
Dynamic spatial models, including spatial time
series 1

Dani Gamerman

Instituto de Matemática - UFRJ
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1 Dynamic linear models

This book has already presented many situations where the observation process

under study contains the temporal dimension as well as the spatial dimension.

This section is devoted to detail a popular and fairly general framework for han-

dling these situations. It is based on firmly established models, called dynamic

or state-space models, with a non-parametric flavor. They have proved a flexi-

ble tool to handle temporal correlation (West and Harrison, 1997) in a variety

of different contexts. This section will also provide a number of contexts where

these models can be applied in the context of spatial analysis.

Dynamic models are described via a p-dimensional latent process β(·) defined

over time according to a temporal difference equation

β(t′) = G(t′, t)β(t) + w(t′, t), with w(t′, t) ∼ N(0,W (t′, t)), (t′ > t) (1)

where the transition matrix G conveys the deterministic part of the evolution

and the system disturbance w is simply a stochastic component accounting

for increased uncertainty (controlled by the disturbance variance W ) over the

temporal evolution. The model is completed with an initial specification for β

at say t = 0. For temporally equidistant points, equation (1) can be simplified

to

βt = Gtβt−1 + wt, with wt ∼ N(0,Wt). (2)

This will be assumed to be the case hereafter without loss of generality; treat-

ment of non-equidistant times involves trivial changes that only clutter the

notation. Note also that this gives rise to vector autoregressive (VAR) forms of

order 1 when Gt is constant over time.
1This review is contribution to the Handbook of Spatial Statistics, eds. Gelfand et al.
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Example 1. First order models

When G = Ip, the identity matrix of order p, the model is the random walk

βt = βt−1 + wt and therefore model (2) can also be referred to as generalized

random walk. This is also referred to as first order models because they can

be seen as the first order (Taylor expansion) approximation of an arbitrary

underlying smooth function βt. Note that, unlike Gaussian processes, this model

is non-stationary with V ar(βt) increasing with t.

Stationary processes may be also be obtained after replacing the random

walk evolution matrix Ip by suitably chosen matrices P . This gives rise to

vector autoregressive (VAR) forms of order 1. Special cases of interest are given

by P = ρIp, with |ρ| < 1, and P = diag(ρ1, ..., ρp), with |ρi| < 1, for i = 1, ..., p.

These models are attractive for their simplicity and low dimensionality but may

be too restrictive.

Example 2. Second order models or Dynamic linear trend (LT)

Assume β =


 β1

β2


 is a bivariate process and let Gt = GLT =


 1 1

0 1


,

for all t. Then clearly β2 is undergoing a univariate random walk and β1 is

being incremented each time by β2. Thus, β1 plays the role of an underlying

level and β2 plays the role of its increment. Typically only β1 is present in the

data description. Both components are varying locally around their prescribed

evolutions and can accommodate local changes.

The disturbance variance matrix for this model is hereafter denoted by WLT .

It may take any positive definite form but there are good reasons to assume it

as WLT =


 W1 + W2 W2

W2 W2


, for all t. In any case, it is recommended to

assume the disturbance at the mean level to be larger than the disturbance of

its increment. Thus, the 1st diagonal element of WLT would be larger than its

2nd diagonal element.

Example 3. Seasonal models

Assume a seasonal pattern of length p is to be described. Let β = (β1, ..., βp)T

and Gt =


 0 Ip−1

1 0


, for all t. Clearly, Gt is a permutation matrix and the

evolution over time only rearranges β components by replacing its 1st component
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by its 2nd component in the preceding time. Thus, allowing only the first β

component to be present in the data description gives a form free pattern for

the seasonality. This pattern is stochastic due to the presence of the disturbance

term wt.

Structured seasonal patterns may also be constructed. A single sine wave

form is obtained by letting β =


 β1

β2


 and Gt = GS =


 c s

−s c


, where

c = cos(2π/p) and s = sin(2π/p), for all t. This evolution matrix makes β1 take

the appropriate value in the sine wave for every next time.

Once again, allowing only the first β component to be present in the data

description gives a sine wave form for the seasonality. The pattern is stochastic

and can accommodate variations around the sine wave due to the disturbance

term wt. This is usually associated with an additional intercept in the model

for the observations since the sine wave fluctuates around 0. Combination of

harmonics is obtained by allowing extra pairs of β components with different

lengths and completely general forms are obtained by incorporating [p/2] har-

monics. See West & Harrison (1997, ch. 7?) for details and Harvey (1989) for

an alternative model for seasonal components.

