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Abstract
Count data are usually modeled as following a Poisson distribution. Im-

plicit in the use of a Poisson distribution is the assumption that the obser-
vations are generated from a distribution with the same mean and variance.
However, this is rarely true in practice. Frequently, data present an observed
variance greater than the observed mean, i.e., the data are overdispersed. In
Epidemiology, when modelling the number of cases of a disease, overdisper-
sion might be caused by a great amount of zeros in the data. However, we do
not know if this is a true zero or not (the disease might be present but was
not observed). Here we discuss, from a Bayesian point of view, how to deal
with this problem on a time series of registered number of cases of malaria
for a municipality located in the Amazon region of Brazil. We have avail-
able the monthly number of cases of malaria and 71% of the observations
are zeros. We investigate if this is the source of overdispersion. Generalized
dynamic models are used to capture the temporal structure of the data, and
different families of distributions, like the Poisson, Poisson-Gamma, Poisson-
Log-normal and the zero inflated versions of these, are used to fit the data.
Markov chain Monte Carlo methods are used to obtain a sample from the
posterior distribution and efficient sampling schemes, which take into account
the correlation structure of the parameters, are used to build the sampling
algorithm. Analysis of the posterior predictive distribution and two other
model comparison criteria, indicate the negative binomial distribution as the
best among those fitted. However, the zero inflated negative binomial version
provides an estimate of the probability that the ”observed zero” was expected
from the negative binomial part of the model.
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1 Introduction

In Epidemiology, we are usually interested in modelling the number of cases of a
certain disease over a period of time. It is quite common to assume that the number
of cases at time t is a realization from a discrete random variable. The most used
distribution is the Poisson. However, the Poisson assumes that mean and variance
are equal, which is hardly true in practice. Usually, the variance is much greater
than the mean. When this happens it is said that data are overdispersed. Another
point of concern is that if the disease is rare, or if we span a short period of time, we
might get a great amount of observed zeros. Also, the presence of too many zeros
might be the source of overdispersion. Typically, however, in such situations, we do
not know if the observed zero is a true one or not (the disease might be present but
was not observed). Our contribution here lies on the investigation, on a time series
of malaria counts, of the source of overdispersion, and the probability, at time t,
that the observed zero is a true one.

There has been, in the literature, a lot of effort in tackling these problems.
To account for overdispersion it is quite common to use a mixture between the
Poisson and Gamma distributions, which marginally results on a negative binomial
distribution. Another mixture which is quite used is between a Poisson and Log-
Normal distributions. From a classical point of view the latter is more complicated to
fit as the marginal distribution is unknown. If there are too many zeros, considering
only these mixtures might not be enough to capture a possible excess of zeros.
Lambert (1992) proposed a zero inflated Poisson model that captures the excess of
zeros through a mixture between a Bernoulli and Poisson. Essentially, this mixture
is defined by the introduction of an indicator variable of the presence/absence of
the disease. Usually, the likelihood of such models is based on the marginalized
distribution with respect to this indicator variable. In other words, this indicator
variable is assumed to be known. Here, however, we will assume it to be known
only when the number of counts is greater than zero. Otherwise, these become
parameters of the model and have also to be estimated.

To account for overdispersion, Scollnik (1995) presents a Bayesian analysis of or-
dinary Poisson and generalized Poisson distribution models. On a spatio-temporal
setting, Kim et al. (2002) propose a quasi-multiplicative spatio-temporal model with
gamma extra variation effects, and compare the performance of the proposed model
to a loglinear model with lognormal extra variation effects. They conclude that for
their dataset, the models are interchangeable when gamma and lognormal distribu-
tions have similar location and scale parameters. Agarwal et al. (2002) propose a
zero inflated Poisson model for spatial count data which present an excess number of
zeros. In their case, they estimate the probability of the observed zero coming from
the Poisson part of the mixture. Therefore, when a zero is observed, it is not con-
sidered as a ”true” one. Yau et al. (2004) propose a zero inflated negative binomial
model to analyze a set of pancreas disorder length of stay data. They make use of
random effects to account for inter-hospital variations. And the likelihood is based
on the negative binomial distribution and not on the mixture between the Poisson
and Gamma distributions. Inference procedure is performed via the maximization of
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an appropriate log-likelihood function through the use of an EM algorithm. Dagne
(2004) also proposes a fully Bayesian hierarchical model which incorporates both
overdispersion and zero inflation. More specifically, he considers only the case of
a zero inflated Poisson model, and includes independent random effects to capture
possible heterogeneity present in the data. Warton (2005) investigates the need of
a zero inflated model to describe abundance data that have many zeros. He inter-
changes among the fitting of the Poisson and the negative binomial models, and
the zero inflated versions of these. The estimation procedure is done via maximum
likelihood and the method of moments. An important issue is that when he fits the
zero inflated models, he assumes the zeros as being all observed, when in practice
these are unknown, as all is known is that a particular species was not observed.

