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Abstract

The problem of tuning an estimator by selecting bandwidth or truncation values
is at the core of most semiparametric estimation procedures. This paper investi-
gates the trade-off bias-variance implied by the tuning constant α, which governs
the number of frequencies m used by the regression based estimates of the frac-
tional parameter d. We apply classical least squares and robust methodologies to
well known regression type estimators and assess their performance as α ranges in
[0.50, 0.86]. We consider models with long-range dependence in mean and in volatil-
ity, and show that short-range dependence structure may affect the estimates and
thus the optimal value for the bandwidth m.
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1 Introduction

Models for long memory in mean were first introduced by Granger and Joyeux
(1980) and Hosking (1981), following the seminal work of Hurst (1951). The impor-
tant characteristic of an Autoregressive Fractionally Integrated (ARFIMA) process
is its autocorrelation function decay rate. In an ARFIMA process, the autocorre-
lation function exhibits a hyperbolic decay rate, differently from an ARMA model
which presents a geometric rate. Long memory in mean has been observed in data
from areas such as meteorology, astronomy, hydrology, and economics, as reported
in Beran (1994).

The ARFIMA framework was naturally extended towards volatility models.
The Fractionally Integrated Generalized Autoregressive Conditionally Heteroskedas-
tic (FIGARCH) models were introduced by Baillie, Bollerslev and Mikkelsen (1996)
and Bollerslev and Mikkelsen (1996), motivated by the fact that autocorrelation
function of the squared, log-squared, or the absolute value series of an asset return
decays slowly, even when the return series has no serial correlation. Also aiming
to model long memory in the second moment, Breidt et al. (1998) introduced the
Fractionally Integrated Stochastic Volatility (FISV) model.
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Models for heteroskedastic time series with long memory are of great interest
in econometrics and finance, where empirical facts about asset returns have mo-
tivated the several extensions of GARCH type models (FIEGARCH, TGARCH,
SW-ARCH, LM-ARCH, and so on; for a review, see Lopes and Mendes (2005)).
Many empirical papers have detected the presence of long memory in the volatility
of risky assets, market indexes, exchange rates. As the number of models available
increases, it becomes of interest a simple, fast, and accurate estimation procedure
for the fractional parameter d, independent of the specification of a parametric
model. The regression based semiparametric (semiparametric in the sense that a
full parametric model is not specified for the spectral density of the process) esti-
mators seem to be the natural candidates. However, their asymptotic statistical
properties, besides depending on their definition and estimation method, are also
heavily dependent on the number of frequencies m used for the regression. In ad-
dition, their performances are also affected by other structures in the data. In this
paper we put some light on this issue, by considering several long memory models
and 300 regression type estimators. To specify the bandwidth m we consider the
tuning constant α, by setting m = nα, where n is the sample size.

The regression method was introduced in the pioneer work of Geweke and
Porter-Hudak (1983), giving rise to several other proposals. Hurvich and Ray
(1995) introduced a cosine-bell function as a spectral window, to reduce bias in
the periodogram function. They found that data tapering and the elimination
of the first periodogram ordinate in the regression equation, could increase the
estimator accuracy. However, smaller bias was obtained at the cost of a larger
variance. Reisen (1994) and Velasco (1999a) considered smoothed versions of the
periodogram function. Velasco (1999b) proved consistency and asymptotic nor-
mality of the regression estimators for any d, considering non-stationary and non-
invertible processes. Reisen et al. (2001) carried out an extensive simulation study
comparing both the semiparametric and parametric approaches in ARFIMA pro-
cesses. Monte Carlo methods were also used by Lopes et al. (2004) in the case of
non-stationary ARFIMA processes.

Despite the large number of regression type estimators available, a compre-
hensive evaluation of their performances in models for long memory in volatility,
addressing the trade off bias-variance resulting from the choices of the tuning con-
stant α is still missing. By considering 20 values for α in the range [0.50, 0.86], in
this paper we evaluate the performance of 5 semiparametric regression estimates
of the fractional parameter in ARFIMA, FIGARCH, and FISV models. Besides
the classical least squares method, robust estimation procedures are applied and
also tuned with the constant α. We use the efficient 0.50 breakdown point robust
estimates Least Trimmed Squares (LTS, Rousseeuw, 1984) and theMM -estimates
(Yohai, 1987). Including the Whittle estimator, a total of 301 estimates are imple-
mented in a Monte Carlo study.

Two related works are Taqqu and Teverovsky (1996) and Henry (2001). By not-
ing that high frequencies tend to bias the estimates, and using only low frequencies
eliminates the bias but increases the variance, Taqqu and Teverovsky (1996) sug-
gest plotting the estimates as a function of m and the series length n, which would
balance bias versus variance. Henry (2001) develops formulae and approximations
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for an (mean squared error) optimal bandwidth m when estimating long memory
in the series level, considering conditionally heteroskedastic errors specifications.

Applications where the only parameter of interest is d may be found in many
areas. In finance, for example, where a huge variety of conditionally heteroskedastic
models are available, one may first remove the long-range dependence of return se-
ries, and then fit to the residuals some GARCH type model accounting for leverage
terms, regime switching, different conditional distributions, and so on.

The remainder of this paper is as follows. In Section 2 we define the ARFIMA,
FIGARCH and FISV models. In Section 3 we briefly review the semiparametric
estimators used and give their robust versions. In Section 4 we carry on several
simulation experiments according to 31 different data generating processes, and
evaluate the performance of the estimators considering the trade off bias-variance
implied by the choice of α. In Section 5 we illustrate using a real data set and in
Section 6 we summarize the results.

2 Long-Memory Models

In this section we define the ARFIMA, FIGARCH and FISV models.

2.1 ARFIMA Models

Let {Xt}t∈Z be an ARFIMA(p, d, q) process given by
Φ(L)(1− L)dXt = Θ(L) t, d ∈ R, (2.1)

where L is the backward-shift operator, that is, LkXt = Xt−k. The polynomials
Φ(L) = p

i=0(−φi)Li and Θ(L) = q
j=0(−θj)Lj have degree p and q, respectively,

with φ0 = −1 = θ0. The process { t}t∈Z is white noise with zero mean and finite
variance σ2. The term (1− L)d is the binomial, or Maclaurin, series expansion in
L.

The process {Xt}t∈Z, given by expression (2.1), is called a general fractional
differenced zero mean process, where d is the fractional differencing parameter .
This process is both stationary and invertible if the roots of Φ(·) and Θ(·) are
outside of the unit circle and |d| < 0.5. Its spectral density function, fX(·), is given
by

fX(w) = fU (w) 2 sin(
w

2
)
−2d

, w ∈ [−π,π], (2.2)

where fU (·) is the spectral density function of an ARMA(p, q) process. One observes
that fX(w) w−2d, when w → 0.

The ARFIMA(p, d, q) process exhibits long memory when d ∈ (0.0, 0.5), inter-
mediate memory when d ∈ (−0.5, 0.0) and short memory when d = 0.