The non-parametric nature of these models is easier to understand with the

usual choice of a random walk. In this case, the process β is simply undergoing

local changes without imposing any specific form for the temporal variation and

as such is capable of (locally) tracking any smooth trajectory over time. The

degree of smoothness is governed by the variances W . Models that depart from

the random walk impose some structure in the mean of the process, as described

in the examples above. Even for these models, the presence of the disturbance

terms allows departures from this structure and accommodates data fluctuations

around it.

These models can also be obtained by discretization of an underlying stochas-

tic differential equation (Revuz and Yor, 1999), as those used above in this book

for handling spatio-temporal processes in continuous time.

The typical set-up for the use of dynamic models is the context of temporally

correlated data Yt = (Yt(s1), ..., Yt(sn)), for t = 1, ..., T , where. It will be

assumed that all temporal correlation present in the data is captured by an
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underlying process β. Therefore, the observations are conditionally independent

(given β) leading to the likelihood for β given by l(β) =
∏T

t=1 p(yt|βt), where T

is the last observed time.

The simple but important case of a normal linear models gives p(yt|βt) as

Yt = µt + vt, with µt = Xtβt and et ∼ N(0, Vt), (3)

for t = 1, ..., T . The variance matrix Vt of the observation error et may be

specified using any of the models previously described in this book to handle

spatial correlation. The main forms are Gaussian processes, typically used in

continuous space.

Also, the error et can be further decomposed into et = ηt + εt, as before.

This decomposition eases the generalization towards non-normal observations.

Assume the observational distribution is governed by parameter ξt. The spa-

tially structured error term ηt is incorporated to the predictor Xtβt + ηt via

g(µt) = Xtβt +ηt, for some differentiable function g (Diggle, Tawn and Moyeed,

1998). An important example is the exponential family with mean µt. The pure

noise εt retains the description of unstructured observational variation.

The n × m matrix Xt plays the role of a design matrix containing values

of the explanatory variables at time t. It is typically given by known func-

tions of location with rows X(s1)T , ...., X(sn)T , not depending on time and is

thus denoted hereafter simply by X. Therefore, for any given location s, the

observational predictor (mean, in the normal case) is given by

µt(s) = X(s)T βt (4)

Thus, models are being decomposed into a deterministic part given by X(s)T βt

and an unexplained stochastic component et that may incorporate the spatial

dependence. Note that in this dynamic setting the deterministic part of the

model is only handling temporal correlation. One natural choice in the spatio-

temporal setting is to let matrix X be a function of the spatial coordinates.

This approach was proposed by Stroud, Muller and Sansó (2001). They

chose to define X(s) as a linear combination of basis functions of the location

s. This idea is applied in related contexts by many authors. Wikle and Cressie

(1999) use the same decomposition in their dimension reduction approach. They
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obtained it from a more general underlying processes, to be described later in

this section. Sansó, Schmidt and Nobre (2008) also use this decomposition but

without the error term2.

These approaches have the common feature of considering X as a fixed

function of space. This may be too restrictive to accommodate general spatial

variation. Lopes, Salazar and Gamerman (2006) allow the columns f1, ..., fm

of X to vary stochastically according to independent Gaussian processes. The

m-dimensional time-varying component βt plays the role of m latent factor time

series capturing the temporal variation of the data. Each of its m elements βtj

is associated to the observations through the space-varying vector fj containing

their loadings, for j = 1, ..., m.

All models above decompose models into 2 groups of components: one han-

dling space and one handling time. Even tough these structures may combine

into non-separable models, richer dependence between space and time is not

allowed. A description of processes that combine spatial and temporal depen-

dence into a single structure that can not be separated is provided in what

follows.

The key aspect in the extension is to allow state parameters βt to vary

across space. This will obviously imply a substantial increase in the parameter

dimensionality and may lead to identifiability problems. The solution to keep

the problem manageable and the model identifiable is to impose restrictions

over the parameter space. This can be achieved through likelihood penalization

from a classical perspective or through prior specifications from a Bayesian

perspective.