This paper is organized as follows. Next section describes the data which mo-
tivated this study. Then, Section 3 introduces the general structure of the model
which will be fitted to the data, and describes all the particular cases. Inference is
performed following the Bayesian paradigm, so therein the associated prior distri-
butions as well as the MCMC procedure are also discussed. In Section 4 we present
the results of the analysis of the proposed models. We discuss the significance of
overdispersion for our dataset, as well as the advantage (or not) of fitting a zero
inflated model. Therein the benefits of a Bayesian analysis are clear, as all the un-
certainty about the parameter’s estimates is naturally described. Finally, Section 5
concludes this study.

2 Motivation

Malaria is a public health problem in more than 90 countries inhabited by approxi-
mately 2400 million people, representing 40% of the population of the world. Best
estimates currently describe the annual burden of malaria as 1,12 million deaths
and 300-500 million clinical cases. More than 90% of the burden of the disease falls
in Sub-Saharan Africa where almost all deaths are attributable to P.falciparum in-
fections. Most of the remaining is distributed between the Indian sub-continent,
South-east Asia, Oceania and the Americas. After Plasmodium falciparum the
largest burden of the disease is caused by Plasmodium vivax (WHO, 1998).

Across the Brazilian Amazon basin, more than 500 thousand people are infected
every year, and the disease is a major threat to human health, despite considerable
national and international control efforts. Continued progress in prevention, treat-
ment and the development of innovative tools for the control of malaria is required1.

In this study we are particularly interested on a hipoendemic malarial area called
Barreirinha, a municipality located at the northeastern part of the Amazonas state
(57o 13’ 43,31” W / 2o 45’ 47, 73” S), 372 kilometers far from the capital Man-
aus, and inhabited by approximately 25, 000 people. This region, located by the
Amazonas river, has registered a particularly low number of positive malaria cases

1From the report Situação Epidemiológica da Malária no Brasil published by the Health Min-
istery of Brazil, 2006.
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(< 10/year) from 1999 to 2002 as provided by the Brazilian Epidemiological Surveil-
lance System (SIVEP)2.

We have available monthly time series of registered number of cases of malaria
for Barreirinha. Observations correspond to January 1999 until December 2001.
Panel (a) of Figure 1 shows the observed time series whereas panel (b), of this
same figure, presents the observed counts of malaria cases in Barreirinha during
this period. Note that 71% of the observations are zeros.
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Figure 1: Panel (a) Time series of the registered cases of malaria from January, 1999
until December, 2001, for the municipality of Barreirinha, located in the Amazon
state of Brazil. Panel (b) observed counts of the number of cases of malaria registered
between Jan 1999-Dec 2001.

We aim to investigate if such a big proportion of zeros was expected or if they
are a sign of under reported cases. Moreover, we want to estimate the probability
of presence of the disease at time t, given it was not observed.