2.2 FIGARCH Models

Denote by Ft the σ-field of events generated by {Xs; s ≤ t} and assume that
E(Xt|Ft−1) = 0 a.s.. Following Engle (1982), and Bollerslev (1986) we specify a
GARCH(r, s) model by
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Xt = σtZt, (2.3)

where Zt is an independent identically distributed (i.i.d.) random variable with
zero mean and unit variance such that Xt|Ft−1 ∼ i.i.d.(0,σ2t ), and σ2t =
V ar(Xt|Ft−1) is defined by

σ2t = ω + α(L)X2
t + β(L)σ2t , (2.4)

where ω > 0 is a real constant, α(L) = r
i=1 αiLi and β(L) = s

j=1 βjLj . For
a FIGARCH process (see Baillie et el., 1996, and Bollerslev and Mikkelsen, 1996)
the σt, in expression (2.3), is defined as

σ2t = ω (1− β(L))−1 + {1− (1− β(L))−1[1− α(L)− β(L)](1− L)d}X2
t

= ω (1− β(L))−1 + {1− (1− β(L))−1φ(L)(1− L)d}X2
t

= ω (1− β(L))−1 + λ(L)X2
t , (2.5)

where

λ(L) =
∞

k=0

λkLk = 1− (1− β(L))−1φ(L)(1− L)d, (2.6)

φ(L) = 1− α(L)− β(L)), and the binomial series expansion in L is given by

(1− L)d = 1 +
∞

k=1

Γ(k − d)
Γ(k + 1)Γ(−d)L

k = 1− d
∞

k=1

Γ(k − d)
Γ(k + 1)Γ(1− d)L

k

= 1− dL− d

2!
(1− d)L2 − d

3!
(1− d)(2− d)L3 − · · ·

= 1−
∞

k=1

δd,k Lk = 1− δd(L). (2.7)

The coefficients δd,k = d
Γ(k−d)

Γ(k+1)Γ(1−d) , in expression (2.7), are such that

δd,k = δd,k−1
k − 1− d

k
, (2.8)

for all k ≥ 1, where δd,0 ≡ 1.
The following proposition totally characterizes any FIGARCH(r, d, s) process

and also gives a recurrent formula for the coefficients λk’s given in expression (2.6).

Proposition 2.1: Let {Xt}t∈Z be any FIGARCH(r, d, s) process, for d ∈ [0, 1],
defined by expressions (2.3) and (2.5). Then, the coefficients λk, for k ∈ N, in
expression (2.6), are given by
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λ0 = 0

λn =
r

i=1

βiλn−i + αn + δd,n −
max{r,s}

j=1

γjδd,n−j , if 1 ≤ n ≤ r

λn =
s

i=1

βiλn−i + δd,n −
max{r,s}

j=1

γjδd,n−j , if n > r, (2.9)

where

γj =


αj , if r > s,
αj + βj , if r = s,
βj , if r < s.

(2.10)

Proof: The proof is straightforward if one compares the coefficients of Ln in both
sides of the following expression

[1− β(L)]λ(L) = 1− β(L)− φ(L)(1− L)d
= 1− β(L)− [1− α(L)− β(L)] (1− δd(L))
= α(L) + φ(L)δd(L). (2.11)

For any FIGARCH(1, d, 1) process the parameters have to fulfill some restric-
tions to ensure positivity of the conditional variance σ2t . Besides of ω, α1 and β1
being non-negative numbers, these inequalities are as follows

• β1 − d ≤ φ1 ≤ 2−d
3

• d(φ1 − 1−d
2 ) ≤ β1(d+ α1), where φ1 = α1 + β1.

In a FIGARCH(1, d, 0) process, β1 = 0, and in a FIGARCH(0, d, 1), α1 = 0.
For any FIGARCH(0, d, 0) there are no further restrictions besides ω being non-
negative.

2.3 FISV Models

Let {Yt}nt=1 be such that

Yt = g(Xt)σεεt, (2.12)

where Xt is a long-memory in mean time series, g(·) is a continuous function and
εt is an i.i.d. time series with zero mean and unit variance. Since V ar(Yt|Xt) =
g(Xt)

2σ2ε , for certain functions g(·) model (2.12) may be described as a long-
memory stochastic volatility process (see Robinson, 1999). This large class of
volatility models include the long-memory nonlinear moving average models of
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Robinson and Zaffaroni (1998) and Zaffaroni (1999), and the FISV process intro-
duced by Breidt et al. (1998).

In a FISV(p, d, q,σε) process {Yt}t∈Z, the function g(·) in (2.12) is given by

g(Xt) = exp
Xt
2

, (2.13)

where {Xt}t∈Z is an ARFIMA(p, d, q) process given by (2.1), and εt and t are i.i.d.
standard normal, and mutually independent. One observes that V ar(Yt|Xt) =
exp(Xt)σ

2
ε . In particular, squaring both sides of equation (2.13) and taking loga-

rithms,

ln(Y 2t ) = µξ +Xt + ξt, (2.14)

where µξ = ln(σ2ε) + E[ln(ε2t )], and ξt = ln(ε2t ) − E[ln(ε2t )]. Hence, ln(Y 2t ) is the
sum of a Gaussian ARFIMA process and independent non-Gaussian noise with
zero mean. Consequently, the autocovariance function of the process ln(Y 2t ), when
d ∈ (−0.5, 0.5), is such that

γln(Y 2t )(k) ∼ k
2d−1, (2.15)

when k →∞, while its spectral density function has the property that

fln(Y 2t )(λ) ∼ λ−2d, (2.16)

when the frequency λ → 0. For d ∈ (0.0, 0.5), the spectral density function in ex-
pression (2.16) is unbounded when λ→ 0. This forms the basis for the application
of the traditional log-periodogram estimation procedures, given in the next section.

3 Classical and Robust Estimation Procedures

In the literature of the stochastic ARFIMA processes, there exist several estimation
procedures for the fractional parameter d. In this section we recall some well known
regression estimation methods based on the periodogram function and propose new
ones.

Let {Xt}t∈Z be a ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5), given by (2.1).
Its spectral density function is given by

fX(ω) = 2 sin
ω

2

−2d
fU (ω), for 0 < ω ≤ π, (3.1)

where fU (·) is the spectral density function of the ARMA process.
Consider the set of harmonic frequencies ωj =

2πj
n , j = 0, 1, · · · , [n/2], where n

is the sample size, and [x] means the integer part of x. By taking the logarithm of
the spectral density function fX(·) given by (3.1), and adding ln fU (0), and ln I(ωj)
to both sides of this expression we obtain

ln I(ωj) = ln fU (0)− d ln 2 sin
ωj
2

2

+ ln
fU (ωj)

fU (0)
+ ln

I(ωj)

fX(ωj)
, (3.2)
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where I(·) is the periodogram function given by

I(ω) =
1

2π
γ̂X(0) + 2

n−1

l=1

γ̂X(l) cos(l ω) , (3.3)

where γ̂X(k) =
1
n

n−k
i=1 (xi − x̄)(xi+k − x̄), for k ∈ {0, 1, · · · , n− 1}, is the sample

autocovariance function of the process Xt in (2.1).

