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Abstract

A default Bayesian approach to predict extreme events in the presence of explana-

tory variables is presented. The approach is based on the non-homogenous Poisson-

Generalized Pareto Distribution point process and allows for variation of the tail

behaviour according to explanatory variables. The prior proposed is based on a

similar Jeffreys’ rule for the regression parameters. Inference is performed approxi-

mately via MCMC and the posterior turns out to be relatively easy to be computed.

The model is applied to two real data sets from meteorological applications.
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1 Introduction

In the past two decades there has been an increasing interest for statistical

methods that model rare events in numerous disciplines as Environmental

Sciences, Finance and Insurance, among others (see for instance Coles (2001)

and Smith (2003)). We consider the class of models arising from extreme value

theory (Gnedenko (1943) and Pickands (1975)) with particular attention to

model exceedances of a random variable Z over a fixed high threshold, u

(Davison and Smith (1990)). Let Z ∼ H(z) represents the quantity of interest

(i.e. rainfall levels or returns of a financial asset) and Y = Z − u > 0 the

exceedance over u. Pickands (1975) showed that under regularity conditions

on H(z), the limiting distribution of Y , when u → ∞, is the Generalized

Pareto Distribution (GPD in the sequel) with shape ξ and scale σ

f (y | ξ, σ) =


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
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





σ−1 (1 + yξ/σ)−(1+ξ)/ξ , (1 + yξ/σ) > 0

σ−1 exp (−y/σ) , ξ = 0

. (1)
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Note that the support of Y depends on distribution parameters: Y > 0 for

ξ ≥ 0 and 0 ≤ Y ≤ −σ/ξ for ξ < 0. This means that Y is upper bounded for

negative values of the shape parameter ξ and the model does not satisfy usual

regularity conditions for the Maximum Likelihood Estimator (MLE) (Smith,

1984).

It is often the case that the probability of hydrological extreme events depends

on the period of the year, or the characteristics of the geographical area. We

therefore relate the parameters of the GPD to available covariates X through

regression functions as in Chavez-Demoulin and Davison (2005). However, we

do this in a context of a default Bayesian approach, by using linear regression

functions on a reparametrization of GPD parameters. Their prior distribution

is derived from a formal rule similar to the Jeffreys’s one. The main idea is

to extend the Jeffreys’s rule employed in Castellanos and Cabras (2006) to

regress ξ and σ on X.

Our proposal for reparametrization, link functions and prior distribution over

the regression parameters are presented in the following Section. In Section 3,

the posterior distribution for regression parameters is derived along with the

algorithm to simulate from it. Two applications to real data sets appear in

Section 4. Concluding remarks and comments are left for Section 5.

2 Prior distributions and link functions

The model and the corresponding prior distributions will be constructed in

steps. We start from the Generalized Pareto Distribution and then successively

incorporate elements from Poisson point processes. These are shown to be
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required in order to predict future events.

2.1 The Generalized Pareto Distribution

Suppose a random sample y = (y1, . . . , yn) of observations from (1) is avail-

able. Castellanos and Cabras (2006) proposed the following prior distribution

derived from Jeffreys’ rule

π(ξ, σ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2, ξ > −1/2, σ > 0,

leading to a proper posterior distribution (Castellanos and Cabras, 2006, The-

orem 1). They also showed that Jeffreys rule produces more accurate inference

than other bayesian estimators, as π(ξ, σ) mitigates the odd behavior of the

likelihood function derived from (1).

In the multivariate inference case with many parameters, as the one here

considered, an orthodox application of the Jeffreys’s rule may be not a suitable

choice. This point is discussed in general in (Box and Tiao, 1992, Section 1.3.6),

and in particular in our Section 5 for case of the GPD model. We then start to

reparametrize density (1) in terms of orthogonal parameters ξ and ν according

to Chavez-Demoulin and Davison (2005) where ν = σ(1 + ξ). The density (1)

becomes

f(y|ξ, ν) =


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















ν−1(1 + ξ)(1 + yξ(1 + ξ)/ν)−(1+ξ)/ξ, (1 + yξ(1 + ξ)/ν) > 0

ν−1 exp(−y/ν), ξ = 0

(2)

Note that in this parametrization the support complicates as Y > 0 for ξ ≥ 0

and (1 + Y ξ(1 + ξ)/ν) > 0 for ξ < 0.
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Along the paper we assume that each observation yi comes from a GPD with

different parameters νi and ξi, and we assume that they can be modeled using

fixed design matrix Xn×p through link functions νi = ν(xT
i β) and ξi = ξ(xT

i γ),

where xi indicates row i of X, i = 1, . . . , n. Generalization to different sets of

covariates for ξ and ν is straightforward and would not be pursued here.

