note that the kurtosis of the returns is above three,

1The data set was obtained from the Yahoo finance web site at http://finance.yahoo.com
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Table 1: Summary statistics for S&P500 market index series

mean s.d. max min skewness kurtosis

Returns 0.00 1.13 5.58 -6.00 0.05 5.03

so that daily S&P500 returns likely shows a departure from the underlying normality

assumption. Thus, we revisit this data with the aim of providing additional inferences

by using the SMN class of distributions. In our analysis, we compare between the

SV-N, SV-t, SV-S and SV-VG distributions from the SMN class of models.

Figure 1: S&P500 corrected compounded returns with sample period from January 5, 1999 to

September 05, 2008. Left: raw series. Right: histogram of returns.

In all cases, we simulated the ht’s in a multi-move fashion with stochastic knots

based on the method described in Section 3.1. We set the prior distributions of

the common parameters as: α ∼ N (0.0, 100.0), φ ∼ N(−1,1)(0.95, 100.0), σ2
η ∼

IG(2.5, 0.025). The prior distributions on the shape parameters were chosen as:

ν ∼ G(12.0, 0.8), ν ∼ G(0.2, 0.05) and ν ∼ G(2.0, 0.25) for the SV-t model, the SV-S

model and the SV-VG model, respectively. We set K, the number of blocks as 40 in a

such way that each block contained 60 h′ts on average. For all models, we conducted
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Table 2: Estimation result for the S&P500 return. The first row: posterior mean. The second row:

posterior 95% credible interval in parentheses. The third row: Monte Carlo error of the posterior

mean. The fourth row: CD statistics

Parameter SV-N SV-t SV-S SV-VG

-0.0016 -0.0043 -0.0146 -0.0011

α (-0.0104,0.0067) (-0.0132,0.0040) (-0.0267,-0.0042) (-0.0095,0.0072)

0.34× 10−4 0.76× 10−4 1.86× 10−4 0.41× 10−4

-1.09 0.457 -0.98 0.51

0.9700 0.9725 0.9730 0.9721

φ (0.9542,0.9834) (0.9575,0.9852) (0.9579,0.9854) (0.9568,0.9846)

3.04× 10−4 3.03× 10−4 3.17× 10−4 2.99× 10−4

-1.94 0.38 -0.72 -0.59

0.0447 0.0415 0.0406 0.0402

σ2 (0.0292,0.0652) (0.0258,0.0590) (0.0254,0.0598) (0.0270, 0.0607)

5.27× 10−4 5.40× 10−4 5.46× 10−4 4.82× 10−4

1.84 -0.27 0.49 0.61

— 18.2973 2.2618 17.7880

ν — (11.2700,28.5300) (2.0670,2.4250) ( 9.7930 ,30.1460)

— 0.2987 0.0012 0.4535

— 0.8171 -0.61 -0.38

the MCMC simulation for 60000 iterations. The first 20000 draws were discarded as a

burn-in period. Based on the sample of next 40000 samples, we calculated the poste-

rior means, the 95% credible intervals, the Monte Carlo error of the posterior means

and the convergence diagnostic (CD) statistics (Geweke, 1992). Table 2 summarizes

these results. According to the CD values, the null hypothesis that the sequence of

40000 draws is stationary is accepted at the 5% level for all the parameters and in

all the models considered here. Figures 2, 3, 4 and 5 depicted the sampling results

for SV-N, SV-t, SV-S and SV-VG models on the S&P500 return series. We observe

a rapid decay of autocorrelations for all the models.

The estimate of the volatility parameters (α, φ, σ2) are consistent with the results

16



Figure 2: Estimation result for the S&P500 daily index returns (SV-N model). Sample paths (left),

sample autocorrelations (middle), posterior histograms (right), the doted line indicate the 2.5% and

97.5% percentiles and the solid line the sample posterior mean.
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Figure 3: Estimation result for the S&P500 daily index returns (SV-t model). Sample paths (left),

sample autocorrelations (middle), posterior histograms (right), the doted line indicate the 2.5% and

97.5% percentiles and the solid line the sample posterior mean.
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Figure 4: Estimation result for the S&P500 daily index returns (SV-S model). Sample paths (left),

sample autocorrelations (middle), posterior histograms (right), the doted line indicate the 2.5% and