3 Proposed Models

Assume that Yt represents the number of cases of malaria over a specific region for
time t ∈ {1, 2 · · · }. Usually, it is assumed that Yt follows a Poisson distribution
with mean λt. In this case, it is well known that the variance of Yt is also equals
λt. However, in practice, it is quite unusual to observe data in which mean and
variance are similar. Usually, there is the presence of some extra variability, that
is V (Yt) À E(Yt). When this is the case there are some alternatives to the usual
Poisson model. One possibility is to assume a continuous mixture such that

Yt | λt, δt ∼ Poi(λt δt), (3.1)

and p(δt) follows a continuous distribution assuming positive values. It is well known
that if δt follows a Gamma distribution with mean α/β and variance α/β2, then the

2www.saude.gov.br/sivep malaria .
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distribution of Yt | λt, obtained through,
∫

p(yt | λt, δt)p(δt | α, β) dδt = p(yt | λt, α, β), (3.2)

follows a negative binomial distribution with mean and variance given, respectively,
by

E(Yt | λt, α, β) = λt
α

β
,

V (Yt | λt, α, β) = λt
α

β
+ λ2

t

α

β2
. (3.3)

Another possibility is to consider a lognormal mixture, that is, to assume δt ∼
LN(µ, V ), where LN(a, b) stands for the lognormal distribution whose associated
normal has mean a and variance b. From a frequentist view point, this model is not
used because the integral in (3.2) does not have an analytical solution. But using
the properties of conditional expectation, it can be shown that

E(yt | λt) = λt exp

(
µ +

V

2

)
,

V (yt | λt) = λt exp

(
µ +

V

2

)
+ λ2

t exp(2µ + V )(exp(V )− 1). (3.4)

Notice that both mixtures capture overdispersion as the variance in both cases is
the mean plus a positive quantity.

When modelling the number of cases of a certain disease, usually, there is a
great amount of zeros in the data. This might be the source of overdispersion. In
this case, one might use a zero inflated version of the Poisson, Poisson-Gamma or
Poisson-Lognormal model.

Let Xt be a random variable representing the presence (Xt = 1) or absence
(Xt = 0) of the process being observed. Assume that Xt | θ follows a Bernoulli
distribution with probability of success θ. Let p(yt | λt, δt) be a model for the
process being observed given it is present (Xt = 1). We use this general notation,
conditioned on δt, but in the Poisson case, δt is known and equals 1. By definition,
P (Yt = yt | λt, δt, Xt = 1) = p(yt | λt, δt) and P (Yt = 0 | λt, δt, Xt = 0) = 1. The
joint density function of Xt and Yt is given by

p(yt, xt | λt, δt, θ) = [θ p(yt | λt, δt)]
xt (1− θ)1−xt . (3.5)

Therefore, the marginal distribution of Yt, with respect to Xt, is given by

p(yt | λt, δt, θ) = θ p(yt | λt, δt) + (1− θ)p0(yt | λt, δt), (3.6)

where p0(yt | λt, δt) represents the probability of observing [yt = 0].
Notice that Xt is a latent variable. Following Agarwal et al. (2002), its inclusion

in the model results that P (Yt = 0 | Xt = 1, θ, λt) = p0(yt | λt, δt), P (Yt = yt | Xt =
0, θ, λt, δt) = 0, P (Xt = 1 | Yt = yt > 0, θ, λt, δt) = 1 and, more interestingly,

P (Xt = 1 | Yt = 0, θ, λt, δt) =
θ p0(yt | λt, δt)

(1− θ) + θ p0(yt | λt, δt)
, (3.7)
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and marginally, as previously defined, Xt follows a Bernoulli distribution with prob-
ability of success θ, that is Xt | θ ∼ ber(θ). Notice that Equation (3.7) provides an
estimate of the probability of presence of the process, at time t, given that it was not
observed. That is, this represents the probability that the observed 0 comes from
the model p(yt | λt, δt). The quantity 1 − P (Xt = 1 | Yt = 0, θ, λt, δt) = P (Xt =
0 | Yt = 0, θ, λt, δt) might be used as a guidance to Epidemiologists to point those
regions which are ”suspect” of having under reported cases.

Usually, the likelihood is obtained through the probability function in Equation
(3.6). In our context, Xt is considered unknown when Yt = 0, therefore, these Xt’s
are parameters of the model which need to be estimated. From a Bayesian point
of view this is a not problem, since we can compute the posterior full conditional
distribution for these Xt and sample from it in the sampling scheme which will be
described in Subsection 3.2.