When considering only the frequencies close to zero, the term ln{fU (wj)fU (0)
} may

be discarted. Then, we may rewrite (3.2) in the context of a simple linear regression
model:

yi = a− d zi + ei , i = 1, · · · ,m (3.4)

where m = [n/2], (a,−d) are the regression coefficients, a = ln fU (0), yi = ln I(ωi),
zi = ln{2 sin(ωi/2)}2, and the errors ei = ln{ I(wi)

fX(wi)
} are noncorrelated random

variables centered at zero with constant variance.
We recall that when Yt follows a FISV process with d ∈ (−0.5, 0.5), ln(Y 2t ) is the

sum of a zero mean Gaussian ARFIMA process and independent non-Gaussian in-
novation process. Also, the FIGARCH(r, d, s) process, d ∈ (0, 1), has been defined
in expression (8) of Baillie et al. (1996) as an ARFIMA process on the squared
data with a more complicated error structure. Thus, the regression based method
also applies to these processes.

A semiparametric regression estimator may be obtained by minimizing some
loss function of the residuals ri = yi−a+d zi. We will consider three different loss
functions. They give rise to the classical Ordinary Least Squares method (OLS),
and two high breakdown point robust methods, the Least Trimmed Squares method
(LTS), and the the MM -estimation method.

The OLS estimators are the values (â,−d̂) which minimize the loss function

L1(m) =
m

i=1

(ri)
2, (3.5)

where ri = yi − a+ d zi is the residual related to the regression (3.4).
Whenever the errors ei follow a normal distribution, the OLS estimates have

the minimum variance among all unbiased estimates (see Rao, 1973). If the errors
follow another distribution (as in the cases considered here), non-linear estimates
may possess better statistical properties. In fact, it is well known (see Huber,
1981) that regression outliers, leverage points, and gross errors are responsible for
considerable bias and inefficiency (even in the Gaussian environment) in the OLS
estimates.

How biased an estimate can become at the presence of outliers and leverage
points can be measured by the value of its breakdown point. Loosely speaking,
the breakdown point of an estimator represents the smallest proportion of atypi-
cal points in the sample that makes the estimates meaningless, that is, estimates
providing distorted information about the parameters being estimated. The OLS
estimator has zero breakdown point, meaning that just one spurious observation is
able to completely distort the OLS estimator.
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Robust alternatives to OLS may be obtained by minimizing a robust version
of the dispersion of the residuals. The Least Trimmed Squares (LTS) estimates of
Rousseeuw (1984) minimize the loss function

L2(m) =
m∗

i=1

(r2)i:m , (3.6)

where (r2)i:m are the squared and then ordered residuals, that is, (r2)1:m ≤ ... ≤
(r2)m:m, and m

∗ is the number of points used in the optimization procedure. The
constantm∗ is responsible both for the breakdown point value and efficiency. When
m∗ is approximately m/2 the breakdown point is approximately 50%. The LTS
estimates have been previously used by Taqqu, Teverovsky, and Willinger (1995)
for the estimation of the long range parameter in ARFIMA models.

The MM -estimates (see Yohai, 1987) may possess simultaneously high break-
down point and high efficiency. They are defined as the solution (â,−d̂) which
minimizes the loss function

L3(m) =
m

i=1

ρ2
ri
s

2
, (3.7)

subject to the constraint

1

m

m

i=1

ρ1(
ri
s
) ≤ b , (3.8)

where ρ2 and ρ1 are symmetric, bounded, nondecreasing on [0,∞) with ρi(0) = 0
and limu→∞ ρi(u) = 1, i = 1, 2, s is a scale parameter, and b is a tuning constant.
The breakdown point of the MM -estimator only depends on ρ1 and it is given by
min(b, 1− b).

The two robust methods chosen possess appealing definitions, well established
asymptotic properties, and can be rapidly computed using the SPlus software. The
only references we are aware of on robust estimation of the long memory parameter
are Beran (1994), Agostinelli and Bisaglia (2004), and the already cited Taqqu,
Teverovsky, and Willinger (1995). All of them considered just ARFIMA processes.
Agostinelli and Bisaglia (2004) approach differs from ours since they propose a
robustification of the maximum likelihood functions. Figure 1 illustrates the role
of a robust estimate and the data type we are dealing with.

The data used in Figure 1 is from a simulated FISV process with d = 0.30.
Log-periodogram data typically shows a considerable amount of large zi values,
i = 1, ..., [n/2]. These are the values related to frequencies away from zero and,
therefore, those less relevant in the estimation process. However, they may have a
large influence on the fits. The left hand side of Figure 1 illustrates this fact, and
show the effect of the large amount of large zi values on the classical OLS estimate
(black) and the robust LTS (red) slope estimates of (3.4), both based on (3.3).

According to the theory, the more influent points should be those associated
to the smaller zi values. This suggests trimming the points associated to large
frequencies, technique implemented at the right hand side of Figure 1, where we
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Figure 1: The OLS (black) and the LTS (red) estimates based on periodogram (3.3). The
left hand side uses all [n/2] data points, and the right hand side uses half of the data points.

use just half of the data. Now, we can see that the robust LTS procedure (in red)
provides an estimate close to the true value. However, some points still tilt the
classical OLS regression line (in black), distorting the slope estimate, resulting in
an under-estimation of d.

Thus, a critical issue is how many (m) frequencies should be used by the re-
gression type estimators. The choice of m affects the estimators properties, such
as unbiasedness and efficiency. We address this issue in Section 4. By considering
variations of (3.3), periodogram based methodologies have been proposed. In the
following subsections we summarize the most important ones.

3.1 Classical and robust GPH estimators

The first estimation method based on the periodogram function was proposed by
Geweke and Porter-Hudak (1983). To obtain an estimate for d, these authors
proposed applying the Ordinary Least Squares method in (3.4) based on (3.3).
The classical GPH-LS estimator of d is then given by

GPH-LS = −

g(n)

j=1

(zj − z̄)(yj − ȳ)

g(n)

j=1

(zj − z̄)2
, (3.9)

where the trimming value g(n) is usually g(n) = nα, 0 < α < 1, yj is based on
(3.3), and zj is as previously defined. Lopes et al. (2004) considered α in the
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interval [0.55, 0.65], and Porter-Hudak (1990) considered α ∈ {0.62, 0.75} for the
case of seasonal fractionally integrated time series data.

Robinson (1995) established consistency properties of semiparametric estima-
tors of the long memory parameter, including the GPH, within the context of
ARFIMA models. He also provided an asymptotic distribution theory for any value
of d under mild conditions. Based on results in Andersen and Bollerslev (1997)
and Robinson (1999), Bollerslev and Wright (2000) argue that log-periodogram
estimates calculated from the log-squared, squared, and absolute data may be con-
sidered to be consistent.

To obtain the robust versions of the GPH estimator we just apply the LTS
and the MM methodologies to the regression model (3.4) with m = nα, based on
(3.3). This gives rise to the GPH-LTS and the GPH-MM estimators. For the
GPH and all other regression based estimators that follow, we will investigate the
effect of α ∈ [0.50, 0.86] on the estimates bias and variance.

3.2 Classical and robust SPR estimators

As shown in Brockwell and Davis (1991), the periodogram function is not a con-
sistent estimator for the spectral density function. Reisen (1994) proposed using a
consistent estimator for the spectral density function, which is a smoothed version
of the periodogram function (3.3), the SPR estimator.

More specifically, the regression estimator SPR is obtained by replacing the
spectral density function in the expression (3.1), by the smoothed periodogram
function, denoted by Is(·), given by

Is(ω) =
1

2π

ν

j=−ν
κ

j

ν
γ̂X(j) cos(jω), (3.10)

where κ(·) is the Parzen lag window given by

κ(u) =


1− 6u2 + 6|u|3, if |u| ≤ 1

2 ,

2(1− |u|)3, if 12 < |u| ≤ 1,

0, otherwise.

