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Abstract

The modified mixture model with Markov switching volatility specifica-

tion is introduced to analyze the relationship between stock return volatil-

ity and trading volume. We propose to construct an algorithm based on

Markov Chain Monte Carlo (MCMC) simulation methods to estimate all

the parameters in the model using the Bayesian approach. The series of

returns and trading volume of the British Petroleum stock will be analyzed.

Keywords: Stochastic volatility, Non linear and non Gaussian state space

models, Markov process of first order, Markov Chain Monte Carlo

1 Introduction

The dynamics of the relationship between stock return volatility and trading vol-

ume has a long history in the finance literature. Karpoff (1987) provides a good

survey of this literature, discussing the return-volume relation in various finan-

cial markets. In considering this problem, Clark (1973) started the discussion by

presenting the intuitively appealing mixture of distributions hypothesis (MDH).

According to the MDH, return and trading volume are driven by the same un-

derlying latent information flow variable, i.e. price movements and the trading
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volume changes are caused primarily by the arrival of new information and the

volatility process that incorporates this information into market prices. Although

much of the empirical research documents a positive correlation between trading

volume and return volatility, the evidence on whether the observed relation can

be reconciled with the predictions of market microstructure theory is mixed (see,

for example, Tauchen & Pitts, 1983; Richardson & Smith, 1994; and Foster &

Wiswanathan, 1995).

There are several variants of the MDH in the literature. These include the

models of Clark (1973), Tauchen & Pitts (1983), Harris (1987), and Andersen

(1996). A first approach to merge the insights of the MDH with those of the

market microstructure theory is the empirical model of daily return-volume re-

lationship developed by Andersen (1996). He combines several important fea-

tures of these models - for instance an asymmetric information structure and

the presence of liquidity or noise traders - with the MDH and the related con-

cept of stochastic volatility. The resulting model, called the modified mixture

model (MMM), is estimated with a dynamic AR(1) stochastic volatility process

for the latent rate of information arrival, as proposed by Andersen (1994), by

using the generalized method of moments (GMM). Mahieu & Bauer (1998) and

Watanabe (2000) implemented the MMM from a Bayesian viewpoint using simu-

lation techniques based on MCMC methods to estimate the parameters and the

latent process.

In this article we propose to expand the log volatility specification used in

Mahieu & Bauer (1998) by introducing the Markov switching volatility specifica-

tion proposed by So, Lam & Li (1998), which allows taking into consideration

different volatility regimes.

The rest of the article is organized as follows: Section 2 presents the relation

between stock return volatility and trading volume with the extended specifica-
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tion for the log-volatility. Section 3 shows the Bayesian estimation procedure

using MCMC metods. Section 4 shows an application using an artificial data set.

Section 5 presents an empirical application on the return and trading volume

series for the IBM stock. Finally, section 6 concludes.

2 The Model

Andersen (1996) develops an empirical return volatility-trading volume model

using the theoretical framework of Glosten & Milgrom (1985). In his specification,

the trading volume has two components which are directly related to informed and

uninformed traders. The uninformed component is governed by a time invariant

Poisson process with constant intensity m0, while the informed volume has a

Poisson distribution with parameter which is a function of the information flow,

that is m1e
ht . An empirical version of the MMM of Andersen (1996), which was

formulated by Mahieu & Bauer (1998), leads to the following specification:

yt | ht ∼ N (0, eht) (1)

vt | ht ∼ P(mo +m1e
ht), m0,m1 > 0 (2)

ht = α + φht−1 + ηt ηt ∼ N (0, σ2
η), (3)

where yt, vt and ht are respectively the compounded return, the trading volume

and the log volatility on day t. In equation (2), m0 reflects the uninformed

component of trading volume and is related to liquidity traders. The remaining

part of trading volume that is induced by new information is represented bym1e
ht .

The MMM defined by equations (1)-(3) will be denoted as SV-VOL. Note that the

univariate stochastic volatilty model (SV) used extensively in financial literature

(see Jacquier, Polson & Rossi, 1994; Kim, Shepard & Chib, 1998; Mahieu

& Schotman, 1998 and Abanto-Valle, Lopes & Migon, 2007 among others) is

specified by equations (1) and (3).
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In this article we modify the SV-VOL model by allowing the log-volatility

specification to incorporate regime-switching properties; that is, the parameter

determining the level of the log-volatility is allowed occasional discrete shifts:

ht = αSt + φht−1 + ηt, ηt ∼ N (0, σ2
η). (4)

In (4), the switching dynamic is governed by a k -state first-order Markov process

with transition probabilities pij = Pr(St = j | St−1 = i), where i, j = 1, . . . , k

and
∑k

j=1 pij = 1. In this new specification St is the indicator variable showing

the mean level of the state at time t, that is, the state indicator St defines a

particular regime for the parameter values. In this article, we consider only two

regimes, St = 0 and St = 1, which indicate high and low volatility regimes

respectively. In order to avoid identifiability problems, we assume that α0 = γ0

and α1 = γ0 + γ1St with the restriction γ1 < 0 enforced for identification of each

regime. The resulting MMM with Markov switching defined by equations (1),(2)

and (4) will be denoted as MSSV-VOL.