Modelling the temporal structure

As we do not have many observations, it is not possible to investigate for any
trend or seasonal structure. Following the literature on generalized dynamic models
(West and Harrison, 1997), we assume that log(λt) varies smoothly with time, that
is,

log λt = µt and µt = µt−1 + ωt with ωt ∼ N(0,W ), for t = 1, · · · , T,

and µ0 ∼ N(0, C0), C0 is a known (large) variance, and W is another parameter of
the model which needs to be estimated.

When analyzing our data we will entertain among 6 models, the Poisson, Poisson-
Gamma, Poisson-Lognormal and the zero inflated versions of these, ZIP, ZIP-Gamma,
and ZIP-LN. Our aim is to model the cases of malaria in Barreirinha, such that we
check which one, among these, fits the data best.

3.1 Likelihood Function and Prior Distributions

Assume we have observations yt, for t = 1, · · · , T . We can write the likelihood based
on the models described in the previous subsection as

p(y,x | λ, δ, θ) =
T∏

t=1

θxt(1− θ)1−xt

[
(λtδt)

yt exp(λtδt)

yt!

]xt

.

Let Θ be the parameter vector comprising the quantities of the model which need
to be estimated. Broadly speaking Θ = (µ, δ,W,X, θ), where µ = (µ1, · · · , µT ),
δ = (δ1, · · · , δT ), and X = (X1, · · · , XT ). In the general expression above, if we
assume 00 = 1, for each model specification we then have:

1. Poisson (Pois): δt = 1, xt = 1 ∀ t, and θ = 1;

2. Negative Binomial (NB): δt follows a Gamma distribution and xt = 1, ∀ t,
θ = 1;
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3. Poisson-Lognormal (Pois-LN): δt follows a lognormal distribution and xt = 1,
∀ t, θ = 1;

4. Zero Inflated Poisson (ZIP): δt = 1, ∀t, and xt = 1 if yt > 0 but xt is unknown
when yt = 0;

5. Zero Inflated Negative Binomial (ZINB): δt follows a Gamma distribution and
xt = 1 if yt > 0 but xt is unknown when yt = 0;

6. Zero Inflated Poisson-Lognormal (ZIP-LN): δt follows a lognormal distribution
and xt = 1 if yt > 0 but xt is unknown when yt = 0;

These are the 6 models which will be fitted to the malaria dataset discussed in
Section 2.

Prior Specification

From a Bayesian point of view we are now left to assign the prior distribution of
the parameters involved in the model. Here, in particular, for the Poisson-Gamma
model, we assume that δt | ε ∼ Ga(ε, ε). In this case, (3.3) becomes

E(Yt | λt, ε) = λt, V (Yt | λt, ε) = λt +
λ2

t

ε
.

For the Poisson-Log-Normal model we assume δt | ε ∼ LN(0, ε). Therefore, equation
(3.4) becomes

E(yt | λt) = λt exp
( ε

2

)
, V (yt | λt) = λt exp

( ε

2

)
+ λ2

t exp(ε)(exp(ε)− 1).

For both specifications, it is assumed, a priori, that ε ∼ Ga(0.1, 0.1). For W ,
the variance of the evolution equation of µt, we assume an inverse gamma prior with
an infinite variance and mean equals 1. This reflects our prior belief that W should
assume very large values with very low probability, a priori. When θ is unknown,
we assume a uniform prior in the interval (0, 1).

3.2 Inference Procedure

Following the Bayesian paradigm, the posterior distribution is proportional to like-
lihood times prior. For all 6 models considered for the malaria dataset, a unknown
posterior distribution results. We resort to efficient Markov Chain Monte Carlo
algorithms to obtain samples from the posterior distribution of interest. In particu-
lar, we make use of the Gibbs sampling with some steps of the Metropolis-Hastings
(M-H) method. See Gamerman and Lopes (2006) for more details.