(3.11)

The SPR estimator proposed by Reisen (1994) is obtained by applying the
OLS procedure to the regression model (3.4) based on (3.10) and (3.11). We call
these estimates the SPR-LS. The truncation point in the Parzen lag window is
defined by ν = nβ, 0 < β < 1. Here, we consider β = 0.9 (see Reisen, 1994 for
a discussion on the value of β). Again, the robust versions may be obtained by
applying the LTS and theMM methodologies to (3.4) based on (3.10) and (3.11),
producing the SPR-LTS and the SPR-MM .

3.3 Classical and robust BA estimators

By considering the Bartlett lag window, another consistent estimator for the spec-
tral density function may be obtained. This spectral window will provide a smoothed
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version of the periodogram function (3.10), where now the function κ(·) is defined
as

κ(x) =
1− |x|, if |x| ≤ 1
0, otherwise.

(3.12)

The classical and robust versions are obtained by applying the OLS, the LTS
and the MM methodologies to the regression model (3.4) based on (3.10) and
(3.12), producing the BA-LS, the BA-LTS, and the BA-MM estimators. The
value of m in (3.4) is again given by nα, and the truncation point ν is set equal to
30 (see Bollerslev and Wright, 2000).

3.4 Classical and robust R estimators

The regression estimator R, proposed by Robinson (1995) is obtained by applying
the Ordinary Least Squares method in (3.4) based on (3.3), but considering only
the frequencies i ∈ {l, l + 1, · · · , g(n)}, where l > 1 is a trimming value that tends
to infinity more slowly than g(n).

It is interesting to compare the R and the LTS concepts. The R concept trims
the extreme zj values associated with the frequencies close to zero, which we know
are the important ones. On the other hand, the LTS concept trims the extreme
ordered residuals which may or may be not be associated to small frequencies, but
certainly are associated to leverage points. In other words, the LTS procedure
identifies which data points associated with a small frequencies are outliers and, if
they exist, excludes them from the calculations. The R-LTS and R-MM versions
are obtained by applying the robust methodologies, as previously.

3.5 Classical and robust GPHT estimators

The GPHT method (see Hurvich and Ray (1995) and Velasco (1999b)) uses a
modified periodogram function given by

I(ωj) =
1

n−1

t=0

g(t)2

n−1

t=0

g(t)Xte
−iωj t

2

, (3.13)

where the tapered data is obtained from the cosine-bell function

g(t) =
1

2
1− cos 2π(t+ 0.5)

n
. (3.14)

We obtain the classical GPHT -LS and the robust versions GPHT -LTS and
GPHT -MM by applying the classical and the robust methodologies on model (3.4)
based on (3.13) and (3.14), and setting m = nα.
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3.6 Classical W estimator

The W estimator was proposed by Whittle (see Whittle, 1953). He considered the
function

Q(η) =
π

−π
I(ω)

fX(ω; η)
dw,

where η denotes the vector of unknown parameters, and fX(· ; η) is the spectral
density function of {Xt}t∈Z, given by (3.1).

The W estimator is the value of η which minimizes the function Q(·). Here
η = d. The estimation procedure is carried out by essentially minimizing

Ln(η̂) =
[n−1
2
]

j=1

I(ωj)

fX(ωj ; η̂)
. (3.15)

Robinson and Zaffaroni (1998) proposed a version of the Whittle estimator for
squared FIGARCH data, deriving a formula for the spectral density and auto-
covariance function. The estimator is not asymptotically efficient, but Zaffaroni
(1999) has developed a central limit theorem distributional result. More details of
this estimator can be found in Fox and Taqqu (1986). Differently from all other
estimators considered, the W estimator is in the parametric class.

4 Assessing the Estimators Performances

In this section we assess the performance of 301 estimators when estimating the
fractional parameter d in 31 specifications of ARFIMA(p, d, q)-FIGARCH(r, d, s)
processes. The same notation d for the fractional parameter in the mean and volatil-
ity specification will not cause any confusion, because the models to be considered
possess either long memory in mean or in volatility.

To simulate the data and to compute the estimates we used the S language and
SPlus programs. We hold fixed the following specifications:

• For each model considered the number of replications S is 300. All series
have length n = 1000.

• In all FIGARCH models considered w = 0.10.
• The trimming constant l in the R estimator is fixed equal to 3.
• The constant ν = nβ for the SPR estimators is found by putting β = 0.90.
Since n = 1000, ν = 501.19.

• Both loss functions ρi, i = 1, 2, for the MM -estimator are chosen as the
Tukey Biweighted function (see Yohai, 1987). They are tuned such that the
resulting estimates possess 0.50 breakdown point and an efficiency of 85% at
the normal model.
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We compute a total of 300 regression type (semiparametric) estimators. They
are obtained by varying the estimation method and the value of α for the 5 regres-
sion type estimators GPH, SPR, BA, R and GPHT . We consider 19 possibilities
for the trimming constant α used to define m = g(n) = nα. Specifically, we set
α ∈ {0.50, 0.52, ... 0.84, 0.86}. The version not tunned by α, that is, based on the
[n/2] data points is also computed, and it is equivalent to set α = 0.8997. Thus
m varies through a fairly wide range, between 31.6 and 500. For each resulting
estimator we consider the 3 estimation methods: classical LS, and robust LTS
and MM . We also compute the parametric W estimator.

We consider a total of 31 different data generating processes (DGP). They are
18 combinations of ARMA and FIGARCH processes (M1 toM18); 6 FISV models
(M19 to M24); and 6 ARFIMA processes (M25 to M31). We give next their no-
tations and detailed specifications. The notation t4 means a t-student distribution
with 4 degrees of freedom. φ and θ are the autoregressive and moving average
parameters in the ARFIMA part. α1 and β1 correspond to the autoregressive and
moving average parameters in the FIGARCH part.

M1: ARFIMA(0, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼ i.i.d.N(0, 1).
M2: ARFIMA(0, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼ i.i.d.t4(0, 1).
M3: ARFIMA(1, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼ i.i.d.N(0, 1), φ = 0.50
M4: ARFIMA(1, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼ i.i.d.t4(0, 1), φ = 0.50.
M5: ARFIMA(0, 0, 0)-FIGARCH(1, 0.50, 0) process, with Zt ∼ i.i.d.N(0, 1), α1 = −0.20.
M6: ARFIMA(0, 0, 0)-FIGARCH(1, 0.50, 0) process, with Zt ∼ i.i.d.t4(0, 1), α1 = −0.20.
M7: ARFIMA(0, 0, 1)-FIGARCH(1, 0.50, 0) process, with Zt ∼ i.i.d.N(0, 1), α1 = −0.20, θ =

0.50.

M8: ARFIMA(0, 0, 1)-FIGARCH(1, 0.50, 0) process, with Zt ∼ i.i.d.t4(0, 1), α1 = −0.20, θ =
0.50.

M9: ARFIMA(1, 0, 1)-FIGARCH(1, 0.75, 1) process, with Zt ∼ i.i.d.N(0, 1), α1 = −0.20, β1 =
0.20, φ = 0.20, θ = 0.20.