97.5% percentiles and the solid line the sample posterior mean.
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Figure 5: Estimation result for the S&P500 daily index returns (SV-VG model). Sample paths (left),

sample autocorrelations (middle), posterior histograms (right), the doted line indicate the 2.5% and

97.5% percentiles and the solid line the sample posterior mean.
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found in the previous literature (e.g. Chib et al., 2002; Omori et al., 2007). The

posterior mean of φ is close to one, which indicates a well-known high persistence of

volatility asset returns. The posterior mean of φ for the SV-N model is lower than

the other models and the estimates of σ2 for the SV-t, SV-S and SV-VG models are

slightly lower than the SV-N model. Thus, the models allowing heavy-tail errors seem

to explain the excess of returns as a realization of the disturbance εt, which decreases

the variance of the volatility process.

The magnitude of the tail-fatness is measured by the shape parameter ν in the

SV-t, SV-S and SV-VG models. The posterior mean of ν in the SV-t model is 18.2973,

which is in accordance with the literature (Nakajima and Omori, 2008). In the SV-S

model, the posterior mean of ν is 2.2618, and in the SV-VG model the posterior

mean of ν is 17.7880. These results seem to indicate that the measurement error of

the stock returns are better explained by heavy-tailed distributions.

The magnitudes of the mixing parameter λt are associated with extremeness of

the corresponding observations. In the Bayesian paradigm , the posterior mean of the

mixing parameter can be used to identify a possible outlier (see, for instance Rosa

et al., 2003). The SV-SMN class of models can accommodate an outlier by inflating

the variance component for that observation in the conditional normal distribution

with smaller λt value. This fact is shown in Figure 6 where we depicted the posterior

mean of the mixing variable λt for the SV-t (top panel), the SV-S (middle panel) and

the SV-VG (bottom panel) model.

In Figure 7, we show the graph of eht estimated by the SV-N versus the eht

and λ−1
t eht estimated by the SV-t (top panel), SV-S (middle panel) and SV-VG

(bottom panel). It can seen from Figure 7 that the SV-N, SV-t and SV-VG models

produce similar estimates to eht . However, Figure 7 (middle panel) indicates that the

volatility process estimated by the SV-S model is different from the other competing
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Table 3: SP&500 return data set. DIC: deviance information criterion, BPIC: Bayesian predictive

information criterion.

DIC BPIC

Model Value Ranking BPIC Ranking

SV-N 6889.6 3 7603.1 4

SV-t 6888.1 2 6957.4 2

SV-S 6878.4 1 6951.4 1

SV-VG 6906.8 4 7406.5 3

SV models. This can have a substantial impact, for instance, in the valuation of

derivative instruments and several strategic or tactical asset allocation topics. It

is clear that the SV-S model accommodate in a different way, possible outliers by

inflating the variance eht by λ−1
t eht . For example, in this model the observations

labeled as A, B and C corresponding to April 14, 2000, July 24, 2002 and July

29, 2002 respectively have their fitted values of eht smaller than the corresponding

λ−1
t eht .

We use the deviance information criterion (DIC) and the Bayesian predictive

information criterion (BPIC) to compare between the competing models. In both

cases, the best model has the smallest DIC (BPIC). According with Table 3, the BPIC

indicates that the SV-SMN models with heavy tails present better model fit than the

basic SV-N model, with the SV-S model relatively better among all the models,

suggesting that the SP&500 data demonstrate sufficient departure from underlying

normality assumptions. The DIC selects the SV-S model as the best model.

The robustness of the SV-SMN class models can be study through the influence of

outliers on the posterior distribution of the parameters. For illustration, we consider

only the SV-S model. We study the influence of three contaminated observations on

the posterior mean and 95% credible interval of parameter estimates. The observa-
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Figure 6: Comparison of the estimated mixing variables λt for the SP&500 index
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Figure 7: Comparison of the estimated volatilities for SP&500 index
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tions in t = 1566, 1582, 1599, which corresponds to March 5, 2005, April 20, 2005 and

May 16, 2005, respectively, are contaminated by kyt, where k varied -6 and 6 with

increments of 0.5 units. In Figures 8 and 9, we depicted the posterior mean and 95%

credible interval of φ and σ2
η, respectively, for the SV-N and SV-S models. Clearly,

the SV-S model is less affected by variations of k than the SV-N model signifying

substantial robustness over the normal model in presence of outlying observations.