3 MSSV-VOL model estimation using MCMC

A Bayesian approach to parameter estimation in the MSSV-VOL model defined

by equations (1),(2) and (4) relies on MCMC techniques. We propose to construct

an algorithm based on MCMC simulation methods to make the Bayesian analysis

of all the parameters feasible.

The MSSV model, defined by equations (1) and (4), has been studied from

a Bayesian viewpoint using MCMC methods. Multi-move samplers have been

used to update the log-volatilities. For example, So et al. (1998) use the mixture

sampler Gibbs sampling (Kim et al., 1998), and Shibata & Watanabe (2005) the

block sampler Gibbs sampling (Shephard & Pitt, 1997 and Watanabe & Omori,

2004).
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Let θ = (γ0, γ1, φ, σ
2
η,m0,m1, p00, p11, π0)

′ be the vector of parameters of the

MSSV-VOL model, h0:T = (h0, h1, . . . , hT )′ be the vector of the log volatilities

and S0:T = (S0, S1, . . . , ST )′ the states of the first order Markov process. Let

y1:T = (y1, . . . , yT )′ and v1:T = (v1, . . . , vT )′ represent the information available

up to time T .

The Bayesian approach for estimating the MSSV-VOL model uses the data

augmentation principle, which considers h0:T and S0:T as latent parameters. By

the use of Bayes’ theorem, the joint posterior density of parameter and latent

variables has the following decomposition

p(h0:T ,S0:T ,θ | y1:T ,v1:T ) ∝ p(y1:T | h0:T )p(v1:T | h0:T ,θ)

× p(h0:T | S0:T ,θ)p(S0:T | θ)p(θ) (5)

where

p(y1:T | h0:T ) ∝
T∏
t=1

e−
ht+y

2
t e
−ht

2 (6)

p(v1:T | h0:T ,θ) ∝
T∏
t=1

[mo +m1e
ht ]vt [e−mo−m1eht ] (7)

p(h0:T | S0:T ,θ) ∝ e
− 1−φ2

2σ2
η

(h0−
αS0
1−φ )2

T∏
t=1

e
− 1

2σ2
η

(ht−αSt−φht−1)2

(8)

p(S0:T | θ) ∝ πS0

T∏
t=1

pSt−1St (9)

πi = P (S0 = i) i = 0, 1. (10)

For the unknown parameters in the MSSV-VOL model, the prior distributions

are set as: φ ∼ N[−1,1](φ̄, σ
2
φ), σ2

η ∼ IG(T0

2
, M0

2
), pii ∼ Be(λi0, λi1), i = 0, 1,

π0 ∼ Be(l0, l1), γ = (γ0, γ1)
′ ∼ N2(γ1<0)(γ̄, B̄), m0 ∼ G(a0, b0), m1 ∼ G(a1, b1),

where as usual N[.,.](., .), IG(., .), Be(., .), G(., .), NK(.)(., .) represent the trun-

cated normal, inverse gamma, beta, gamma and the K-multivariate truncated

normal distribution respectively.
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Since the posterior density p(h0:T ,S0:T ,θ | y0:T ,v0:T ) does not have closed

form, first we sample the parameters θ and next the latent variables S0:T and

h0:T using Gibbs sampling. The sampling scheme is described by Algorithm 3.1.

Algorithm 3.1

1. Set i = 0 and get starting values for the parameters θ(i), the states S
(i)
0:T

and h
(i)
0:T

2. Draw θ(i+1) ∼ p(θ | h(i)
0:T ,S

(i)
0:T ,y1:T ,v1:T )

3. Draw S
(i+1)
0:T ∼ p(S0:T | θ(i+1),h

(i)
0:T ,y1:T ,v1:T )

4. Draw h
(i+1)
0:T ∼ p(h0:T | θ(i+1),S

(i+1)
0:T ,y1:T ,v1:T )

5. Set i = i+ 1 and return to 2 until achieving convergence.

As described by algorithm 3.1, the Gibbs sampler requires sampling parameters

and latent variables from their full conditionals. Sampling the log-volatilities h0:T

in step 4 is the most difficult task due to the non linear setup in equations (1)

and (2). In order to avoid the higher correlations due to the Markovian structure

of the ht’s, we develop a multi-move sampler (Shephard & Pitt, 1997; Watanabe

& Omori, 2004 and Omori & Watanabe, 2008) to sample the h0:T by blocks.