2 Space varying state parameters

From now on, it will be assumed that the state parameter βt(·) varies also over

space. In this setting, βt(·) = {βt(s) : s ∈ D}. Considering n locations si

(i = 1, ..., n) for spatially continuous observation processes, the vector βt =

(βt1, ..., βtn) can be formed with βti = βt(si) denoting the state parameter at

2They also consider the possibility that X models time (in which case it will recover its

subscript t) and βt models space (in which case it drops its subscript t).
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time t and location si.

A simple form to account for spatial and temporal variation of the state

parameter is to assume that βt(·) can be decomposed as

βt(s) = γ̄t + γt(s) (5)

with a trend γ̄t common to all locations and a spatio-temporal disturbance

γt(s) associated with its location. Paez et al. (2008) assumed that the common

trend γ̄t carries the temporal evolution according to (2). The spatio-temporal

disturbance process γt(·) accounts for the spatial correlation through a multi-

variate Gaussian process, which they assume to be independent and identically

distributed over time. They applied this process to the intercept and the re-

gression coefficients of a dynamic model for pollutant measurements.

Their approach allows more generality in the description of state parameters.

Despite the substantial increase in the nominal number of parameters, it achieves

identifiability through the decomposition (5) and prior assumptions about γ̄t

and γt. Note that the temporal independence between the γt´s prevents any

temporal correlation between them. So, their model still separates the spatial

components γ̄t from the temporal components γt. Thus, their model can be

useful if no temporal dependance of the spatial variation is expected.

The simplest model that does not allow for explicit separation of space and

time is the spatial random walk

βt(s) = βt−1(s) + wt(s), for all s, (6)

where βt(·) is a univariate process. In model (6), state parameters βt evolve

in forms that are seemingly independent in space. But spatial correlation is

introduced via their respective disturbance processes wt(·) through their joint

distribution. It does it by assuming some form of a Gaussian process. It will

typically have a geostatistical model form given in chapter 2 for spatially con-

tinuous data. The prior is completed with a Gaussian process prior for β1(·).
Obviously, the spatial random walk can be defined for multivariate state

parameters βt(·). All it requires is an adequate multivariate representation of

Gaussian processes. Some possibilities for doing it are analysed in the areal data
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context by Gamerman, Moreira and Rue (2002) and described in the spatially

continuous context by Gamerman, Salazar and Reis (2007).

The decomposition (5) can also be applied to (6). In this case, the distur-

bances wt(s) must also be decomposed into a purely temporal disturbance w̄t

and residual spatio-temporal disturbances as

βt(s) = γ̄t + γt(s), for all s

γ̄t = γ̄t−1 + w̄t,

γt(s) = γt−1(s) + wt(s), for all s

. (7)

This decomposition was used by Gelfand, Banerjee and Gamerman (2005).

They analysed environmental data with a normal linear regression model. Iden-

tification is ensured by setting the mean of γt(s) to be 0. The first component γ̄t

accounts for purely temporal variation. The second component γt(s) accounts

for the remaining temporal variation that was associated with space. Both com-

ponents are assumed in (7) to evolve according to a random walk. Huerta, Sansó

and Stroud (2004) also used it to model the effect of seasonal components in an

environmental application.

More general forms can now be constructed by combining (7) with (2) leading

to a general evolution

βt(s) = γ̄t + γt(s), for all s

γ̄t = Ḡtγ̄t−1 + w̄t,

γt(s) = Gtγt−1(s) + wt(s), for all s.

, (8)

with transition matrices Ḡt and Gt and evolution disturbances w̄t and wt(·).
When all transition matrices equal the identity matrix, the spatio-temporal

random walk (7) is recovered.

These structures and their decomposition allow for many types of compo-

nents. Thus, they give substantial flexibility to the modeller. This can be more

easily appreciated with the illustrative example below.

Example 4. Assume that a simple linear regression model

Yt(s) = αt(s) + βt(s)zt(s) + et(s), for t = 1, ..., T and s = s1, ..., sn (9)

is considered with a single covariate zt(s) varying in space and time. Note that
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both the intercept α and the (scalar) regression coefficient β are allowed to vary

in space and time.

Assume also that the intercept can be completely described by a stochastic

seasonal pattern that is common throughout the region of interest and can

be locally described by a single wavelength of length p and has no additional

spatio-temporal heterogeneity. This would imply that αt(s) = αt, for all (s, t).