In this parametrization the two blocks of p parameters, β and γ, are orthog-

onal and this simplifies the derivation of the joint prior π(β, γ). The diagonal

elements of the Fisher information matrix for model (2) as appears in Smith

(1984) when ξ > −0.5 are

iξξ =
1

(1 + ξ)2
, iνν =

1

ν2(1 + 2ξ)
. (3)

Therefore, if we consider these parameters to be independent a priori, as in

page 57 of Box and Tiao (1992), the link functions that makes the Jeffreys’

priors for ξ and ν locally uniform can easily be obtained. In particular, fol-

lowing this rule, one can consider the marginal prior for each parameter ξ and

ν when only one of them is unknown. The prior for ξ, considering known ν

is π(ξ) ∝ 1/(1 + ξ) therefore π(log(1 + ξ)) ∝ 1, while the prior for ν with ξ

known is π(log(ν)) ∝ 1.

Thus, incorporation of the effect of covariates into the model can be made in

two steps: initally, linear predictors ηξ = xT γ for ξ and ην = xT β for ν are

constructed; then, these linear predictors are related to ξ and ν via ηξ = log(1+

ξ) and ην = log(ν). This approach reproduces the regression strategy adopted

for many standard models such as log-linear regression and logistic regression.

Based on this fact, we propose the inverse of the above transformations as link

functions in order to obtain uniform priors. More explicitly, for each (yi,xi)

we consider a GPD with parameters (ξi, νi) defined as linear combinations of
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covariates through the link functions:

ξi = exp(xT
i γ) − 1, νi = exp(xT

i β). (4)

This allow us to pose a flat prior for θ = (β, γ),

π(θ) ∝ 1, for θ ∈ Θ ⊂ R
2p.

Prior and likelihood support Θ depends on X and parameter constraints in

model (2), as θ is a point satisfying the following joint restrictions for all i































exp(2xT
i γ) − exp(xT

i γ) > −y−1
i exp(xT

i β)

xT
i γ > − log(2)

. (5)

The last restriction is needed for the existence of Fisher information (Smith,

1984). These restrictions can only be verified numerically.

Motivations for (4) and π(θ) stays in the fact that the linear predictors ην

and ηξ have a uniform prior mass on their respective support. This amounts

to assume the joint improper prior on θ given by the product of independent

Jeffreys priors for νi and ξi, obtained when only one of the two parameter is

unknown.

2.2 The homogenous Poisson-GPD process

In many situations we are interested not only in the intensity of the ex-

ceedances, but also in the number of exceedances that occur by unit time.

A possible way to model this setting is by using the Poisson-GPD point pro-

cess. This model can be used when the number of exceedances N over u by unit
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time (i.e. a year or a season) follows the Poisson distribution, with intensity

λ, and conditionally on N ≥ 1, the exceedances Y1, . . . , YN are independently

drawn from (2). The joint probability density function of n exceedances, y,

observed in a unit time, for n ≥ 1 is:

Pr(N = n)f(y | N = n) =
λn

n!
exp(−λ)

n
∏

i=1

f(yi | ξi, νi), (6)

while the probability of observing N = 0 exceedances is e−λ.

The most common feature of interest for the Poisson-GPD process is the K-

year return level, LK , defined as the level which is exceeded on average once

in K-years, assuming the year as the time unit. For the homogeneous Poisson-

GPD process, LK is derived using the fact that the mean crossing rate for the

event Z > u in a year is λ [1 + (z − u)ξ(1 + ξ)/ν]−1/ξ. Setting this quantity

equal to 1/K and isolating z gives

LK = u +
ν

ξ(1 + ξ)

[

(λK)ξ − 1
]

.