Details on the full conditionals of θ and the latent variable S0:T are given in the

appendix.

Let us consider the MSSV-VOL model defined by equations (1), (2) and (4).

In order to simulate h0:T , we break the problem into two steps: first, we simulate

h0 conditional on h1:T and next h1:T conditional on h0. In our block sampler,

we divide h1:T into K + 1 blocks, hki−1+1:ki−1 = (hki−1+1, . . . , hki−1)
′ for i =

1, . . . , K + 1, with k0 = 0 and kK+1 = T , where ki − ki−1 ≥ 2 is the size of the

i−th block. Following Shephard & Pitt (1997) and Omori & Watanabe (2008),
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the K knots (k1, . . . , kK) are generated randomly using

ki = int[T × {(i+ ui)/(K + 2)}], i = 1, . . . , K., (11)

where the u′is are independent realizations of the uniform random variable

on the interval (0,1) and int[x] represents the floor of x. We sample the

block of disturbances ηki−1+1:ki−1 = (ηki−1+1, . . . , ηki−1) instead of hki−1+1:ki−1 =

(hki−1+1, . . . , hki−1), exploiting the fact that the innovations ηt are i.i.d. with

N (0, σ2
η).

Suppose that ki−1 = t and ki = t+k+1 for the i−th block, such that t+k < T .

Then ηt+1:t+k = (ηt+1, . . . , ηt+k) are sampled at once from their full conditional

distribution f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,St+1:t+k+1), which is expressed in the

log scale as

log f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,vt+1:t+k,St+1:t+k+1)

= const− 1
2σ2
η

∑t+k
r=t+1 η

2
r +

∑t+k
r=t+1 l(hr)−

1
2σ2
η
(ht+k+1 − αSt+k+1

− φht+k)2,

(12)

where l(hr) is the log of f(yr, vr | hr) given by

l(hr) = const− hr
2
− 1

2
y2
re
−hr − (m0 +m1e

hr) + vr log(m0 +m1e
hr).

Note that when t+ k = T , the last term in (12) is omitted and denotes the first

and second derivatives of l(hr) with respect to hr by l′ and l′′.

Applying a Taylor’s series expansion to
∑t+k

r=t+1 l(hr) in equation (12) around

some preliminary estimate of ηt:t+k, denoted by η̂t:t+k, we have

log f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,vt+1:t+k,St+1:t+k+1)

≈ const− 1
2σ2
η

∑t+k
r=t+1 η

2
r − 1

2σ2
η
(ht+k+1 − αSt+k+1

− φht+k)2

+
∑t+k

r=t+1

{
l(ĥr) + (hr − ĥr)l

′
(ĥr) + 1

2
(hr − ĥr)2l

′′
F (ĥr)

}
(13)
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As l(hr) is not concave, we propose to use l
′′
F (hr) in place of l

′′
(hr), which can

be positive for some values of hr. To ensure that l
′′
F (hr) is everywhere strictly

negative1, it is defined as

l
′′

F (hr) = E[l
′′
(hr)] = −1

2
− m2

1e
2hr

m0 +m1ehr
. (14)

The expectation in (14) is taken with respect to the joint density of yr and vr

conditional on hr.

After some simple but tedious algebra in (13), we have the approximating

normal density g as follows

log f(ηt+1:t+k|ht, ht+k+1,yt+1:t+k,vt+1:t+k,St+1:t+k+1)

= const− 1
2σ2
η

∑t+k
r=t+1 η

2
r + 1

2

∑t+k−1
r=t+1 l

′′
F (ĥr)

(
ĥr − l

′
(ĥr)

l
′′
F (ĥr)

− hr
)2

−φ2−l′′F (ĥt+k)σ
2
η

2σ2
η

{
σ2
η

φ2−l′′F (ĥt+k

(
l
′
(ĥt+k)− l

′′
F (ĥt+k)ĥt+k +

φ−αSt+k+1

σ2
η

ht+k+1

)
− ht+k

}2

= log g, (15)

where ĥt+1:t+k is the estimate of ht+1:t+k corresponding to η̂t+1:t+k.

From (15), we define auxiliary variables dr and ŷr for r = t+ 1, . . . , t+ k − 1

as follows:

dr = − 1

l
′′
F (ĥr)

ŷr = ĥr + drl
′
(ĥr) (16)

For r = t+ k < T ,

dr =
σ2
η

φ− σ2
ηl
′′
F (ĥt+k)

and

ŷr = dr

[
l
′
(ĥr)− l

′′

F (ĥr)ĥr +
(φ− αsr+1)

σ2
η

hr+1

]
. (17)

1In the context of the SV-VOL model, Watanabe (2000) uses an alternative expression,

min{l′′(hr),−0.001}, to ensure the strictly negative condition on l
′′

F (hr)
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When r = t+ k = T , we use (16) to define the auxiliary variables.