Figure 8: Posterior mean (dashed line) and 95% credible interval (solid line) for φ of fitting the

SV-N and SV-S models for the SP&500 index

5. Conclusions

This article discusses a Bayesian implementation of some robust alternatives to

stochastic volatility models via MCMC methods. The Gaussian assumption of the

mean innovation was replaced by univariate thick-tailed processes, known as scale

mixtures of normal distributions. Three specific cases studied were the Student-t,

the slash, and the variance gamma distributions. Under a Bayesian paradigm, we
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Figure 9: Posterior mean (dashed line) and 95% credible interval (solid line) for σ2 of fitting the

SV-N and SV-S models for the SP&500 index

constructed an algorithm based on Markov Chain Monte Carlo (MCMC) simulation

methods to estimate all the parameters and latent quantities in the SV-SMN class

of models. As a by product of the MCMC algorithm, we were able to produce an

estimate of the latent information process which can be used in financial modeling.

The use of mixing variable, λ1:T for normal scale mixture distributions not only sim-

plifies the full conditional distributions required for the Gibbs sampling algorithm,

but also provides a means for outlier diagnostics. An empirical application is given

using the SP&500 index return series, which show that the SV-S model provide better

model fitting than the SV-N model in terms of parameter estimates, interpretation

and robustness.

For further research, the following topics are considered. First, we estimated the

volatility of financial asset return changes without a sudden structural change. Re-

cently, the SV model with jumps (Barndorff-Nielsen and Shephard, 2001; Chib et al.,

2002) and the regime switching models (So et al., 1998; Shibata and Watanabe, 2005;

Abanto-Valle et al., 2008) have received considerable attention. We can extend the
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proposed model by considering these properties. Second, Although the SV-SMN

models considered in this paper has shown great flexibility to accommodate outliers,

its robustness aspects could be seriously affected by presence of skewness. Lachos

et al. (2008) have recently proposed a remedy to accommodate skewness and heavy-

tailedness simultaneously using scale mixtures of skew-normal (SMSN) distributions.

We conjecture that the methodology presented in this paper can be undertaken under

univariate and multivariate setting of SMSN distributions and should yield satisfac-

tory results in certain situations, at the expense of additional complexity in its im-

plementation. Nevertheless, a deeper investigation of those modifications is beyond

the scope of the present paper, but provides interesting topics for further research.
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Appendix: The Full conditionals

In this appendix, we describe the full conditional distributions for the parameters

and the mixing latent variables λ1:T of the SV-SMN class of models.

Full conditional distribution of α, φ and σ2
η

The prior distributions of the common parameters are set as: α ∼ N(ᾱ, σ2
α),

φ ∼ N(−1,1)(φ̄, σ
2
φ), σ2

η ∼ IG(T0

2
, M0

2
). Together with (15), we have the following full
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conditional for α:

p(α | h0:T , φ, σ
2
η) ∝ exp{−aα

2
(α− bα

aα
)2}, (28)

which is the normal distribution with mean bα
aα

and variance 1
aα

, where aα = 1
σ2
α

+ T
σ2
η

+

1+φ
σ2
η(1−φ)

and bα = ᾱ
σ2
α

+ (1+φ)
σ2
η
h0 +

∑T
t=1(ht−φht−1)

σ2
η

. Similarly, by using (15), we have that

the conditional posterior of φ is given by

p(φ | h0:T , α, σ
2
η) ∝ Q(φ) exp{− aφ

2σ2
η
(φ− bφ

aφ
)2}I|φ|<1 (29)

where Qφ =
√

1− φ2 exp{− 1
2σ2
η
[(1 − φ2)(h0 − α

1−φ)2}, aφ =
∑T

t=1 h
2
t−1 +

σ2
η

σ2
φ
, bφ =∑T

t=1 ht−1(ht − α) + φ̄
σ2
η

σ2
φ

and I|φ|<1 is an indicator variable. As p(φ | h0:T , α, σ
2
η)

in (29) does not have closed form, we sample from using the Metropolis-Hastings

algorithm with truncated N(−1,1)(
bφ
aφ
,
σ2
η

aφ
) as the proposal density.