According to Example 3, its evolution is described with the help of additional

time-varying parameter ξt as

 αt

ξt


 = GS


 αt−1

ξt−1


 +


 wα

t

wξ
t


 , where


 wα

t

wξ
t


 ∼ N





 0

0


 ,Wα




where GS was defined in example 2 and Wα is a 2× 2 covariance matrix.

Assume further that the regression coefficient has its common trend in the

form of a random walk but the spatial variations around this common mean

are thought to undergo a location-specific, linearly local trend. The conditions

stated above imply that βt(s) = γ̄t + γt(s), for all (s, t)). The evolutions for γ̄t

and γt given respectively given by a univariate random walk γ̄t = γ̄t−1 + w̄t and

by 
 γt(s)

δt(s)


 = GLT


 γt−1(s)

δt−1(s)


 + wt(s)

where GLT was defined in example 1 and additional processes had to be intro-

duced: δt(·) is a univariate increment (over γt) process and wt(·) = (wγ
t (·), wδ

t (·))
is a bivariate process. There are many possibilities for the latter. Paez et al.

(2008) assumed the same spatial correlation fuction for both disturbance pro-

cesses. If this is assumed then a Kronecker product representation is obtained

for the covariance matrix for the components of wt(·) at any given set of loca-

tions. Independence between the processes can also be assumed leading to a

block diagonal representation for the covariance matrix for the components of

wt(·) at any given set of locations. Other forms of Gaussian processes are also

possible (see Gamerman, Salazar and Reis, 2007).

The spatial relation between the regression coefficients in (8) enables infer-

ence about their values at unobserved locations. Consider a set of g unobserved

locations su
1 , ..., su

g where the superscript u denotes unobserved. Define the col-
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lection of state parameters βu
t at these locations as βu

t = (βu
t (s1), ..., βu

t (sg)).

Then clearly the evolution equations defined for βt can be readily extended to

(βt, β
u
t ). The conditional distribution for (βu

t |βu
t ) can be obtained from this

joint specification. If all disturbances and prior distributions are normally dis-

tributed, then simple calculations show that this conditional distribution is also

normal. These calculations are made conditionally on the hyperparameters.

Their integration can not typically be performed analytically. In this case, ap-

proximating methods such as MCMC algorithms must be applied.

Figure 1 shows an example of this interpolation for the spatio-temporal varia-

tion experienced by the regression component γt. This result comes from a study

of the effect of precipitation on temperature (Gelfand, Banerjee and Gamerman,

2005) with monthly data over a single year. Relevance of spatial and temporal

components in this regression setting is clear. For example, a more extreme

spatial variation of the effect of temperature is observed in the months of more

extreme weather.

In many situations, main interest rests in predicting unobserved data values.

Data may not be observed because they are located at unobserved sites or at

unobserved times. In either case, the predictive distribution for them conditional

on all observed data must be obtained. The operation in space is referred to

as interpolation or kriging. The operation in time is referred to as forecasting

when interest lies in prediction into the future, hindcasting when interest lies in

assessment of the performance of the model at previous times and nowcasting

when interest lies in the immediate future.

In any case, prediction is conceptually easy to perform. The structural form

of the model means that all spatial and temporal correlations are contained in

the state parameters. Let yu denote the unobserved data one wants to predict

and βu denote the regression coefficient present in the observation equation

for yu. Depending on the case of interest, βu may contain values of the state

at unobserved locations and/or times. In either case, predictive distributions

conditional on hyperparameters θ are obtained through

p(yu|θ,D) =
∫

p(yu|βu, θ, D)p(βu|θ, D)dβu, (10)

where D denotes the observed data.

9



−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Jan

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Feb

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Mar

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Apr

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

May

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Jun

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41
Jul

−108 −104

37
38

39
40

41
 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Aug

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Sep

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Oct

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Nov

−108 −104

37
38

39
40

41

 

 

Longitude

La
tit

ud
e

−108 −104

37
38

39
40

41

Dec

Figura 1: Posterior mean of the spatio-temporal variation γt of the regression

coefficient of precipitation over temperature for a region of the State of Colorado,

USA (reprinted from Gelfand, Banerjee and Gamerman, 2005).
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The first density in the integrand is the observation equation and the second

is the posterior distribution of βu. The integration in (10) can be performed

analytically in the case of normal evolution disturbances and normal observation

errors. Elimination of hyperparameters is required to obtain the unconditional

predictive distributions actually used for prediction. This operation is performed

in very much the same way as (10) with βu replaced by the hyperparameters.