The resulting normalized density in (15), g, is a k-dimensional normal density,

which is the exact density of ηt+1:t+k conditional on ŷt+1:t+k in the linear Gaussian

state space model:

ŷr = hr + εr, εr ∼ N(0, dr), (18)

hr = αsr + φhr−1 + ηr, ηr ∼ N(0, σ2
η). (19)

Applying the de Jong & Shepard (1995) simulation smoother to this model with

the artificial ŷt+1:t+k enables us to sample ηt+1:t+k from the density g. Since g

does not bound f , we use the Metropolis-Hastings acceptance-rejection algorithm

to sample from f .

We select the expansion block ĥt+1:t+k as follows. Once an initial expansion

block ĥt+1:t+k is selected, we can calculate the artificial ŷt+1:t+k. Then, applying

the Kalman filter and a disturbance smoother to the linear Gaussian state space

model consisting of equations (18) and (19) with the artificial ĥt+1:t+k yields the

mean of ĥt+1:t+k conditional on ŷt+1:t+k in the linear Gaussian state space model,

which is used as the next ĥt+1:t+k. We use five iterations of this procedure to

obtain a good sequence of ĥt+1:t+k to use as the expansion block. The procedure

is summarized in algorithm 3.2.

Algorithm 3.2

1. Initialize ĥt+1:t+k.

2. Evaluate recursively l
′
(ĥr) and l

′′
F (ĥr) for r = t+ 1, . . . , t+ k

3. Define the auxiliary variables yr and dr using equations (16) or (17) for

r = t+ 1, . . . , t+ k.

3. Consider the linear Gaussian state-space model in (18) and (19). Apply the
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Kalman Filter and a disturbance smoother (Koopman, 1993) and obtain

the posterior mean of ηt:t+k (ht:t+k) and set η̂t:t+k (ĥt:t+k) to this value.

4. Return to step 2 and repeat the procedure five times.

4 Numerical illustration with artificial data set

In order to asses the performance of the MCMC algorithms described in the previ-

ous section, we present results based on a simulated data set. All the calculations

were performed running our own code implemented in C++ using the Scythe sta-

tistical library2(Pemstein, Quinn & Martin, 2007), on an Intel Pentium 4 +2.8

GHz with 1 GB of RAM. We simulated a data set of 1500 observations using

γ0 = −0.5, γ1 = −0.25, φ = 0.7, σ2
η = 0.2, m0 = 0.85, m1 = 0.15, p00 = 0.98 and

p11 = 0.98.

We set the prior distributions as: φ ∼ N[−1,1](0.95, 10), σ2
η ∼ IG(5

2
, 0.1

2
),

p00 ∼ Be(50, 1.5), p11 ∼ Be(1.5, 50), π0 ∼ Be(0.5, 0.5), γ ∼ N2(γ1<0)(γ̄, B̄), m0 ∼

G(0.08, 0.1), m1 ∼ G(1, 10), where γ̄ = (−0.5,−0.25)′ and B̄ = diag(4.0, 1.0).

The number of blocks, K, in the block sampler was set equal to 60, so that

each block contained 25 h′ts on average. We conducted the MCMC simulation

for 40000 iterations. The first 10000 draws were discarded as a burn-in period,

and then the next 30000 were recorded. Table 1 reports the posterior means,

the Monte Carlo (MC) error of the posterior means, the 95% intervals and the

convergence diagnostic (CD) statistics proposed by Geweke (1992) for all the pa-

rameters. The 95% credibility intervals are estimated using the 2.5th and the

97.5th percentiles of the posterior samples.

2The Scythe statistical library is available for free at the website http://scythe.wustl.edu.

It is an open source C++ library for statistical computation. It includes a suite of matrix ma-

nipulation functions, a suite of random number generators and a suite of numerical optimizers.
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Parameter True Mean MC error 95% interval CD

γ0 -0.50 -0.5367 0.0105 (-0.9160,-0.2868) -0.16

γ1 -0.25 -0.2401 0.0069 (-0.5492,-0.0201) -0.16

φ 0.70 0.6861 0.0055 (0.4450, 0.8202) -0.72

σ2
η 0.20 0.2677 0.0033 (0.1728, 0.3965) -0.22

p00 0.98 0.9698 0.0004 (0.9175, 0.9966) -0.03

p11 0.98 0.9717 0.0007 (0.9224, 0.9954) -1.32

π0 0.50 0.4925 0.0024 (0.0588,0.9344) -0.15

m0 0.85 0.8332 0.0003 (0.7779, 0.8855) -0.54

m1 0.15 0.0880 0.0017 (0.0023, 0.3105) 0.98

Table 1: Simulated data set: posterior mean, standard error of the posterior

mean, 95% interval and convergence diagnostic(CD) for the MSSV-VOL.

