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Abstract

Models for extreme joint tails date back to Tiago de Oliveira (1962), Pickands (1981), Tawn

(1988), and are based on limiting arguments founded on multivariate regular variation. All these

models, including extreme value copulas, are designed for asymptotically dependent variables, and

assume that all components become large at the same rate. He®ernan and Tawn (2004) proposed

a conditional multivariate extreme value model which applies to regions where not all variables

are extreme and identi¯es the type of extremal dependence, including negative dependence. In

this paper we exploit this work and provide an application in ¯nance. The new methodology

allows for estimating new measures of ¯nancial risk, namely the Conditional Value-at-Risk and

the Conditional Expected Shortfall given that at least one of the data components is extreme,

and provides further information for portfolio selection and risk management. We illustrate using

Latin American and Asian markets indexes, with interesting ¯ndings which are consistent but goes

beyond the current understanding of the interdependencies in these emerging markets.

Keywords: Conditional Multivariate Extreme Value Models, Asymptotic Independence, Extremal

Dependence, Financial Risk.

1 Introduction

Models for extreme tails date back to Tiago de Oliveira (1962). The existing multivariate

extreme value models (Pickands (1981), Tawn (1988, 1990), Coles and Tawn (1991, 1994),

and Joe, Smith, and Weissman (1994), among others) assume that in some extreme joint

tail region all components are either independent or asymptotically dependent. Within

the copula environment, these two cases are captured by extreme value copulas possessing

either zero or positive tail dependence coe±cient. All these models are supported by

limiting arguments based on the concept of multivariate regular variation, and assume

that all margins become extreme at the same rate.

Under the existing multivariate extreme value models the probability of joint extreme

events may be under estimated. Note that Ledford and Tawn (1996) have identi¯ed three

types of extremal dependence (negative, independence, positive) in the case of asymptot-

ically independent variables. Moreover, a multivariate extreme event may be extreme in

just one of the components. He®ernan and Tawn (2004) proposed a modeling structure
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which addresses these two issues. In summary, the model applies to regions where not all

variables are extreme, and covers the three types of extremal dependence.

Applications of multivariate extreme value models include environment impact assess-

ment (Coles and Tawn (1994), Smith (1989), among others), ¯nancial risks management

(StÄarica (2000), McNeil (1999), among others). In ¯nance, the implications of multivariate

extreme events are felt in portfolio behavior, asset pricing, and may lead to a market crash,

bankruptcy, and defaults. In this article we exploit He®ernan and Tawn (2004) conditional

model and provide an application in ¯nance. The new methodology allows for estimat-

ing new measures of ¯nancial risk, conditional on at least one of the data components is

extreme, namely the Conditional Value-at-Risk and the Conditional Expected Shortfall.

One appealing characteristic of the new measures of risk is that they may incorporate

intangibles in the notion of contagion.

Our empirical illustration uses emerging markets data. For the ¯ve major market in-

dexes in Latin America and ¯ve ones in Asia, we estimate the conditional models, analyze

the type of dependence among the components, compare the in°uence of the conditioning

market, compute measures of dependence, discuss the main di®erences between the un-

conditional and conditional distributions, compute the new risk measures, and ¯nally use

all acquired knowledge to suggest other ¯nancial applications such as portfolio selection,

showing the impact of the estimated conditional dependence structure on portfolio risk

an return.

The news brought by the estimated model adds knowledge to the current understand-

ing of interdependence among emerging markets. For example, we observe that the worst

scenarios for Brazil occur when either Chile or U.S. is extreme, and the worst scenarios

for the U.S. occur when either Brazil or Mexico is extreme. Somehow expected is the

¯nding that the only non-exchangeable pairs of joint losses in Latin America are those

involving the U.S. market. From the empirical investigations we could say that in order

to diversify portfolios one should rather include a variable which does not conditionally

drives dependence during bear markets. However, one should also take into account the

marginal distribution of this variable, since risk (or VaR) may increase with the addition

of this new variable. In summary, both marginal and conditional multivariate knowledge

of the variables are important in risk management.

The remaining sections are organized as follows: Section 2 reviews the He®ernan and

Tawn (2004) conditional extreme value model. Section 3 contains the analysis of the

ten emerging markets indexes, including marginal and dependence models estimation,

computation of risk measures, and illustrations of applications in ¯nance. In Section 4 we

discuss the results.
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2 The conditional extreme value model

In this section we brie°y explain the He®ernan and Tawn (2004) conditional model.