Namely, the predictive density p(yu|D) can be obtained via

p(yu|D) =
∫

p(yu|θ, D)p(θ|D)dθ.

The integrand above contains the posterior density p(θ|D) of the hyperpa-

rameters and this is rarely available analytically. Thus, integration can only

be performed approximately and approximating methods must be applied. In

practice, MCMC/sampling methods are applied and integration with respect to

βu and θ is performed simultaneously. Figure 2 provides a visual summary of

these prediction operations in the context of the application of Figure 1. Note

that spatial extrapolation is more dispersed than temporal extrapolation for

this application.

Models described in (8) retain the seemingly unrelated nature because their

mean structure is location-specific and correlation across space is only provided

through their unstructured error terms. Correlation across space can be imposed

directly through the mean structure by forms such as

βt(s) =
∫

k(u, s)βt−1(u) + wt(s), (11)

where k(u, s) is a kernel that provides the weights with which location u influ-

ences outcomes in location s for the next time. This evolution is considered by

a number of authors in a number of different contexts (see, for example, Wikle

and Cressie (1998)). When the integral can be well approximated by a discrete

convolution over observed locations, then (11) falls into the general form (2)

with the (i, j)th. entry of the transition matrix given by the values of k(sj , si),

for i, j = 1, ..., n. Evolution (11) has been used only for the intercept but nothing

prevents its use for more general state parameters such as regression coefficients

or seasonal components.

The presentation of this Section is based on the Bayesian paradigm. Thus,
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Figura 2: Predictive credible intervals for temperature values at a few unob-

served locations (top panel), at a future time for a few observed locations (mid-

dle panel) and at a future time for a few unobserved locations (bottom panel)

for a region of the State of Colorado, USA (reprinted from Gelfand, Banerjee

and Gamerman, 2005).
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prior distributions for the hyperparameters were also specified and inference was

based on the posterior distribution. The classical paradigm may also be applied

(Harvey, 1989). Its use can be illustrated in the context of prediction.

The classical approach is based on integrating out the state parameters in

the operation described in (10). This gives rise to the integrated likelihood

of the hyperparameters l(θ) = p(yu|θ, D). Maximum likelihood estimates can

be approximately obtained by numerical operations. Confidence intervals and

hypotheses testing can be performed but they require further information about

the likelihood or about the sampling distribution of the maximum likelihood

estimator. Once again, approximating methods based on asymptotic theory or

on sampling techniques (such as bootstrap) must be applied to extract such

information.

3 Applications

The class of models described above can be used in a number of contexts where

space and time interact. The simplest and most obvious one is the context of a

univariate component playing the role of mean of a spatio-temporal observation

process, ie, the observation process is given by yt(s) = µt(s) + et(s), where the

mean response µt(s) is described by a dynamic Gaussian process (??). One

generalization of this idea is achieved by considering the regression context with

spatio-temporal heterogeneity that was described above. This way, not only the

intercept but also the regression coefficients may vary in space-time stochasti-

cally.

In general terms, the ideas above can be used to incorporate temporal ex-

tensions to parameters of spatial models and also into spatial extensions to pa-

rameters of dynamic models. The former accommodates temporal dependence

and the latter accommodates spatial dependence.

Spatial dependence was stochastically incorporated into dynamic factor mod-

els by Lopes, Salazar and Gamerman (2006). They used the loading matrix to

achieve that. Lopes and Carvalho (2007) showed the relevance of including dy-

namics into the factor loadings. Thus, combination of these ideas may lead to

fruitful possibilities and can be implemented with the class of models described
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in this section. Salazar (2008) implemented these ideas. Figure 3 shows some

promising results obtained with simulations.

Another natural application area for these ideas is point process modeling.

This is the observation process where events occur in a given region and their

location is registered. The usual approach in this setting is to define an intensity

rate, that governs the occurrence of events. Under conditional independence as-

sumption, Poisson processes become appropriate and the intensity rate suffices

to completely characterize the process. A further stochastic layer can be intro-

duced by allowing the intensity rate to be random (Cox, 1955). A popular choice

for the intensity distribution is a log Gaussian process (Møller, Syversveen, and

Waagepetersen, 1998). From a Bayesian perspective, this is equivalent to a

Gaussian process prior for the logarithm of the intensity rate.