Our main concern is when sampling the µt’s. Conditional on δt, we have a
generalized dynamic linear model (West and Harrison, 1997). It is well known
that these parameters are highly correlated, a posteriori. The posterior full condi-
tional distributions have a unknown form. We make use of the conjugate updating
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backward sampling (CUBS) algorithm proposed by Ravines et al. (2007), which
takes this correlation structure into account. More specifically, the proposal for the
Metropolis-Hastings step is a normal distribution, whose mean and variance are
computed according to a Linear Bayes approximation. See Ravines et al. (2007) for
details. For the models where θ is unknown, its posterior full conditional distribu-
tion follows a beta distribution, which is easy to sample from. In the zero inflated
models, when yt = 0 we have to sample the corresponding indicator variable Xt. Its
posterior full conditional follows a Bernoulli distribution with probability of success
given by equation (3.7). The δt’s, when unknown, also result on unknown posterior
full conditional distributions. They are sampled one at a time, through a M-H step,
based on a lognormal distribution, whose mean of the associated normal is equal to
the current value of the chain and the variance of the proposal is tunned according
to the algorithm proposed by Roberts and Rosenthal (2001).

4 Results

We let the MCMC run for 200,000 iterations, used 40,000 as burn in and stored
every 160th iteration, to avoid autocorrelation among the sampled values. Con-
vergence was checked following standard procedures available in CODA (Plummer
et al., 2006). We show the results for all fitted models in order to investigate the
contributions provided by each of them.

The panels in Figure 2 show the posterior distribution of W under each of the
fitted models. We notice that there is not much difference among the estimated
values, and on the resultant posterior samples.

For all models, λt = exp(µt), as we have a sample from the posterior distribution
of µt, due to this one-to-one relationship we automatically obtain a sample for the
posterior of λt. Figure 3 shows the posterior mean (solid lines) and respective 95%
posterior credible intervals of λt, for each time t. It is very clear, that they all present
an increasing pattern and they seem not to differ much from model to model.

On the other hand, for each time t, Figure 4 summarizes the posterior mean
with respective 95% credible intervals for δt, the parameter which is capturing the
overdispersion present in the observed time series. For most of the observed times,
δ = 1 is included in the 95% posterior credible interval, giving an indication that
there is no need for this parameter. However, for the negative binomial model, in
the end of the series this is not true, that is δ = 1 is not included in the posterior
credible interval. Apparently, the same characteristic happens under model ZINB.

To investigate this better, panels in Figure 5 show the posterior summary of
λ2

t /ε and λt exp
(

ε
2

)
+ λ2

t exp(ε)(exp(ε) − 1), the terms that capture overdispersion,
under models (a) NB, (c) ZINB, and (b) Poi-LN, and (d) ZIP-LN, for each time t,
respectively. From these panels, it is clear that models NB and ZINB present values
which are significantly greater than zero towards the end of the time series. The
same is not true for the Poi-LN and ZIP-LN models.
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Figure 2: Posterior sample of W , under each model specification. The vertical line
represents the estimated posterior mean.
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(b) NB
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(c) Poi-LN

λ t

ja
n/

99
m

ar
/9

9
m

ay
/9

9
ju

l/9
9

se
p/

99
no

v/
99

ja
n/

00
m

ar
/0

0
m

ay
/0

0
ju

l/0
0

se
p/

00
no

v/
00

ja
n/

01
m

ar
/0

1
m

ay
/0

1
ju

l/0
1

se
p/

01
no

v/
01

ja
n/

02
m

ar
/0

2
m

ay
/0

2
ju

l/0
2

se
p/

02
no

v/
02

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(d) ZIP
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(e) ZINB
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(f) ZIP-LN

Figure 3: Posterior mean (solid lines) of λt for each time t, and respective 95%
posterior credible interval (dotted lines).
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(a) NB
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(b) Poi-LN
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(c) ZINB
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(d) ZIP-LN

Figure 4: Posterior mean (solid lines) of δt for each time t and respective 95%
posterior credible interval (dashed lines).
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(d) ZIP-LN