M10: ARFIMA(1, 0, 1)-FIGARCH(1, 0.75, 1) process with, with Zt ∼ i.i.d.t4(0, 1), α1 = −0.20,
β1 = 0.20, φ = 0.20, θ = 0.20.

M11: ARFIMA(1, 0, 1)-FIGARCH(1, 0.50, 1) process, with Zt ∼ i.i.d.N(0, 1), α1 = −0.20, β1 =
0.20, φ = 0.20, θ = 0.20.

M12: ARFIMA(1, 0, 1)-FIGARCH(1, 0.50, 1) process with, with Zt ∼ i.i.d.t4(0, 1), α1 = −0.20,
β1 = 0.20, φ = 0.20, θ = 0.20.

M13: ARFIMA(1, 0, 1)-FIGARCH(1, 0.25, 1) process, with Zt ∼ i.i.d.N(0, 1), α1 = −0.20, β1 =
0.20, φ = 0.20, θ = 0.20.

M14: ARFIMA(1, 0, 1)-FIGARCH(1, 0.25, 1) process with, with Zt ∼ i.i.d.t4(0, 1), α1 = −0.20,
β1 = 0.20, φ = 0.20, θ = 0.20.

M15: ARFIMA(0, 0, 0)-FIGARCH(1, 0.00, 1) process, with Zt ∼ i.i.d.N(0, 1), α1 = 0.15, β1 =
0.80.

M16: ARFIMA(0, 0, 0)-FIGARCH(1, 0.00, 1) process, with Zt ∼ i.i.d.t4(0, 1), α1 = 0.15, β1 =
0.80.

M17: ARFIMA(1, 0, 1)-FIGARCH(1, 0.00, 1) process, with Zt ∼ i.i.d.N(0, 1), α1 = 0.15, β1 =
0.80, φ = 0.50, θ = 0.50.

M18: ARFIMA(1, 0, 1)-FIGARCH(1, 0.00, 1) process, with Zt ∼ i.i.d.t4(0, 1), α1 = 0.15, β1 =
0.80, φ = 0.50, θ = 0.50.

13



M19: FISV(1, 0.30, 0,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.N(0, 1), φ = 0.60, σε = 0.3.
M20: FISV(1, 0.30, 0,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.t4(0, 1), φ = 0.60, σε = 0.3.
M21: FISV(0, 0.30, 1,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.N(0, 1), θ = 0.70, σε = 0.3.
M22: FISV(0, 0.30, 1,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.t4(0, 1), θ = 0.70, σε = 0.3.
M23: FISV(1, 0.30, 1,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.N(0, 1), φ = 0.60, θ = 0.70,

σε = 0.3.

M24: FISV(1, 0.30, 1,σε) process, with t ∼ i.i.d.N(0, 1), εt ∼ i.i.d.t4(0, 1), φ = 0.60, θ = 0.70,
σε = 0.3.

M25: ARFIMA(1, 0.45, 0)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), φ = 0.60.
M26: ARFIMA(1, 0.30, 0)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), φ = 0.60.
M27: ARFIMA(0, 0.45, 1)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), θ = 0.90.
M28: ARFIMA(0, 0.30, 1)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), θ = 0.90.
M29: ARFIMA(1, 0.45, 1)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), φ = 0.60, θ = 0.70.
M30: ARFIMA(1, 0.30, 1)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), φ = 0.60, θ = 0.70.
M31: ARFIMA(1, 0.00, 1)-FIGARCH(0, 0, 0) process, with t ∼ i.i.d.N(0, 1), φ = 0.60, θ = 0.70.
When estimating d in volatility models, some authors had used the absolute, the

log-squared, or squared data (see Bollerslev and Wright, 2000) as volatility mea-
sures. Ding and Granger (1996) define the long memory property of ARCH models
as the limiting case of a model with N volatility components, a GARCH(N,N)
model, as N → ∞. This model displays the long range memory in powers of the
absolute data. Based on these considerations, we use here the absolute data to
estimate d in the FIGARCH processes. To estimate d in the FISV processes we
used the log squared data, as in Breidt et al. (1998) and Bollerslev and Wright
(2000). An issue not touched in the present paper is the sensitivity of estimators
to series lengths or to the choice of the volatility measure.

Let d0 represent the parameter d true value in each model. For each estima-

tor dj , j = 1, · · · , 301, the following statistics were computed to summarize its
simulated probability distribution:

• The mean bias: for each dj we compute Bj = 1
S

S
i=1(d

j
i − d0);

• The median bias: for each dj we compute BjM = Mediani(d
j
i − d0);

• The sample standard deviation sdj : for each dj we compute the square root
of V j = 1

S−1
S
i=1(d

j
i −

¯
dj)2, where

¯
dj is the arithmetic mean of the S dji ;

• The 0.90% percentile confidence interval: for each dj we compute the CIj =

[qj0.05, q
j
0.95], where q

j
p is the empirical p-quantile of estimator dj .

For each model the following criteria were used to find out the best estimator:

• C1: Find the dj for which the value of Bj2 + V j is minimum.
• C2: Find the dj for which the value of |BjM | + ||CIj || is minimum. Here, the
notation |BjM | means the absolute value of BjM , and ||CIj || means the lenght
of CIj , that is, qj0.95 − qj0.05.
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For a given model and each criterion, the estimators are ranked and the 3 best
ones are recorded. By noting that there is little difference among the criteria values
obtained for the three highest ranked competitors, we decided to choose as the
overall winner the one (or the ones) selected by both criteria, despite its position.
In the case of ties, both (or the three) estimators are reported. In addition, in the
case that all six positions are occupied by different estimators, the winners under
C1 and C2 are reported. In what follows we summarize the results for each model
considered.

4.1 Simulations results

We will provide a detailed analysis of the results from models M1 and M2, and
then summarize the results from the other models. In the tables and figures that
follow, whenever the value for α used is the maximum possible, we report [n/2] (in
the tables) or nothing (in the figures) instead.

Results from model M1: ARFIMA(0, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼
i.i.d.N(0, 1). Figure 2 illustrates how difficult is choosing an optimality criterion,
due to the trade off bias-variance. This figure shows the simulated distribution of
the three best estimators according to the following set up. In the first row we
show the estimators possessing smaller |Bj | (left), and the estimators possessing
smaller |BjM | (right). In the second row, we show the estimators possessing smaller
standard deviation sdj on the left, and those presenting the smaller confidence
interval length on the right hand side. Finally, the third row shows the winners
from criteria C1 (left) and C2 (right).

Table 1: M1: Three best results under the all criteria used, and overall winner.