As already mentioned, existing extreme value methods for VaR estimation are based

on the assumption that all variables become extreme at the same rate. The model used

in this paper applies to situations where at least one variable is extreme. This situation

is illustrated in Figure 1 based on pairwise monthly minima from main indexes from Ar-

gentina, Chile, and U.S. Plot (a) shows the observations from the pair (U.S.-Chile) along

with the extreme set C, shown in the ¯gure by the dotted line. Plot (b) shows the ob-

servations from the pair (Argentina-Chile), which are clearly asymptotically independent.

For example, it would be interesting to assess what happens to the pair (Argentina-Chile)

when U.S. is extreme or falls in the region marked with a ? in the set C.
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Figure 1: Monthly minima of U.S. and Chile in (a) and from Argentina and Chile in (b). The

dotted line in (a) indicates an extreme set C.

The multivariate extreme value model of He®ernan and Tawn (2004) may be summa-

rized as follows. Consider a continuous d-dimensional random variable X = (X1; ¢ ¢ ¢ ;Xd)
with unknown distribution F (x). We wish to estimate functionals of the distribution of

X when X is extreme in at least one component, based on a sample of n independent

and identically distributed observations from F . This means to estimate the probabilities

Pr(X 2 C) where C is an extreme set such that for all x 2 C at least one component of

x is extreme. The set C is partioned into d subsets Ci such that C = [di=1Ci. The subset
Ci is the part of C for which Xi is the largest component of X.

Let FXi denote the marginal distribution of Xi, i = 1; ¢ ¢ ¢ ; d. Then

Ci = C \ fx 2 <d : FXi(xi) > FXj (xj); j = 1; ¢ ¢ ¢ ; d; j6= ig; for i = 1; ¢ ¢ ¢ ; d:

Thus C is an extreme set if it is the disjoint union of subsets Ci which are either empty
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or have points x such that their xi-values fall in the upper tail of FXi . That is, if ºXi =

infx2Ci(xi), then FXi(ºXi) is close to 1. Thus X 2 Ci if and only if X 2 Ci and Xi > ºXi ,
so we can write

Pr(X 2 C) =
dX
i=1

Pr(X 2 Ci) =
dX
i=1

Pr(X 2 Ci j Xi > ºXi)Pr(Xi > ºXi): (1)

Computing the probabilities (1) requires a marginal extreme value model for Pr(Xi >

ºXi) and an extreme value model for the dependence structure Pr(X 2 Ci j Xi > ºXi).

According to results in Pickands (1975), the generalized Pareto distribution (GPD) is the

appropriate model for excesses beyond a high threshold. The marginal model for the tail

of Xi, i = 1; ¢ ¢ ¢ ; d, is then

Pr(Xi > x+ uXi j Xi > uXi) = (1 + »ix=¯i)¡1=»i+ where x > 0; (2)

and where uXi is a high threshold for the variable Xi, ¯i > 0 and »i are the scale and

shape parameters of the GPD, and s+ = max(s; 0) for any s 2 <. To model the marginal
distribution FXi we assume the semiparametric model

bFXi given by
bFXi =

(
1¡ f1¡ ~FXi(uXi)gf1 + »i(x¡ uXi)=¯ig¡1=»i+ for x > uXi ;
~FXi(x) for x · uXi ;

(3)

where ~FXi is the empirical distribution of the Xi-values. Model (3) is used for estimating

the term Pr(Xi > ºX¡i) in the decomposition (1).
Before deriving the conditional dependence model, the univariate marginals are trans-

formed to standard Gumbel distributions, by applying the probability integral transfor-

mation to (3):

Yi = ¡ log[¡ logf bFXi(Xi)g] for i = 1; ¢ ¢ ¢ ; d; (4)

where bFXi depend on the marginal parameters (¯i; »i). As discussed by He®ernan and
Tawn (2004) this transformation is supported by the fact that a Gumbel random vari-

able has an exponential upper tail. From now on the notation Y refers to the Gumbel

transformation of the original X variables.

Let Y¡i denote the vector Y excluding the component Yi, and y a vector of y-values.

We condition on each variable in turn and look at the limiting conditional distribution of

Y¡i j Yi > yi as yi !1:

In the limit, the random variable Y¡i may be either (asymptotically) dependent or in-
dependent of the variable Yi. All existing methods for multivariate extremes, including

extreme value copulas, apply when the associated Y is asymptotically dependent, or when
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the sets C of interest are such that all x 2 C are large in all components. The conditional
He®ernan and Tawn (2004) model may be applied when the variables are asymptotically

dependent or independent and may be interpreted as an extension of the GPD to the

multivariate case.