The proposed algorithm is evaluated in terms of how well it estimates the true

parameter values. It can be seen that the estimated results for the parameters

appear quite reasonable. In Figure 1 all the 95% credibility intervals include true

values. All parameters passed the convergence diagnostic test of Geweke (1992)

and also Heidelbelger & Welch (1983), although the last one is not reported.

In Figure 2, the smoothed mean of e
ht
2 calculated from MCMC output is

showed (dotted line). It is compared with the true volatilies (solid line), showing

that the estimated values follow the behavior of the true volatilities.
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Figure 1: Simulated data set: Histograms of the parameters from MCMC output

for the MSSV-VOL model. The tiny dotted and the dotted line indicate the 2.5%

percentile , the posterior mean and the 97.5% percentile respectively. The solid

line indicates the true value

Figure 3 shows the probability that St are in the high volatility period (top),

and the true values of state indicator variable St versus the estimated values using

the MSSV-VOL model (bottom). In the majority of cases the state indicators

are well estimated.3

3The state indicators and P (St = 0) obtained with the MSSV model give similar results,

but they are not reported.
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Figure 2: Simulated data set. True volatilities (solid line) vs estimated smoothed

mean of e
ht
2 by the MSSV-VOL model (dotted line).

Figure 3: Simulated data set: Top: P (St = 0). Bottom: True states St. (solid

line) vs estimated St by the MSSV-VOL model (dotted line).
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5 Empirical Application

This section analyzes the daily closing prices and trading volume corrected by

dividends and stock splits for the British Petroleum Company stock series (BP)

listed on the London Stock Exchange (LSE) 4. The analyzed period starts January

5, 1999 and ends July 17, 2008, yielding 2398 observations. Throughout we work

with the mean corrected returns computed as

yt = 100

{
(logPt − logPt−1)−

1

T

T∑
j=1

(logPj − logPj−1)

}
where Pt is the closing price on day t. To make the volume series stationary,

the volume data are adjusted by regressing the log of the trading volume on a

constant and on time t = 1, 2, . . . , T . The exponential function of the residuals of

this regression is then linearly transformed so that the raw data and the detrended

data have the same mean and variance. For the following results, the detrended

series is multiplied by 10−6.

Mean S.D. Max Min Skewness Kurtosis

Returns 0.00 1.57 8.33 -7.92 -0.12 4.98

Volume 3.33 1.43 17.41 0.63 2.17 12.77

Table 2: Summary statistics for BP stock series

Table 2 summarize descriptive statistics for the corrected compounded return

and the detrended trading volume; the time series plots are shown in Figure 4.

For the return series, the basic statistics, the mean, standard deviation, skewness

and kurtosis are given as 0.00, 1.57, -0.12 and 4.98, respectively. Note that the

4The data set was obtained from the Yahoo finance web site at http://finance.yahoo.com.
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kurtosis of the returns is above three, so that daily BP stock returns not likely

to follow a normal distribution.

Figure 4: BP data set with sample period from January 5, 1999 to July 17, 2007.

Top: raw series and histogram of corrected returns. Bottom: raw series and

histogram of trading volume.

We fitted the SV, MSSV, SV-VOL and the MSSV-VOL models. In all cases,

we simulated the ht’s in a multi-move fashion with stochastic knots based on

the method described in Section 3. For the SV and SV-VOL models we set the

prior distributions as: α ∼ N (0, 10), φ ∼ N[−1,1](0.95, 10), σ2
η ∼ IG(5

2
, 0.05

2
),

m0 ∼ G(0.08, 0.1) and m1 ∼ G(1, 10). We set K, the number of blocks, as 60,

in a such way that each block contained 40 h′ts on average. We conducted the

MCMC simulation for 60000 iterations. The first 10000 draws were discarded

as a burn-in period, and then the next 50000 were recorded. Using these 50000

15



draws we calculated the posterior means, the Monte Carlo (MC) error of the

posterior means, the 95% intervals and the convergence diagnostic (CD). Tables

3 and 4 summarize the results. According to the CD values, the null hypothesis

that the sequence of 50000 draws is stationary is accepted at the 5% level for all

the parameters in all the models considered here.