Criterion 1st. Estimator(α) 2nd. Estimator(α) 3rd. Estimator(α) Winner(α)

GPHT.LS(0.50) BA.MM(0.52) GPHT.LS(0.52) GPHT.LS(0.58)
abs(Bj) 0.0067 0.0129 0.0136 0.0627

GPHT.LS(0.50) GPHT.LS(0.52) GPHT.MM(0.50)

abs(Bj
M) 0.0089 0.0131 0.0140 0.0796

SPR.LS([n/2]) SPR.LS(0.86) BA.LS([n/2])
sdj 0.0518 0.0539 0.0541 0.1186

SPR.LS([n/2]) BA.LS([n/2]) SPR.LS(0.86)
||CIj || 0.1650 0.1704 0.1746 0.3945

GPHT.LS(0.58) GPHT.LS(0.56) GPHT.LS(0.54)
C1 0.0179 0.0182 0.0187 0.0179

SPR.LS([n/2]) GPHT.LS([n/2]) BA.LS([n/2])
C2 0.3232 0.3297 0.3306 0.4741

The results shown in Figure 2 are given in detail in Table 1. As we can see,
for model M1 there is no overall winner. However the GPHT estimator shows up
more frequently. It seems that if the primary concern is just bias, one should use
either the classical or the robust (MM) GPHT with small α values, close to 0.50.
If a small variability is more important, then one should move to the classical SPR
or BA. However, as Figure 2 illustrates, these low standard deviation estimates
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Figure 2: The simulated distributions of the three best estimators from model M1. In
the first row, we show the estimators possessing smaller |Bj | at the left hand side, and
those possessing smaller |BjM | at the right hand side. In the second row, we show the
estimators possessing smaller standard deviation sdj on the left, and those presenting the
smaller confidence interval length on the right. Finally, the third row shows the winners
from criteria C1 (left) and C2 (right).

may possess an unacceptable large bias. When we combine an accuracy measure
and a variability measure, the GPHT shows up 4 times. We decided to choose the
classical GPHT.LS with α = 0.58 as the overall winner.
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Table 2: M2: Three best results under the all criteria used, and overall winner.

Criterion 1st. Estimator(α) 2nd. Estimator(α) 3rd. Estimator(α) Winner(α)

BA.MM(0.54) BA.MM(0.56) BA.MM(0.52) BA.LTS([n/2])
abs(Bj) 0.1215 0.1240 0.1307 0.1606

BA.MM(0.54) BA.MM(0.56) BA.MM(0.58)

abs(Bj
M ) 0.1384 0.1443 0.1531 0.1727

BA.LS(0.86) BA.LS(0.84) BA.LS([n/2])
sdj 0.0600 0.0601 0.0606 0.0867

BA.LS(0.86) BA.LS([n/2]) SPR.LS([n/2])
||CIj || 0.1876 0.1888 0.1899 0.2573

BA.LTS([n/2]) BA.LTS(0.82) BA.LTS(0.84)
C1 0.0333 0.0340 0.0340 0.0333

SPR.LS([n/2]) BA.LS([n/2]) R.LTS([n/2])
C2 0.3811 0.3913 0.3943 0.4300

Results from model M2: ARFIMA(0, 0, 0)-FIGARCH(0, 0.50, 0) process, with Zt ∼
i.i.d.t4(0, 1). It is impressive the excellent performance of the BA-estimator in the
second experiment. See Table 2 and Figure 3. When bias is the concern, the robust
BA.MM estimator tuned with small α values turns out the best option. When
variability is taken into account, the classical BA.LS estimator with large α values,
or no-α are the winners. The trade off between bias and variance result in the choice
of the robust BA.LTS estimator tuned with a large α or no-α (three winners under
C1). We take as the overall winner the robust BA.LTS, the best under C1, which
does not need any tuning constant, a very interesting result. We must note though,
that for this model all estimators presented a (probably unacceptable) large bias.

The impressive trade off bias-variance observed for models M1 and M2 is il-
lustrated in Figure 4. This figure shows the winners under models M1 (left, the
GPHT.LS with α = 0.58) andM2 (right, the BA.LTS using all [n/2] frequencies)
plotted as functions of the tuning constant α. The triangles represent the biases,
and the diamonds represent the variances of the 20 estimators. The circles point
out the final choices.

Summary of results from other models considered. Table 3 summarizes the results
from all data generating processes considered and specified in the first column
(DGP). For each model, we report the winners under C1 and C2, unless there is
an overall winner. The second column names the winner(s), and the third one
provides its (their) α value. When all [n/2] frequencies are used we report [n/2]
instead of α. The fourth to ninth columns provide the criteria values attained by
the winner(s).

We first note in Table 3 the unacceptable large bias of all estimators winning
under criterion C2. We thus continue our analysis considering just the winner
chosen by C1.

For estimating d in the processesM1 toM4 (those possessing α1 = β1 = 0), we
would select the robust BA.LTS using all [n/2] frequencies, even though it was not
an option for model M1. When a autoregressive part is included in the volatility
dynamics (models M5 to M8), the GPHT.LS tuned with small α values may be
considered the best choice.
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Figure 3: The simulated distributions of the three best estimators from model M2. In
the first row, we show the estimators possessing smaller |Bj | at the left hand side, and
those possessing smaller |BjM | at the right hand side. In the second row, we show the
estimators possessing smaller standard deviation sdj on the left, and those presenting the
smaller confidence interval length on the right. Finally, the third row shows the winners
from criteria C1 (left) and C2 (right).

The robust BA.LTS using all [n/2] frequencies wins again for models M9 and
M10, which possess the autoregressive and moving average components for the
mean and volatility, as well as strong long memory, d = 0.75. The robust estimator
also wins for models M15 and M16, another extreme situation (no long memory),
actually pure GARCH(1,1) models. Even though the BA.LTS shows large bias,
the t-test does not reject the null hypothesis d = 0.

However, when the short range effects are included to these GARCH(1,1) pro-
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Figure 4: The trade-off bias-variance for models M1 and M2. Robust estimator does not
need tuning.

cesses, giving rise to models M17 and M18, the winner becomes the classical
BA.LS tuned with the smaller α value.

In summary, for FIGARCH processes, simulations indicate that we should use
the GPHT.LS tuned with small α values (around 0.60) for series presenting no
short range dependence in the mean, or the BA.LS tuned with moderate α val-
ues (around 0.82), for series possessing short range dependence in the mean, as in
models M13 and M14. Alternatively, if one suspects of strong long range depen-
dence, one may let the robust procedure LTS automatically select the frequencies
for trimming.

The FISV processes are models M19 to M24. For those processes generated
according to a simple autoregressive process, the winner is the classical SPR.LS
estimator based on moderate α values (0.82−0.86). When both short range effects
are included, the best option is the classical GPHT estimator tuned with small α
values (0.58− 0.60).

When it comes to ARFIMA models (M25 to M31) and classical estimation,
it seems that it is very important to use just few frequencies, setting α = 0.50.
Then either the GPHT or the BA estimator may be used. If the robust estimation
procedure LTS is applied, then one may use the BA estimator tuned with larger
α values, say α = 0.66.

None of the experiments resulted in a winner type R-estimator. This is in line
with Deo and Hurvich (2003) remark that when computing the GPH estimator it
is crucial for the finite sample performance of this estimator (which may also be
true for all regression type estimators) that the lowest frequencies not be dropped.

19



5 Real Data

In this section we provide an illustration using an emerging market returns series.
The data consist of 2608 observations of the Taiwan daily index returns from Jan-
uary, 3, 1994 to December, 31, 2003. This period includes examples of extreme
market events such as the Asian series of devaluation during 1997. Crises in East
Asian economies usually result in considerable depreciations of national currencies
and have important global repercussions. Taiwan is the largest emerging market,
with a total market capitalization of US$ 379 billion, followed by Korea (US$ 298
billion) and India (US$ 252 billion).