Figure 5: Posterior mean (solid lines) and respective 95% credible intervals limits
(dashed lines) of λ2

t /ε in panels (a) and (c) and of λ2
t exp(ε)(exp(ε) − 1) in panels

(b) and (d), for each time t.
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Recall that when we fit the zero inflated models, we have a parameter, θ, indi-
cating the prior probability of presence of the disease. The panels in Figure 6 show
the histograms of the posterior sample for θ under the (a) ZIP, (b) ZINB, and (c)
ZIP-LN models. We notice that the ZINB model provides a skewed distribution,
with probability mass quite concentrated near 1. On the other hand, under the ZIP
and ZIP-LN models, apparently we are more uncertain about the estimate of θ and
for these models, the estimated value of θ is smaller than under ZINB. Apparently,
although the ZIP-LN has a parameter to capture overdispersion, this is not able to
explain the zeros with high probability, differently from the ZINB model.
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Figure 6: Posterior sample of θ, under each zero inflated model specification: (a)
ZIP, (b) ZINB, and (c) ZIP-LN. The vertical dashed line represents the estimated
posterior mean.

We can go further and compute the posterior probability of a ”zero” coming
from the distribution p(yt | .) (see eq. (3.7)). Therefore, we can estimate the
posterior distribution of the probability of presence of the disease given it was not
observed. Figure 7 shows, for each time t, the posterior summary (mean (dot) and
95% credible intervals (extremes of the vertical lines)) of the probability of presence
given malaria was not observed at time t for models (a) ZIP, (b) ZINB and (c) ZIP-
LN. According to this figure, the ZIP model indicates that the posterior probability
of the ”observed zero” coming from the Poisson part of the model is around 70%,
and for each time, these probabilities vary from around 39% up to approximately
1. A similar behaviour is observed for the ZIP-LN model. On the other hand, the
ZINB model provides a stronger result. We notice from panel (b) of this figure
that for most of the times, the probability in equation (3.7) is estimated at above
80%, and they vary from around 48% up to 1. What is really interesting from these
panels is that all of them indicate that, for the last periods of time, specially for
August, 2002 and December 2002, although the estimated probability that the zero
was expected is at 80%, the estimated uncertainty is quite high, as it varies from
almost 0 up to 1. From the time series we notice that August 2002 is soon after the
month that had the highest value of the number of cases. In other words, these zero
inflated models are indicating that they are quite uncertain that these months were
expected to present counts equal zero. Policy makers should try and understand
the source of this variability.

12



P
(X

_t
=

1|
y_

t=
0)

ja
n/

99
m

ar
/9

9
m

ay
/9

9
ju

l/9
9

se
p/

99
no

v/
99

ja
n/

00
m

ar
/0

0
m

ay
/0

0
ju

l/0
0

se
p/

00
no

v/
00

ja
n/

01
m

ar
/0

1
m

ay
/0

1
ju

l/0
1

se
p/

01
no

v/
01

ja
n/

02
m

ar
/0

2
m

ay
/0

2
ju

l/0
2

se
p/

02
no

v/
02

0.
2

0.
4

0.
6

0.
8

1.
0

(a) ZIP

P
(X

_t
=

1|
y_

t=
0)

ja
n/

99
m

ar
/9

9
m

ay
/9

9
ju

l/9
9

se
p/

99
no

v/
99

ja
n/

00
m

ar
/0

0
m

ay
/0

0
ju

l/0
0

se
p/

00
no

v/
00

ja
n/

01
m

ar
/0

1
m

ay
/0

1
ju

l/0
1

se
p/

01
no

v/
01

ja
n/

02
m

ar
/0

2
m

ay
/0

2
ju

l/0
2

se
p/

02
no

v/
02

0.
2

0.
4

0.
6

0.
8

1.
0

(b) ZINB

P
(X

_t
=

1|
y_

t=
0)

ja
n/

99
m

ar
/9

9
m

ay
/9

9
ju

l/9
9

se
p/

99
no

v/
99

ja
n/

00
m

ar
/0

0
m

ay
/0

0
ju

l/0
0

se
p/

00
no

v/
00

ja
n/

01
m

ar
/0

1
m

ay
/0

1
ju

l/0
1

se
p/

01
no

v/
01

ja
n/

02
m

ar
/0

2
m

ay
/0

2
ju

l/0
2

se
p/

02
no

v/
02

0.
2

0.
4

0.
6

0.
8

1.
0

(c) ZIP-LN

Figure 7: Posterior summary of the probability of presence of Malaria, for each time
t, given it was not observed, under models (a) ZIP; (b) ZINB; (c) ZILN.