From (15), the conditional posterior of σ2
η is IG(T1

2
, M1

2
), where T1 = T0 + T + 1

and M1 = M0 + [(1− φ2)(h0 − α
1−φ)2] +

∑T
t=1(ht − α− φht−1)2.

Full conditional of λt and ν

• SV-t case

As λt ∼ G(ν
2
, ν

2
), the full conditional of λt is given by

p(λt | yt, ht, ν) ∝ λ
ν+1
2
−1

t e−
λt
2

(y2t e−ht+ν), (30)

which is the gamma distribution, G(ν+1
2
,
y2t e−ht

2
).

We assume the prior distribution of ν as G(aν , bν)I2<ν≤40. Then, the full condi-

tional of ν is

p(ν | λ1:T ) ∝

[
ν
2

]Tν
2

νaν−1e−
ν
2

∑T
t=1[(λt−log λt)+2bν ]

Γ(ν
2
)

I2<ν≤40. (31)

We sample ν by the Metropolis-Hastings acceptance-rejection algorithm (Tierney,

1994; Chib, 1995). Let ν∗ denote the mode (or approximate mode) of p(ν | λ1:T ),
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and let `(ν) = log p(ν | λ1:T ). As `(ν) is concave, we use the proposal density

N(2,40)(µν , σ
2
ν), where µν = ν∗ − `′(ν∗)/`′′(ν∗) and σ2

ν = −1/`′′(ν∗). `′(ν∗) and `′′(ν∗)

are the first and second derivatives of `(ν) evaluated at ν = ν∗. To proof the concavity

of `(ν), we use the result of Abramowitz and Stegun (1970), in which the log Γ(ν)

could be approximated as

log Γ(ν) =
log(2π)

2
+

2ν − 1

2
log(ν)− ν +

θ

12ν
, 0 < θ < 1. (32)

Taking the second derivative of `(ν) from (36) and using (32), we have that

`′′(ν) = − Tθ
3ν3
− (T + 2aν − 2)ν

2ν2
< 0.

• SV-S case

Using the fact that λt ∼ Be(ν, 1), we have that the full conditional of λt is given by

p(λt | yt, ht, ν) ∝ λ
ν+ 1

2
−1

t e−
λt
2
y2t e−ht I0<λt<1, (33)

that is λt ∼ G(0<λt<1)(ν + 1
2
, 1

2
y2
t e
−ht),i.e., the right truncated gamma distribution.

Assuming that a prior distribution of ν ∼ G(aν , bν), the full conditional distribution

of ν is given by

p(ν | h0:T ,λ1:T ) ∝ νT+aν−1e−ν(bν−
∑T
t=1 log λt)Iν>1. (34)

Then, the full conditional of ν is Gν>1(T +aν , bν−
∑T

t=1 log λt), i.e. the left truncated

gamma distribution. We simulate from the right and left truncated gamma distribu-

tions using the algorithm proposed by Philippe (1997).

• SV-VG case

As λt ∼ IG(ν
2
, ν

2
), the full conditional of λt is given by

p(λt | yt, ht, ν) ∝ λ
− ν

2
+ 1

2
−1

t e
− 1

2
(λty2t e−ht+ ν

λt
)
, (35)
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which is the generalized inverse gaussian distribution, GIG(−ν
2

+ 1
2
, y2
t e
−ht , ν).

We assume the prior distribution of ν as G(aν , bν)I0<ν≤40. Then, the full condi-

tional of ν is

p(ν | y1:T ,h0:T ,λ1:T ) ∝

[
ν
2

]Tν
2

νaν−1e
− ν

2

∑T
t=1[( 1

λt
+log λt)+2bν ]

Γ(ν
2
)

I0<ν≤40 (36)

which is log-concave. Thus, we sample ν by the Metropolis-Hastings acceptance-

rejection algorithm as in the case of the SV-t model with proposal densityN(0,40)(µν , σ
2
ν).
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