SV model

Parameter Mean MC error 95% interval CD

α 0.0429 0.0005 (0.0233, 0.0674) 0.011

φ 0.9372 0.0007 (0.9044,0.9629) 0.060

σ2
η 0.0588 0.0009 (0.0353,0.0940) -0.336

MSSV model

Parameter Mean MC error 95% interval CD

γ0 0.3026 0.0047 (0.1848,0.4972) 0.160

γ1 -0.2456 0.0040 (-0.4094, -0.1414) -0.083

φ 0.7506 0.0035 ( 0.6133, 0.8349) -0.147

σ2
η 0.1456 0.0014 (0.1010, 0.2080) 0.522

p00 0.9928 0.0001 (0.9819,0.9987) -0.074

p11 0.9874 0.0001 ( 0.9875.9987) 0.571

π0 0.6013 0.0013 (0.1331,0.9588) -1.970

Table 3: PB data set: posterior mean, MC error, 95% interval and convergence

diagnostic(CD) for the SV (top) and the MSSV (bottom) models.

The top of Table 3 reports the estimation results of SV model. The posterior

mean and 95% interval of φ are 0.9372 and (0.9044,0.9629) respectively, exhibiting

high persistence in return volatility. The persistence parameter in the MSSV
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model, φ, drops from 0.9372 to 0.7506, which agrees with previous results in

MSSV models (So et al., 1998; Shibata & Watanabe, 2005 and Carvalho & Lopes,

2007). On the other hand, the posterior mean and the 95% interval of σ2
η are

0.1456 and (0.1010, 0.2080), which are higher than the 0.0588 and (0.0353,0.0940)

in the SV model.

Figure 5: MSSV-VOL model, BP data set: sample paths for parameters obtained

from MCMC output.

In the SV-VOL model, we find that posterior mean and 95% interval of φ are

0.9281 and (0.9027,0.9503), respectively, both of which are slightly smaller than

those in the SV model. As mentioned earlier, m0 reflects the noisy component

of trading volume generated by liquidity traders. The remaining part of trading

volume that is induced by new information is represented by m1e
ht . We find that
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the posterior mean of m0 is 2.5924 and the distribution of m1 has a posterior

mean of 0.2655.

Figure 6: MSSV-VOL model, BP data set: autocorrelation functions for param-

eters obtained from MCMC output.

We now consider the estimation based on the the MSSV-VOL model. In

Figures 5, 6 and 7, we show the sample paths, the autocorrelation function and the

histograms for parameters respectively, showing that the persistence parameter,

φ, drops from 0.9281 to 0.8052, when compared with the SV model. This value,

0.8052, is slightly greater than the posterior mean of the MSSV model (0.7506).

The 95% posterior interval of φ is different than that obtained from the MSSV

model. The posterior means of m0 and m1 are 2.5422 and 0.2952. They are

similar to the values in the SV-VOL model and also, the posterior 95% intervals

(see Table 4). The posterior means of the transition probabilities p00 and p11
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SV-VOL model

Parameter Mean MC error 95% interval CD

α 0.0484 0.0002 (0.0295, 0.0696) -0.6007

φ 0.9281 0.0003 (0.9027,0.9503) 0.7282

σ2
η 0.0934 0.0005 (0.0672, 0.1254) -1.1420

m0 2.5924 0.0011 (2.4442, 2.7320) -1.1220

m1 0.2655 0.0005 (0.2120,0.3255) 1.0370

MSSV-VOL model

Parameter Mean MC error 95% interval CD

γ0 0.2576 0.0018 (0.1713,0.3660) 0.2178

γ1 -0.1970 0.0015 (-0.2907,-0.1202) -0.0577

φ 0.8052 0.0013 (0.7386,0.8609) -0.1518

σ2
η 0.1465 0.0011 (0.1070, 0.1956) 0.7103

p00 0.9898 0.0001 (0.9724,0.9977) 0.2312

p11 0.9949 0.00004 (0.9877,0.9987) 0.3383

π0 0.6241 0.0011 (0.1727,0.9615) 0.5141

m0 2.5422 0.0013 (2.3992,2.6791) 0.3715

m1 0.2952 0.0007 (0.2387,0.3592) -0.8472

Table 4: PB data set: posterior mean, standard error of the posterior mean, 95%

interval and convergence diagnostic(CD) for SV-VOL (top) and the MSSV-VOL

(bottom).
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are 0.9898 and 0.9949, respectively, which are slightly different than these the

values 0.9928 and 0.9874 from the MSSV model, indicating that the probability

of switching between high- and low-volatility states is quite low. In the MSSV-

VOL model, a volatility shock lasts about 98 days in the high-volatility state

compared to about 196 days in the low-volatility state. In the MSSV model, a

volatility shock lasts about 138 and 79 days respectively. The duration of the

shock in state i is obtained as (1− pii)−1.

Figure 7: MSSV-VOL model, BP data set: histograms for parameters obtained

from MCMC output. The dotted lines indicate the 2.5% and 97.5% percentiles,

respectively, and the solid line the posterior mean.
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Figure 8: BP data set: Posterior probability of high-volatility state P (St = 0).

Solid line MSSV model, dotted line MSSV-VOL model.