In summary, the multivariate models consist of a parametric regression, carried on to

estimate the location and the scale parameters of the marginals of the joint conditional

distribution, and a nonparametric method, used to estimate the multivariate limit struc-

ture. Likewise the existing multivariate extreme value models, the idea is that, for large

conditioning values, the conditional distribution of the properly standardized variables

would possess some speci¯ed structure. However, a complete asymptotic characterization

of the probabilist structure is not obtained, but it is non-parametrically inferred from the

standardized variables.

As usual, it is required that the limiting conditional distribution Pr(Y¡i · y¡i j Yi =
yi) as yi ! 1 be non-degenerate in all margins. This is accomplished by assuming a

vector of normalizing functions holds for each i. The normalizing functions aji(yi) and
bji(yi), both in < ! <(d¡1) are chosen such that, for all ¯xed z¡i and for any sequence of
yi-values such that yi !1, it holds

lim
yi!1

PrfY¡i · aji(yi) + bji(yi)z¡i j Yi = yig = Gji(z¡i); (5)

where all margins of the limit distribution Gji are non-degenerate.
It can be shown that under assumption (5), conditionally on Yi > ui, as ui ! 1 the

variables Yi¡ui and Z¡i are independent in the limit with limiting marginal distributions
being, respectively, the exponential and Gji(z¡i).

Following standard arguments (Leadbetter et al., 1983) the authors identify the nor-

malizing functions aji(yi) and bji(yi) (up to some vector constants), and show that the

class of limit distributions is unique up to type (see Theorem 1 and Corollary 1 in Hef-

fernan and Tawn (2004). Through theoretical examples the authors show that based on

a simple structure for the normalizing constants, a wide range of limiting distributions

Gji can be found which could not be contained in any simple distributional family. This
¯nding about Gji is in contrast with the limiting representation for multivariate extreme
value distributions, but is was expected, due the lack of structure imposed on Gji by
the limiting operation. They proposed the following general parametric family for the

normalizing functions:

aji(y) = ajiy + Ifaji=0;bji<0gfcji ¡ dji log(y)g ;

bji(y) = ybji ;
(6)

where, aji, bji, cji, and dji are vector constants and I is an indicator function. Their
components must satisfy 0 · ajji · 1, ¡1 < bjji < 1, ¡1 < cjji < 1, 0 · djji · 1, for
all j6= i.
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It is assumed that there is a high threshold uYi for which the model (5) holds for all yi >

uYi . Z¡i =
Y¡i¡aji(yi)
bji(yi)

is the standardized variable with (d¡ 1)-dimensional distribution
function Gji, and Z¡i is independent of Yi for Yi > uYi . The extremal dependence behavior
is characterized by the location and scale functions aji(yi) and bji(yi) and the distribution
Gji. For the sake of simplicity, for estimation purposes, we start with the assumption
that cji(yi) = dji(yi) = 0, and then estimates these parameters whenever âji(yi) = 0 and
b̂ji(yi) < 0. To (non-parametrically) estimate Gji we use the empirical distribution of the
replicates of Ẑ¡i. In summary, for d = 1; ¢ ¢ ¢ ; d our dependence model is is a multivariate
semi-parametric regression model of the form

Y¡i = aji(yi) + bji(yi)Z¡i for Yi = yi:uYi ; (7)

where aji(yi) and bji(yi) are given by the parametric model (6), and the distribution
of the standardized variable is modeled non-parametrically. It is not required that the

dependence threshold uYi and uXi to agree in the sense that uYi = ti(uXi), where ti is the

Gumbel transformation (equation (3.8) of He®ernan and Tawn (2004)).

Four classes of dependence structures are implied by (7). If ajji = 1 and bjji = 0,

the quantiles of the variables (Yi; Yj) grow at the same rate, and they are asymptotically

dependent. All other possibilities for ajji and bjji correspond to the case of asymptotic
independence. Within the class of asymptotically independent variables Ledford and Tawn

(1996) identify three classes: positive extremal dependence (at least one of 0 < ajji < 1

or bjji > 0 holds), near extremal independence (ajji = djji = 0 and bjji · 0 holds), and

negative extremal dependence (ajji = 0, djji > 0, and bjji < 0 holds). For these cases, as
yi !1, the quantiles of the distribution of Yj j Yi = yi tend to 1, to a ¯nite limit, or to
¡1, respectively. The cjji and djji are non-zero only in the case that there is no positive
association.