According to our simulations results (winners from models M13 and M14) we
estimate d computing the classical BA.LS(0.82), which yields the value 0.1706.

According to Taqqu and Teverovsky (1996), we should examine the plot in
Figure 5 to choose the best α value. We do that for the BA.LS (triangles)
and the BA.LTS (diamonds). There is some indication of flatness from 0.64
to 0.74 for the classical, and from 0.60 to 0.68 for the robust. The Taqqu and
Teverovsky (1996) estimates could then be, respectively, BA.LS(0.70) = 0.2045
and BA.LTS(0.64) = 0.2966. The classical value is slightly larger than our result.
We should note, however, that this graphical procedure, though very interesting,
is clearly subjective, and could not be used within a more complex decision based
procedure.
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Figure 5: BA.LS and BA.LTS estimates of d plotted as functions of alpha.

To complete this analysis, we fit a fully parametrized model to the Taiwan daily
returns. To model the serial dependence in the mean and variance of the daily re-
turns we consider all combinations of ARMA(p, q) and FIGARCH (r, d, s) processes
derived from setting p = 0, 1, 2, q = 0, 1, 2, r = 0, 1, 2, and s = 0, 1, 2. Models are
estimated by maximum likelihood using the FinMetrics module of SPlus, and the
AIC criterion is used to select the best model. The best fit turned out to be an
ARMA(1, 1)-FIGARCH(1, d, 0) with all parameters estimates highly significant,
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see Table 5. Note d = 0.2566 which is half way the classical and robust estimates
indicated by the graphical analysis.

Actually, none of the models used in the simulations possesses the specification
ARMA(1, 1)-FIGARCH(1, d, 0) found for Taiwan. Thus we carried out another
simulation assuming this model found by the fully parametric approach, setting as
true values those given in Table 5, i.e., d = 0.26, α1 = −0.20, w = 0.47, θ = −0.54,
and φ = 0.58. The same 301 estimators were used and the winner according to
criterion C1 was the classical BA.LS(0.82) (absolute bias = 0.0107, and standard
error equal to 0.0407).

We note that using the standard error 0.0407 from the simulations and the
point estimate 0.1706 we compute a confidence interval of [0.0892, 0.2520] for the
semiparametric estimator, which we compare with the fully parametrized maximum
liklihood estimator confidence interval of [0.2154, 0.2978].

Table 4: ARMA(1, 1)-FIGARCH(1, d, 0) fit to daily returns from Taiwan.

Estimate Std.Error t value Pr(> |t|)
φ 0.5835 0.26251 2.223 1.316e-002
θ -0.5446 0.27165 -2.005 2.254e-002
w 0.4721 0.04669 10.111 0.000e+000
α1 -0.1983 0.02487 -7.974 1.110e-015
d 0.2566 0.02062 12.446 0.000e+000

6 Conclusions

Semiparametric methods seem to be very suitable for empirical anaysis of long
memory in volatility, specially because the high complexity of fully parametric
approach based on the joint modeling of volatility and mean. However, care is
needed when using semiparametric regression type estimators, as their statistical
properties also depend on a bandwith value. Additional complications arise from
the lack of robustness of the least squares estimation methodology. In this paper
we adreessed the issue of tunig semiparametric estimates in order to balance their
bias and variance. We considered models with long memory in mean (ARFIMA)
and in the volatility (FIGARCH and FISV processes), with innovations following
either a Gaussian or a t-student distribution.

A result from the simulations is that the best number m of frequencies to be
used (or best α value) is completely dependent on the data generating process. For
the same FIGARCH specification, different models for the conditional mean will
lead to a different tuning choice. Another conclusion is that the range [0.50, 0.86]
for specifying α seems to be adequate.

In summary, for FIGARCH processes, simulations indicate that we should use
the GPHT.LS tuned with small α values (around 0.60) for series presenting no
short range dependence in the mean, and the BA.LS tuned with moderate α
values (around 0.82), for series possessing short range dependence in the mean.
Alternatively, if one suspects of strong (or no) long range dependence, one may let
the robust procedure LTS automatically select the frequencies for trimming.

When the FISV processes are generated based on a simple autoregressive pro-
cess, the winner is the SPR-estimator, and the corresponding classical regression
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procedure does need too much trimming. When both short range effects are in-
cluded, the best option is the classical GPHT estimator tuned with small α values.

Best results for data following ARFIMA processes seem to be those based on
classical estimation using just few frequencies, setting α = 0.50. Then either the
GPHT or the BA estimator may be used. If the robust estimation procedure LTS
is applied, then one may use the BA estimator tuned with larger α values, say
α = 0.66.

The slightly less convining results from the robust estimators do not eliminate
their usefulness in this environment. It is possible that better results are obtained
if smaller breakdown point versions are used, which would warrant a more efficient
procedure.
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Table 3: Summary of results from all models.