Figure 8 depicts the posterior probabilities of the high-volatility state

as inferred from the MSSV-VOL model (dotted line). Following Hamilton

(1988), we consider an observation as belonging to a high-volatility state if the

smoothed probability is higher than 0.5. Then, the high-volatilities periods

are: 01/06/1999-05/17/1999,09/03/1999-01/25/2001, 10/04/2007-11/16/2007

and 12/27/2007-07/17/2008. The last two regimes of high volatility are explained

by a series of events that caused the oil price to exceed $92/barrel by October

2007, and $99.29/barrel for December futures in New York on November 21, 2007.

Throughout the first half of 2008, oil regularly reached record high prices. On

February 29, 2008, oil prices peaked at $103.05 per barrel, and reached $110.20

on March 12, 2008, the sixth record in seven trading days. Prices on June 27,

2008, touched $141.71/barrel, for August delivery in the New York Mercantile

Exchange. The most recent price per barrel maximum of $147.02 was reached

on July 11, 2008. Figure 8 (solid line), shows the posterior probabilities of high-

volatility state from the MSSV model, There is a significative difference between

the period from 08/29/2001-12/03/2001, in which occurred the September 11
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attacks. The trading volume gives us information to modify the regimes in the

MSSV model. We found similar results for other stocks as IBM, Coca Cola and

Kodak, although the results are not reported here.

In Figure 9 we show the smoothed mean of eht obtained from the MCMC

output for both models. From a practical point of view, we are mainly interested

in whether we find a significant difference between the two series. Therefore, we

plot the difference between the smoothed means of the two series in the lower

panel of Figure 9. This graph shows us that these series do not differ very much

in most periods, but in some periods of high volatility, we observe difference in

squared percentages of more than 4%. This can have a substantial impact, for

instance, in the valuation of derivative instruments and several strategic or tac-

tical asset allocation topics.

To assess the goodness of the estimated models, we calculate the deviance infor-

mation criterion, DIC (for more details about the DIC criterion see for example

Spiegelhalter, Best, Carlin & van der Linde, 2002; Berg, Meyer & Yu, 2004 and

Celeux, Forbes, Robert & Titterington, 2006). In this context, pD is a measure

of model complexity. As the quantity of information available is different between

models with and without trading volume, we compare the SV and MSSV models

and the SV-VOL and MSSV-VOL models. From Table 5, according with the

DIC the SV model better fit the return series of the BP stock. Model comparison

between the SV-VOL and MSSV-VOL gives us the MSSV-VOL as the better

model for joint modeling of return and trading volume series according to the

DIC criterion. Table 5 shows that the pD for SV-VOL and MSSV-VOL models

are grater than the pD for the SV and MSSV models.
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Figure 9: PB data set. Top: Smoothed mean of eht from SV-VOL. Middle:

smoothed mean of eht from MSSV-VOL. Bottom: difference from both models.

Model DIC pD Rank

SV 8614.05 183.60 1

MSSV 8615.98 249.91 2

SV-VOL 5138.63 303.92 2

MSSV-VOL 5074.81 328.25 1

Table 5: BP data set. DIC: deviance information criterion, pD: effective number

of parameters.
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6 Conclusions

This article studies the joint distribution of daily returns and trading volume

based on the modified mixture model with Markov switching volatility specifica-

tion. We have constructed an algorithm based on Markov Chain Monte Carlo

(MCMC) simulation methods to estimate all the parameters and latent quanti-

ties in the model using the Bayesian approach. As a by product of the MCMC

algorithm, we were able to produce an estimate of the latent information process

which can be used in financial modeling. Our estimation result shows that the

estimate of the persistence parameter drops and the estimate of the variance error

rises in the volatility specification.

This article makes certain contributions, but several extensions are still possi-

ble. First, we focus on normal distributions for εt, but other distributions, such as

the Student-t, or skewed distributions, such as the skewed normal or the skewed

t distribution can be used. Second, we specify the log of volatility as a simple

AR(1) process with Markov switching, but more elaborate models, such as long

memory models, may be required to specify volatility. On the other hand, we

can include a dynamic pattern in the parameters m0 and m1, considering them

as time varying parameters, and finally we can extend the model to include many

assets.
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A Appendix: The Full conditionals

In this appendix, we described the full conditional distributions for the parameters

and the latent S0:T indicators of the MSSV-VOL model.