There is weak pairwise extremal exchangeability ajji = aijj , bjji = bijj , cjji = cijj , and
djji = dijj . For each i, He®ernan and Tawn (2004) approach is to estimate the d di®erent
conditional distributions separately, and not to impose additional structure on (7). They

recommend assessing the e®ect of using di®erent conditionals to estimate probabilities

of events in which more that one variable is extreme, and to average estimates over the

di®erent conditionals to reduce any problem of inconsistency.

Inference is carried on in two steps: ¯rst the marginal parameters are estimated, and

then the dependence parameters are estimated assuming that the marginal parameters are

known. Assuming independence between the d components we maximize the log-likelihood

function

dX
i=1

nuXiX
k=1

logff̂Xi(xjji;k)g j = 1; ¢ ¢ ¢ ; d; (8)
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where f̂Xi is the density of distribution (3), nuXi is the number of observations with ith

component exceeding the threshold uXi , and the jth component of the kth such obser-

vation is denoted by xjji;k, j = 1; ¢ ¢ ¢ ; d, k = 1; ¢ ¢ ¢ ; nuXi . In the case there is no links
between the parameters of the components, maximization of (8) may be carried on by

obtaining the maximum likelihood estimates of the GPD ¯tted to the excesses, in each

margin.

For each i, to estimate (aji;bji; cji;dji), we assume that the Z¡i have marginal means
and standard deviations, respectively, ¹ji and ¾ji. The random variables Y¡i j Yi = y, for
y > uYi have vector mean and standard deviation given by

¹ji(y) = aji(y) + ¹jibji(y) ;

¾ji(y) = ¾jibji(y):

Thus µji = (aji;bji; cji;dji;¹ji;¾ji) are the parameters of a multivariate regression model
with non-constant variance and unspeci¯ed error distribution. He®ernan and Tawn (2004)

take the components of Z¡i to be mutually independent and, for convenience and compu-
tational simplicity, they select the Gaussian distribution to obtain point estimates for µji.
Therefore the objective function

Qji(µji) = ¡
X
j6=i

nuYiX
k=1

"
logf¾jji(yiji;k)g+

1

2

½
yjji;k ¡ ¹jji(yiji;k)

¾jji(yiji;k)

¾2#
(9)

is minimized with respect to all components of µji, with ¹ji and ¾ji being nuisance pa-
rameters. We ¯t the dependence models in two stages: ¯rst ¯xing cjji = djji = 0, and only
estimating these parameters when if âjji = 0 and b̂jji < 0.

There are several sources of uncertainty: from the estimation of the marginal models,

of the parametric normalization functions assumed for the dependence structure, and

from the nonparametric models for the limit distribution. We carry on semiparametric

bootstrap methods to evaluate estimates standard errors. Actually, we assume that the

marginals and dependence thresholds are known, and therefore the uncertainty due to

threshold selection is not taken into account by the bootstrap methods. The algorithm is

based on the following steps:

² The original data are transformed to possess Gumbel margins using (3) and point
estimates obtained from the original data.

² A bootstrap nonparametric sample is obtained by sampling with replacement from
the transformed data. This step preserves the dependence structure.
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² The marginal values of the bootstrap samples are changed ensuring that all marginal
distributions are Gumbel and preserving the association between the ranked points

in each component.

² The resulting sample is transformed back to the original margins using the marginal
models.

The examples worked out by He®ernan and Tawn (2004) showed that the convergence

of the conditional distribution of Y¡i j Yi = y, as y !1, to its limiting form can be very

slow. However, as claimed by the authors, we are not interested in the true limit values

of µji and Gji. What is of practical important is whether the conditional distribution of
the normalized variable Z¡i is stable over the range of Yi values used for estimation and
extrapolation. For the marginal models, procedures for checking of the stability of the

shape parameter estimates (Coles, 2001) are well known, for example, the mean excess

plot. The stability of the estimates of µji may be checked by ¯tting the conditional model
over a range of high thresholds. In addition, formal statistical tests for independence

may be applied to the Z¡i to identify whether the variables may be treated as being
asymptotically conditionally independent.

After checking the assumptions behind the models, one can focus on the estimation

of functionals of the variables de¯ned on regions were data are scarce. Samples of the

estimated conditional distribution of X j Xi > vXi , i = 1; ¢ ¢ ¢ ; d are used to estimate the
desired functionals. For example, the probability PrfX 2 Ci j Xi > vXig is estimated
using the proportion in the generated sample falling in Ci. To generate the samples we

follow the algorithm

1. Simulate y¤i from the Gumbel distribution conditional on its exceeding ti(vXi).

2. Sample z¤¡i from Ĝji independently of y¤i .

3. Obtain y¤¡i = âji(y
¤
i ) + b̂ji(y

¤
i )z

¤
¡i

4. Transform y¤ = (y¤¡i; y
¤
i ) to the original scale using the inverse of transformation

(4).