Lastly, panels in figure 8 present the mean (dot-dashed), median (solid line) and
95% credible intervals (dashed lines) of the posterior predictive distribution for each
of the fitted models. From these panels it is clear that, neither the Poisson, nor the
ZIP models fit the data well. They estimate zeros for most instants in time. The
Poi-LN and ZIP-LN models are slightly better but do not fit the data as well as the
NB and ZINB. Notice that both, NB and ZINB, seem to capture reasonably well
the structure of the data.
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(b) Negative Binomial
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(c) Poi-LN

y r
ep

, t

ja
n/

99
m

ar
/9

9
m

ay
/9

9
ju

l/9
9

se
p/

99
no

v/
99

ja
n/

00
m

ar
/0

0
m

ay
/0

0
ju

l/0
0

se
p/

00
no

v/
00

ja
n/

01
m

ar
/0

1
m

ay
/0

1
ju

l/0
1

se
p/

01
no

v/
01

ja
n/

02
m

ar
/0

2
m

ay
/0

2
ju

l/0
2

se
p/

02
no

v/
02

0
2

4
6

8
10

Median
Mean
95% CI
Obs. values

(d) ZIP
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(e) ZINB
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Figure 8: Replication of the observations under each fitted model.
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Model Comparison

In order to compare these fitted models we use two different criteria (i) the De-
viance Information Criterion (DIC) (Spiegelhalter et al., 2002) and (ii) the posterior
predictive loss (EPD) introduced by Gelfand and Ghosh (1998). Here the EPD is
based on the deviance computed for the Poisson distribution. Both criteria are
based on the sum of two components, one which indicates the goodness of fit (G
in EPD and D in DIC), the other which penalizes for the number of parameters
(P in EPD and pD in DIC). For both, the smallest value, among the fitted models,
indicate the best one. Table 1 presents the results of both criteria.

Table 1: Values of DIC and EPD for each fitted model.

Model EPD DIC
G P D D pD DIC

Pois 154.00 49.59 203.59 92.40 7.64 100.04
ZIP 187.64 76.21 263.85 128.14 14.59 142.73
BN 48.85 48.44 97.29 70.39 22.64 93.02

ZINB 78.42 60.83 139.25 97.46 35.18 132.64
Pois-LN 114.51 54.44 168.94 107.76 12.26 120.02
ZIP LN 160.97 72.93 233.91 134.79 8.50 143.28

It is clear that both agree that the NB model gives the best results. As expected
(because they have more parameters), the zero inflated versions of the models present
higher values of both EPD and DIC when compared to the simpler versions. Among
the zero inflated models, ZINB is the one that result on the smallest values of both
EPD and DIC. In other words, both criteria agree with the analysis when we look
at the posterior predictive distribution (see Figure 8).

5 Conclusions

This paper discusses the need of fitting a zero inflated model on a time series cor-
responding to malaria counts in the municipality of Barreirinha, Brazil. We enter-
tain among different distributions, the Poisson, Poisson-Gamma and Poisson-Log-
Normal, to check which, among these, fits the data best. We go further and fit the
zero inflated versions of these distributions. And in this matter, our main contribu-
tion lies on estimating, for every time t, the probability of presence of the disease,
together with its associated uncertainty, given it was not observed. This measure-
ment might give policy makers indications of periods of time that underreporting
cases might have occurred.

The temporal structure of the data was naturally accounted for through the
use of dynamic generalized linear models. These models naturally impose a cor-
relation structure among the parameters and care must be taken when building a
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MCMC algorithm to obtain samples from the posterior distribution. We made use
of the conjugate updating backward sampling method (CUBS), recently proposed
by Ravines et al. (2007), and the chains seemed to converge well.