DGP Winner(s) α abs(Bj) abs(Bj
M ) sdj ||CIj || C1 C2

M1 GPHT.LS 0.58 0.0627 0.0796 0.1186 0.3945 0.0179 0.4741
M1 SPR.LS [n/2] 0.1557 0.1582 0.0518 0.1650 0.0269 0.3232

M2 BA.LTS [n/2] 0.1606 0.1727 0.0867 0.2573 0.0333 0.4300
M2 SPR.LS [n/2] 0.1886 0.1913 0.0623 0.1899 0.0395 0.3811

M3 BA.LTS [n/2] 0.0680 0.0859 0.0799 0.2647 0.0110 0.3506
M3 SPR.LS [n/2] 0.1219 0.1256 0.0523 0.1691 0.0176 0.2947

M4 BA.LTS [n/2] 0.0314 0.0492 0.1066 0.3370 0.0123 0.3862
M4 SPR.LS [n/2] 0.1111 0.1143 0.0615 0.2000 0.0161 0.3142

M5 GPHT.LS 0.64 0.0682 0.0712 0.1083 0.3519 0.0164 0.4231
M5 SPR.LS 0.82 0.1657 0.1706 0.0589 0.1879 0.0309 0.3585

M6 GPHT.LS 0.60 0.0953 0.1089 0.1239 0.3901 0.0244 0.4989
M6 GPHT.LS 0.78 0.1510 0.1591 0.0883 0.2640 0.0306 0.4231

M7 GPHT.LS 0.58 0.0570 0.0567 0.1233 0.4191 0.0184 0.4758
M7 W – 0.1983 0.2046 0.0450 0.1391 0.0413 0.3436

M8 GPHT.LS 0.54 0.0708 0.0865 0.1429 0.4585 0.0254 0.5450
M8 W – 0.1764 0.1811 0.0568 0.1833 0.0343 0.3644

M9 BA.LTS [n/2] 0.0962 0.1121 0.1329 0.4367 0.0269 0.5488
M9 W – 0.2694 0.2501 0.0321 0.0975 0.0736 0.3475

M10 BA.LTS [n/2] 0.0299 0.0193 0.1661 0.5185 0.0285 0.5378
M10 W – 0.2546 0.2501 0.0137 0.0365 0.0650 0.2866

M11 W – 0.0485 0.0439 0.0435 0.1309 0.0042 0.1748

M12 W – 0.0122 0.0001 0.0268 0.0757 0.0009 0.0758

M13 BA.LS 0.84 0.0012 0.0015 0.0350 0.1166 0.0012 0.1180

M14 BA.LS 0.80 0.0051 0.0095 0.0557 0.1824 0.0031 0.1919

M15 BA.LTS [n/2] 0.0998 0.0979 0.0659 0.2163 0.0143 0.3141

M16 BA.LTS [n/2] 0.1033 0.1016 0.0874 0.2670 0.0183 0.3686
M16 W – 0.1835 0.1756 0.0471 0.1454 0.0359 0.3209

M17 BA.LS 0.50 0.1190 0.1160 0.0519 0.1757 0.0168 0.2918

M18 BA.LS 0.50 0.1262 0.1211 0.0614 0.2078 0.0197 0.3288

M19 SPR.LS 0.86 0.0002 0.0005 0.0319 0.1055 0.0010 0.1060

M20 SPR.LS 0.82 0.0042 0.0030 0.0355 0.1166 0.0013 0.1196

M21 GPHT.LS 0.58 0.0569 0.0591 0.1110 0.3373 0.0156 0.3964

M22 GPHT.LS 0.58 0.0381 0.0232 0.1139 0.3764 0.0144 0.3996

M23 GPHT.LS 0.60 0.0331 0.0349 0.1104 0.3577 0.0133 0.3926
M23 SPR.LS [n/2] 0.2530 0.2534 0.0280 0.0919 0.0648 0.3454

M24 GPHT.LS 0.60 0.0245 0.0295 0.1015 0.3361 0.0109 0.3656
M24 BA.LS [n/2] 0.2639 0.2630 0.0258 0.0854 0.0703 0.3484

M25 W – 0.0499 0.0499 0.0000 0.0000 0.0025 0.0500

M26 BA.LS 0.62 0.0026 0.0031 0.0554 0.1803 0.0031 0.1834

M27 GPHT.LS 0.50 0.1932 0.1914 0.1711 0.5554 0.0666 0.7468
M27 BA.LS 0.50 0.4059 0.4035 0.0501 0.1668 0.1673 0.5703

M28 GPHT.LS 0.50 0.2182 0.2139 0.1660 0.5341 0.0752 0.7480
M28 BA.LS 0.50 0.3236 0.3227 0.0317 0.1012 0.1057 0.4239

M29 BA.LTS 0.68 0.0399 0.0389 0.0754 0.2522 0.0073 0.2911
M29 SPR.LS [n/2] 0.1001 0.1009 0.0270 0.0893 0.0107 0.1902

M30 BA.LTS 0.64 0.0674 0.0692 0.0751 0.2572 0.0102 0.3264
M30 SPR.LS [n/2] 0.1058 0.1064 0.0261 0.0858 0.0119 0.1922

M31 BA.LS 0.50 0.0203 0.0213 0.0378 0.1222 0.0018 0.1435
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Ding, Z. and Granger, C.W.J. (1996). “Modeling volatility persistence of speculative returns: A
new approach´´. Journal of Econometrics , Vol. 73, 185-215.

Engle, R.F. (1982). “Autoregressive conditional heteroskedasticity with estimates of the variance
of U.K. inflation”. Econometrica, Vol. 50, 987-1008.

Fox, R. and Taqqu, M.S. (1986). “Large-sample properties of parameter estimates for strongly
dependent stationary Gaussian time series”. The Annals of Statistics, Vol. 14, 517-532.

Geweke, J. and Porter-Hudak, S. (1983). “The Estimation and Application of Long Memory Time
Series Model”. Journal of Time Series Analysis, Vol. 4, 221-238.

Granger, C.W.J. and Joyeux, R. (1980) “An Introduction to Long Memory Time Series Models
and Fractional Differencing´´. Journal of Time Series Analysis, Vol. 1, 15-29.

Henry, M. (2001). “Robust Automatic Bandwidth for Long Memory´´. Journal of Time Series
Analysis, 22, 3, 293-316.

Hosking, J. (1981). “Fractional Differencing”. Biometrika, Vol. 68, 165-167.

24



Huber, P.J. (1981). Robust Statistics. New York: Wiley.

Hurvich, C.M. and Ray, B.K. (1995). “Estimation of the memory parameter for nonstationary
or noninvertible fractionally integrated processes”. Journal of Time Series Analysis, Vol. 16,
017-042.

Hurst, H.R. (1951). “Long-term storage in reservoirs”. Trans. Am. Soc. Civil Eng., Vol. 116,
770-799.

Lopes, S.R.C., Olbermann, B.P. and Reisen, V.A. (2004). “A Comparison of Estimation Methods
in Non-Stationary ARFIMA Processes”. Journal of Statistical Computation and Simulation, Vol.
74, 339-347.

Lopes, S.R.C and Mendes, B.V.M. (2005). “FIGARCH Modeling in Finance: a Review of the
Theory and Empirical Evidence”. Submitted.

Porter-Hudak, S. (1990). “An Application of the Seasonal Fractionally Differenced Model to the
Monetary Aggregates”. Journal of American Statistical Association, Vol. 85, 338-344.

Rao, C. R. (1973). Linear Statistical Inference and its Applications. 2nd. Edition. New York:
Wiley.

Reisen, V.A. (1994). “Estimation of the Fractional Difference Parameter in the ARIMA(p,d,q)
model using the Smoothed Periodogram”. Journal of Time Series Analysis, Vol. 15, 335-350.

Reisen, V.A., Abraham, B. and Lopes, S.R.C. (2001). “Estimation of Parameters in ARFIMA
Processes: A Simulation Study”. Communications in Statistics: Simulation and Computation,
Vol. 30, 787-803.

Robinson, P.M. (1995). “Log-periodogram regression of time series with long range dependence”.
The Annals of Statistics, Vol. 23, 1048-1072.

Robinson, P.M. (1999). “The memory of stochastic volatility models”. Unpublished manuscript,
London School of Economics.

Robinson, P.M. and Zaffaroni, P. (1998). “Nonlinear Time Series with Long Memory: a Model
for Stochastic Volatility”. Journal of Statistical Planning and Inference, Vol. 68, 359-371.

Rousseeuw, P. J. (1984). “Least Median of Squares Regression”. Journal of the American Statis-
tical Association, Vol. 79, 871-880.

Taqqu, M. S., and Teverovsky, V. (1996). “Semi-parametric graphical estimation techniques for
long-memory data´´. In Athens Conference on Applied Probability and Time Series Analysis
(eds.) P. M. Robinson and M. Rosenblatt.

Taqqu, M. S., Teverovsky, V., Willinger, W. (1995). “Estimators for long range dependence: an
empirical study´´. Fractals, 3(4):785-798.

Velasco, C. (1999a). “Gaussian Semiparametric Estimation of Non-stationary Time Series”. Jour-
nal of Time Series Analysis, Vol. 20, 87-127.

Velasco, C. (1999b). “Non-stationary log-periodogram regression”. Journal of Econometrics, Vol.
91, 325-371.

Whittle, P. (1953). “Estimation and information in stationary time series”. Arkiv för Mathematik ,
Vol. 2, 423-434.

Yohai, V. J. (1987). “High Breakdown point and high efficiency robust estimates for regression.
Annals of Statistics, Vol. 15, 642-656.

Zaffaroni, (1999). “Gaussian estimation of long-range dependent volatility in asset prices”. Preprint.

25