2.3 The non-homogenous Poisson-GPD process

As mentioned before, the extremal processes usually depend on the time span

and on the geographical region. Thus, the process is no longer homogenous.

As interest lies in the posterior distribution of LK in a certain domain D,

and this quantity is described by X (eg. seasonality and geographical loca-

tions), we consider the non-homegeneous Poisson-GPD process also described

in Leadbetter et al. (1983) and Resnick (1987). The intensity λ in (6) now

depends on time and space, that is the domain is D ≡ [0, T ] × S, and will be

denoted by λ(t, s) for (t, s) ∈ D to make this dependence explicit. Then for a

measurable subset A ⊂ D, if we denote N(A) the number of exceedances in
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A, then N(A) has a Poisson distribution with mean

Λ(A) =
∫

A
λ(t, s)dtds.

In the special case considered in our applications, λ(t, s) is assumed to have a

constant value λqr along season Tq, q = 1, . . . , pT , and region, Sr, r = 1, . . . , pS,

with pT + pS = p. Then, the probability of having nqr exceedances over u in

region Sr and season Tq along T years is

(

∑T
1

∫

Tq

∫

Sr
λqrdtds

)nqr

nqr!
exp

{

−
T
∑

1

∫

Tq

∫

Sr

λqrdtds

}

= (7)

(Tµ(Tq)µ(Sr)λqr)
nqr

nqr!
exp {−Tµ(Tq)µ(Sr)λqr} .

where µ(Tq), µ(Sr) are the measures of seasons and regions.

We are mainly interested in cases where seasons (and regions) have the same

time (and space) length. Nevertheless this can be easily extended to different

situations, for example when observations are not referred to the same time

length and are not points in space. If the time span is divided in pT equal in-

terval times and observation space in pS equal area subregions, the probability

of having nqr over seasons q = 1, . . . , pT in T years and regions r = 1, . . . , pS

is:
pT
∏

q=1

pS
∏

r=1

[

(T/(pT pS)λqr)
nqr

nqr!
exp

{

− T

pT pS

λqr

}]

.

Now, assume that intensity λqr also depends on explanatory variables xi and

denote it by λi. Moreover, we assume the following link function:

λi = (xT
i α)2 , i = 1, ..., n,

where xi has p indicators of seasons and regions. Using as link function the
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square of the linear predictor xT
i α and the Jeffreys prior for the rate of a

Poisson distribution, that is π(λi) ∝ λ
−1/2
i , we can assume the flat prior

π(α) ∝ 1, for α ∈ Λ ⊂ R
p,

in analogy to π(θ). Since the λi’s are orthogonal to θ then the joint prior

distribution is also assumed in the independent form

π(θ, α) ∝ π(θ)π(α). (8)

3 Likelihood and posterior distribution for the Poisson-GPD pro-

cess

For a random sample y and a corresponding matrix X the likelihood (6) for

the Poisson-GPD process factorizes into two parts. Applied to the regression

setting considered here, and considering logarithms, these parts are lPoisson(α)

involving only the counting part and lGPD(β, γ) involving only the exceedances

y. They are respectively given by

l(α, β, γ) = lPoisson(α) + lGPD(β, γ),

where

lPoisson(α) =
n
∑

i=1

2 log(xT
i α) −

(

T

pT pR

xT
i α

)2

,

and

lGPD(β, γ) =
n
∑

i=1

log f
(

yi|ξ(βTxi), ν(γT xi)
)

,

with f according to density (2).

Combination of the above likelihood with the joint prior (8) by Bayes theorem
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gives the posterior distribution. The kernel of posterior density is

π(α, β, γ|y) ∝
n
∏

i=1

(xT
i α)2 exp

{

− T
pT pR

(xT
i α)2

}

exp(xT
i γ − xT

i β)

(1 + yi(exp(xT
i γ) − 1) exp(xT

i γ − xT
i β))exp(xT

i
γ)/(exp(xT

i
γ)−1)

,

where the normalization constant does not an analytical form. The posterior

support is given by the product space Θ × Λ, that can be described only

numerically.