A.1 Full conditional distribution of φ, γ and σ2

The prior distributions are set as: φ ∼ N[−1,1](φ̄, σ
2
φ), σ2

η ∼ IG(T0

2
, M0

2
), γ ∼

N2(γ1<0)(γ̄, B̄). According with (8), we have the following full conditional for φ:

p(φ | y1:T ,v1:T ,h0:T ,S0:T ,γ) ∝ Q(φ) exp{− a
2σ2
η
(φ− b

a
)2}Iφ

where Qφ =
√

1− φ2 exp{− 1
2σ2
η
[(1 − φ2)(h0 −

αS0

1−φ)2}, a =
∑T

t=1 h
2
t−1 +

σ2
η

σ2
φ
,

b =
∑T

t=1 ht−1(ht − αst) + φ̄
σ2
η

σ2
φ

and Iφ is an indicator variable. As p(φ |

y1:T ,v1:T ,h0:T ,S0:T ,γ) does not have closed form, we sample from using the

Metropolis-Hastings algorithm with proposal density the truncated N[−1,1](
b
a
,
σ2
η

a
).

To calculate the conditional posterior of γ, we define:

Z = Xγ + η,

with Z′ = ([1−φ2

σ2 ]1/2h0,
1
σ
[h1 − φh0], . . . ,

1
σ
[hT − φhT−1])

X′ =


[

1
σ2

1+φ
1−φ

]1/2
1
σ

. . . 1
σ[

1
σ2

1+φ
1−φ

]1/2

S0
1
σ
S1 . . . 1

σ
ST


and η ∼ N (0, IK+1). Then, we have that the full conditional for γ is given by

N2(γ1<0)(µγ, B1), where µγ = (B̄
−1

+ X′X)−1(B̄
−1

γ̄ + X′Z) and B1 = (B̄
−1

+

X′X)−1.

From (8), the conditional posterior of σ2
η is IG(T1

2
, M1

2
), where T1 = T0 +T + 1

and M1 = M0 + [(1− φ2)(h0 −
αS0

1−φ)2] +
∑T

t=1(ht − αSt − φht−1)
2.
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A.2 Full conditionals of m0 and m1

We assume that prior distributions are, respectively, m0 ∼ G(a0, b0) and m1 ∼

G(a1, b1). Then the full the conditionals follows:

p(m0 | y1:T ,v1:T ,h0:T ,m1) ∝ exp{−(b0 + T )m0}

× exp{
T∑
t=1

log[m
a0−1/T
0 (m0 +m1 exp(ht))

vt ]}

p(m1 | y1:T ,v1:T ,h0:T ,m1) ∝ exp{−m1(b1 +
T∑
t=1

expht)}

× exp{
T∑
t=1

log[m
a1−1/T
1 (m0 +m1 exp(ht))

vt ]}.

Since the above full conditional distributions are not in any known closed form, we

must simulate m0 and m1 using the Metropolis-Hastings algorithm. The proposal

density used are N(mi>0)(µmi , τ
2
mi

), with µmi = x − q′(x)
q′′(x)

and τ 2
mi

= (−q′′(x))−1

for i = 0, 1, where x is the value of the previous iteration, q(.) is the logarithm

of the conditional posterior density, and q′(.) and q′′(.) are the first and second

derivatives respectively.

A.3 Full conditionals of p00, p11 and π0

The prior distributions for p00, p11 and π0 are respectively given by pii ∼

Be(λi0 , λi1), i = 0, 1 and π0 ∼ Be(l0, l1). Then, the full conditional posteriors are:

pii ∼ Be(λ∗i0 , λ
∗
i1

) and π0 ∼ Be(l∗0, l∗1), where λ∗ij =
∑T

t=1 I(St−1 = i, St = j) + λij

for i, j = 0, 1. and l∗i = li + I(S0 = i), for i = 0, 1.
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A.4 Full conditional of S0:T

The states S0:T are simulated as a block as proposed by Carter & Kohn (1994)

and employed by So et al. (1998). The joint conditional distribution, p(S0:T |

θ,y1:T ,v1:T ,h0:T ), can be decomposed as:

p(S0:T | θ,y1:T ,v1:T ,h0:T ) ∝ p(ST | θ,y1:T ,v1:T ,h0:T )

×
T−1∏
t=0

p(St | θ,y1:T ,v1:T ,h0:T ,St+1:T )

where St+1:T = (St+1, . . . , ST )′. This equation provides a scheme to draw

ST from p(ST | θ,y1:T ,v1:T ,h0:T ) and then, recursively, St is generated from

p(St | θ,y1:T ,v1:T ,h0:T ,St+1:T ), for t = T − 1, . . . , 0. Suppressing for notational

convenience the dependence on θ,y1:T ,v1:T , we have that

p(St | h0:T ,St+1:T ) = p(St | h0:t, St+1)

=
(St | h0:T )p(St+1 | St)

p(St+1 | h0:t)

Since p(ST | h0:T ) and p(St | h0:t, St+1) are discrete, S0:T can be obtained by sim-

ulating T + 1 random numbers from the uniform distributions over [0, 1] (Ripley,

1987).
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