Point processes can also be observed over time. In this case, the intensity

rate process is a time-continuous sequence of functions over space. This is a

natural framework for application of the ideas above and for the use dynamic

Gaussian processes as prior distributions for the intensity rate process. Reis

(2008) explores this path in a number of examples and applications.

A similar representation for the intensity rate is entertained by Brix and

Diggle (2001). They considered the time-continuous differential equation spec-

ification and performed classical estimation using moment-based estimators.

Calculations were performed approximately by discretizations over space and

time. Details are provided in Diggle (2009).

Another area for further exploration of dynamic Gaussian processes is spa-

tial non-stationarity. Many of the models suggested to handle non-stationarity

are built over generalizations of stationary Gaussian processes. The spatial de-

formations of Sampson and Guttorp (1992) and the convolutions of Higdon,

Swall and Kern (1999) and Fuentes (2001) are among the most cited references

in this area. Schmidt and O’Hagan (2002) and Damien, Sampson and Guttorp

(2000) have independently casted the deformation problem into the Bayesian

paradigm. See also Sampson (2009) for more details.

The approaches above make use of Gaussian processes for handling non-

stationarity. The convolutions of Fuentes (2001) are based on kernel mixtures

of Gaussian processes. The hyperparameters governing these processes may be
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Figura 3: Results of simulation with a dynamic model with 2 factors and obser-

vation window of 30 locations and 80 equally spaced times. Loadings of the first

factor: simulated values (left) and posterior means (right). The first, second

and third rows refer to t = 5, 40 and 80, respectively. Posterior means for load-

ings at unobserved locations were obtained by Bayesian interpolation (reprinted

from Gamerman, Salazar and Reis, 2007).
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related over space. Gaussian process prior distribution is one of the choices

in this setting and this was entertained by Fuentes (2001). The deformations

approach requires the specification of a prior distribution in a Bayesian context

or a penalization in a classical setting for the deformed space. In either case, a

natural choice would be a Gaussian process.

There are cases when the observation process may span over a period of

time. The spatial correlation structure may remain constant over the period.

But the spatial non-stationarity may also vary over time. This is at the very

least plausible and in many cases highly likely to occur. In this case, the time

constancy is not longer valid. Alternatives must be sought to appropriately

account for this variation. This is a natural setting for the consideration of

dynamic Gaussian process. They can provide a starting exploration step. Due

to their local behaviour, they are able to describe the variation with a non-

parametric flavour, without imposing any specific form for the changes over

time that these hyperparameter may experience. Once a specific time pattern

is observed for the parameters, specific assumptions about this change can be

incorporated into the model.

Consider, for example, the convolution of Gaussian processes to account for

spatial non-stationarity of the data generating processes. Among the parameters

defining the Gaussian processes is their sill parameters. They can be allowed

to change not only over space but also over time. This would allow for many

purposes: to borrow information across nearby locations and consecutive time

periods and to smooth variations of this parameter over space and over time.

4 Further remarks

The material of the last subsection is of more speculative nature. The ideas

described here are just beginning to be used. They involve use of elaborate

model specifications that are far from easy to be estimated from the data. This

poses yet another challenge in the use of this methodology. The most common

approach these days from a Bayesian perspective is MCMC (see Gamerman and

Lopes, 2006). Alternatives based on non-iterative approximations are also being

proposed (Rue, Martino and Chopin, 2008).
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This section was mostly based on the so-called latent approach where spa-

tial and temporal dependences are incorporated in the model through the use

of latent structures. Other possibilities are also avaliable. Spatial autoregres-

sion (SAR) provides a natural framework to contemplate spatial dependence

directly at the observational level (Anselin, 1988). Addition of temporal com-

ponents can be made separately in a different model block or jointly. Gamerman

and Moreira (2004) have simply added a temporal autoregressive component to

a multivariate SAR model. Kakamu and Polasek (2007) considered a SAR

structure over (temporally) lagged variables thus inducing spatial and temporal

dependence simultaneously. These are just a couple of the many possibilities

available through this approach.

The purpose of this section is to draw attention to a tool that is flexible

and can accommodate many patterns of spatio-temporal data variation. That

are other areas that can become potential applications for this technology. It is

hoped in this section that readers have their attention drawn to these modelling

tools, find them useful and eventually try them in their own problems at hand.
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