3.1 Approximation of posterior distribution

Approximation of posterior distribution π(θ, α|y) may be obtained using

Markov Chain Monte Carlo methods (see Gamerman and Lopes (2006)). In

particular, we used a Metropolis step nested in a Gibbs sampling algorithm.

At iteration t of the chain we update in a random order all 3p parameters

using as proposal distribution a univariate Normal density with mean given

by the parameter at the previous iteration and variance fixed such that the

acceptance rate for all parameters is between 30% and 40%.

Please note that in our applications p ≈ 35 and the dimension of the space of

parameters Θ×Λ ⊂ R
3p is sizable as 3p ≈ 105. Nevertheless, diagnostic plots

(not shown here) seem to indicate that the chain has converged. We think that

the important ideas to facilitate this are the proposed reparametrizations and

corresponding link functions.

4 Application

We apply the Poisson-GPD model to two real data sets. The first applica-

tion shows that extreme value analysis may be improved by accounting for

10



covariates. We use a data set also analyzed in Sisson et al. (2006) without

covariates. The second application is a larger data set with meteorological

measurements from Rio de Janeiro, Brazil. It shows the computational feasi-

bility of the inference technique here proposed even for moderate to large data

sets.

4.1 San Juan, Puerto Rico data

This data set relates to rainfall levels Z in San Juan, Puerto Rico, measured

at Luis Muñoz Marin International Airport. Data have been analyzed in Sis-

son et al. (2006) without a regression approach, but using instead a Gumbel

distribution and Generalized Extreme Value (GEV) model for maxima. They

use all available annual maxima (from 1967 to 2001) with a Gumbel and GEV

model in a Bayesian and maximum likelihood framework showing the superior

predictive behavior of GEV over Gumbel.

We consider the Poisson-GPD model for rainfalls Z > u, where u = 50 mm.

In order to predict the rainfall of 17 September 1989 we use the n = 94

rainfall measurements above u showed in Figure 1. We use as covariate a season

dummy variable. According to Rivera-Ramirez et al. (2002), San Juan has

two seasons coded by xi = 0 for dry season (January through April, June and

July) and xi = 1 for wet season (May, and August through December). The

marginal posterior distribution of each parameter along with its normalized

profile likelihood are shown in Figure 2.

It can be seen that the marginal posterior for α and β is likelihood dominated

as its shape does not differ from that of the likelihood. Differences are appre-
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ciable for γ as the shape ξ is near to its lower bound of ξ = −0.5 corresponding

to xT
i γ = − log 2. This indicates that there exists an upper bound in rainfall

levels exceedances Y . Also, observing Figure 2, the effect of the season is fairly

significant for the regression parameters α of process rate with the number

of extreme events increasing in wet season. For the other Poisson-GPD model

features there is not a clear effect.

The probability of September extreme event, conditionally on all extremes

larger than 50mm and wet season is 2.8%. The same probability in the dry

season is almost a half, indicating that season matters in predicting extreme

rainfalls in San Juan. The posterior distributions of the mean return level LK

for wet season in K = 50 and K = 100 years are shown in Figure 3. We can see

that the September 1989 rainstorm is in the 95% posterior credible intervals

of L100. Moreover, in wet season Pr(L > 200 | y,x, K = 50, season = wet) ≈

4.8%, while in K = 100 years it increases up to 80%. The latter probability

decreases to only 35% for the dry season. Again, ignoring season effect may

lead to a serious underestimation of these extreme events.

4.2 Rainfall in Rio de Janeiro

This data set consists of maximum rainfall levels cumulated in 15 minutes

along a day observed during the 10 years from 1997 to 2007 (n = 1221) in 32

meteorological stations locations all around Rio de Janeiro city. These public

domain data come from Fundação Instituto de Geotécnica do Municpio do Rio

de Janeiro and are available at the web page www.rio.rj.gov.br/alertario.

We consider as extremes all rainfall levels above threshold u = 50mm.
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Fig. 1. Rainfall levels in San Juan (Puerto Rico) measured at Luis Muñoz Marin

International Airport.