For the analyzed time series, if we had to choose a model, we would probably
choose the NB. Actually, all fitted models give an indication of an increase on the
level of cases of malaria in Barreirinha. But the analysis shows that if we start from
the simplest model, the Poisson, the fitted values are not good. Then, if we include
a component to capture the excess of zeros, we do not get a good fit yet. In other
words, this might be an indication that the overdispersion present in the data is not
coming solely from the excess of zeros (71% of the observations). The NB model is
able to explain the data quite well, even to capture the peak at August 2002. The
zero inflated version of the NB model is interesting as it gives an estimate of the
probability of the “observed zero” coming from the negative binomial part of the
model. From the ZINB model is clear that the observations come from the negative
binomial with probability 80%. Only the last observations of the series seem to
be suspicious, that is, to indicate that there were some kind of underreport of the
number of cases of malaria for these months. So if we were searching for the model
that fits the data best, we would not need a zero inflated component to explain this
time series. However, the zero inflated version might be interesting to investigate if
there are indications of underreports.
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Rodŕıguez for some suggestion which improved the presentation of this manuscript.
Alexandra M. Schmidt is grateful to CNPq and FAPERJ for funding this research.
João Batista M. Pereira was supported by a scholarship from PIBIC/CNPq.

References

Agarwal, D. K., Gelfand, A. E. and Citron-Pousty, S. (2002) Zero inflated models
with application to spatial count data. Environmental and Ecological Statistics,
9, 341–355.

Dagne, G. A. (2004) Hierarchical Bayesian analysis of correlated zero-inflated count
data. Biometrical Journal, 46, 653–663.

Gamerman, D. and Lopes, H. F. (2006) Markov Chain Monte Carlo - Stochastic
Simulation for Bayesian Inference. 2nd Edition, Chapman & Hall.

Gelfand, A. E. and Ghosh, S. K. (1998) Model choice: a minimum posterior predic-
tive loss approach. Biometrika, 85, 1–11.

15



Kim, H., Sun, D. and Tsutakawa, R. K. (2002) Lognormal vs. gamma: Extra vari-
ations. Biometrical Journal, 3, 305–323.

Lambert, D. (1992) Zero-inflated Poisson regression, with an application to defects
in manufacturing. Technometrics, 34, 1–14.

Plummer, M., Best, N., Cowles, K. and Vines, K. (2006) CODA: Con-
vergence diagnosis and output analysis for MCMC. R News, 6, 7–11.
URLhttp://CRAN.R-project.org/doc/Rnews/.

Ravines, R. R., Migon, H. S. and Schmidt, A. M. (2007) An efficient sampling
scheme for dynamic generalized models. Tech. rep., No. 201/2007. Departamento
de Métodos Estat́ısticos, IM-UFRJ, Brazil.

Roberts, G. O. and Rosenthal, J. S. (2001) Optimal scaling for various Metropolis-
Hastings algorithms. Statistical Science, 16, 351–367.

Scollnik, D. P. M. (1995) Bayesian analysis of two overdispersed Poisson models.
Biometrics, 51, 1117–1126.

Spiegelhalter, D., Best, N., Carlin, B. and Linde, A. (2002) Bayesian measures of
model complexity and fit. Journal of the Royal Statistical Society. B, 64, 583–639.

Warton, D. I. (2005) Many zeros does not mean zero inflation: comparing the
goodness-of-fit of parametric models to multivariate abundance data. Environ-
metrics, 16, 275–289.

West, M. and Harrison, P. J. (1997) Bayesian Forecasting and Dynamic Models.
Springer-Verlag New York, Second Edition.

WHO (1998) Fact Sheet No 94. World Health Organization Press Office, Geneva,
Switzerland.

Yau, K. K. W., Wang, K. and Lee, A. H. (2004) Zero inflated Negative Binomial
mixed regression modelling of over-dispersed count data with extra zeros. Bio-
metrical Journal, 46, 653–663.

16