We want to show that in such large data set we can either evaluate the prob-

ability of high rainfall levels for a certain season / location at a relative lower

computational cost. We consider as covariates the season (4 levels) and the

meteorological station. These covariates enter as columns of dummy variables

{0, 1} in the X matrix. Thus X has 1221 rows and 3p = 105 columns, where

α, β, γ have 35 elements each. This large amount of parameters is relative easy

to manage with the algorithm explained in Section 3.1. Data are shown in Fig-

ure 4 where it seems that season and location are related to the underlying

extremal process.

Posterior probability map of L100 for summer season (the most rainy season in

Rio) is shown in Figure 5. It is clear that there are areas of Rio de Janeiro which

have high probability of rain falls levels over 300 mm. These areas contain the
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Fig. 2. Posterior distribution for β,γ,α parameters (solid) along with the corre-

sponding profile likelihood (dashed). Vertical dotted lines represent 95% posterior

credible intervals.

meteorological stations that are mainly situated near Rio de Janeiro hills.

5 Remarks

We would like to conclude by remarking an undesirable effect of the application

of the orthodox Jeffreys rule for β and γ parameters based on the 2p × 2p

information matrix (3). It can be noted that the iν,ν element involves both ξ

and ν, so the expression of elements iβsβt
of the Fisher information when we

consider the change νi = ν(xT
i β) can be calculated as

iβsβt
=

n
∑

i=1

xisxitν
′2
i iν,ν =

n
∑

i=1

xisxitν
′2
i ν−2

i (1 + 2ξi)
−1, s, t ∈ (1, . . . , p),

14



100 150 200 250 300 350 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Posterior distribution of Mean Return Level

Lk

D
en

si
ty

Fig. 3. Posterior distribution for the K-year Mean Return Level, for K = 50 (solid)

and K = 100 (dashed) years, for the wet season. Vertical dotted lines represent 95%

posterior credible intervals for K = 100. In the observation period subsequent to

that used to estimate this distribution, the largest rainstorm was about 220mm.

where ν ′

i indicates the derivative of νi with respect to β.

In this case parameter β and γ will not be necessarily separated in the prior

no matter which link functions is used. For example, using the link functions































ν−1
J (νi) ∝

∫

ν−1
i dνi = log(νi)

ξ−1
J (ξi) ∝

∫

(1 + ξi)
−1(1 + 2ξi)

−1/2dξi = arctan
√

1 + 2ξi

obtained by inverting the Jeffreys’ prior in Castellanos and Cabras (2006), the

marginal priors of β and γ are no longer flat.

With the approach here proposed we can model several extreme process fea-
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Fig. 4. Rainfall levels in Rio de Janeiro grouped by location (left) and seasons (right).

Boxplot width is proportional to the number of observations per group.

tures by using a large set of available covariates at a relatively low computa-

tional cost. The choice of an appropriate threshold u has not been accounted

explicitly in this work. In fact for San Juan data with u = 40mm the proba-

bility of September extreme, given the wet season, decreases to 1% while for

u = 60 it increases to 4.5%. These values are sensibly different from 2.8%

obtained using u = 50.

Threshold changes also affects the effect of season on scale ν and form ξ. In

fact, the posterior distribution for the effect of season on these parameters are

less concentrated around 0 with u = 40 then with u = 50 or u = 60 and the

effect of season on λ is robust with respect to u. The threshold selection is an

open direction for further research because available proposals, as in Behrens

et al. (2004) or in Cabras and Morales (2006), do not account for the regression
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Pr(L100 > 300)

0.51

Fig. 5. Posterior probability map of a mean return level greater than 300mm in 100

years in the administrative regions of Rio de Janeiro city. Each region is coloured

according to its meteorological station. Yellow color indicates that no data were

available.

framework here discussed.

The analyses performed here illustrate the feasibility of the proposed method-

ology for a variety of practical settings. Appropriate models can be constructed

and meaningful answeres can be drawn. Directions for further work include

incorporation of threshold selection and of the central part of the distribution

below the exceedances and incorporation of structured random effects in the

regression framework to accommodate for additional unexplained heterogene-

ity.
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