5. Repeat the steps 1-4 to obtain a large simulated sample of the conditional distribu-

tion of X j Xi > vXi .

3 Applications of the conditional model in ¯nance

The existing methods for the estimation of extreme ¯nancial risk include univariate ex-

treme value models (for example, the generalized extreme value distribution or the gen-

eralized Pareto distribution), or some multivariate extreme value model (typically in the
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bivariate case). The new risk measures estimated in this section are computed under the

assumption that at least one component is extreme. We illustrate their truly multivariate

nature providing examples in the case d = 5.

The data consist in daily closing prices of most important emerging stock markets

indexes, from 03/01/1994 through 30/06/2006, collected from the Datastream database.

We analyze four Latin American and four Asian emerging markets. The Latin American

indexes are the General Index (Argentina), the IBOVESPA (Brazil), the IGPA (Chile),

and the IPC (Mexico); and the Asian indexes are the Hang Seng Index (Hong Kong),

Bombay Sensitivity Index (India), Seoul Composite (Korea), Taipei Weighted Price Index

(Taiwan). To represent the developed countries, we use the S&P500 (U.S.) and the Nikkei

Average (Japan). We compute the daily log-returns in U.S. dollars for each index. During

the sample period, the Brazilian and the Indian markets outperformed the other ones, as

measured by their median log-returns, respectively equal to 0.061% and 0.035%. Brazil

is the market presenting higher variability, with a standard deviation of 2.852%, followed

by Argentina and Korea. Chile is the least volatile market with a standard deviation of

0.936%, followed by the U.S. market (1.048%).

Among all series, the smallest daily return was observed in Argentina (-28.95%), fol-

lowed by Mexico and Brazil (-16% and -15%). Brazil presented the highest daily return

of 27.05%, followed by Korea and Argentina (22%). All emerging and developed markets

indexes may be considered fat tails series, with Argentina being the market presenting the

largest excess kurtosis of 12.63%, followed by Hong Kong and Korea (12%).

Financial log-returns are considered stationary series presenting weak autocorrelation

in just few lags, and signi¯cant autocorrelation in their squares. The may also exhibit long

range dependence in the mean and in the volatility. To remove the temporal dependences,

we selected the componentwise monthly minima and maxima, resulting in series with

length T = 150. The monthly data do not present evidence of short and long memory

anymore. The hypothesis of a time trend was also tested and rejected for all series. We

report only the results for the joint losses. When applying the models to the negative tails

we previously multiply the series by (¡1) and treat them as maxima.

3.1 Conditional extremal dependence in the Latin American markets

Careful inspection of the data and analysis of marginal GPD ¯ts (Kolmogorov goodness of

¯t test, Bickel and Doksum, 1981) suggested taking as threshold values uXi , i = 1; ¢ ¢ ¢ ; 5,
the empirical 25%, 32%, 32%, 29%, and 31% quantiles of the monthly minima from,

respectively, Argentina, Brazil, Chile, Mexico, and U.S. The marginal cdf (3) is then com-

puted for the data. Upper panel of Table 1 shows the threshold values uXi , the threshold

exceedance probabilities bFXi(uXi), the GPD scale and shape parameters estimates b̄i andb»i (and standard errors), and the estimated marginal quantiles bxi(0:01) = bF¡1Xi (0:01),
i = 1; ¢ ¢ ¢ ; 5.
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The di®erences among the estimated 0:01-quantiles re°ect the di®erent marginal dis-

tributions of the left tail of the major indexes in Latin America. The Brazilian and the

Mexican markets present close bxi(0:01) values, even though their » estimates (and thus,
their left tails) are quite di®erent. The Argentinian and the Chilean markets stand out

and show the most and less extreme bxi(0:01) values.
We apply transformation (1.4) to obtain the standardized Gumbel marginals. A formal

statistical goodness of ¯t test is applied and accepts the good adherence of the Gumbel

distribution to the transformed data. Graphical inspection of histograms with Gumbel

density superposed also con¯rmed the good ¯ts.

Table 1: Summary of marginal ¯ts to the monthly minima from the Latin American indexes (upper
panel) and Asian indexes (lower panel)y.

A - Joint Losses - LA

Argentina Brazil Chile Mexico U.S.

uXi
-5.48 -5.31 -1.84 -4.06 -2.16bFXi(uXi) 0.25 0.32 0.32 0.29 0.31b̄

i 2.07(0.45) 2.71(0.61) 1.26(0.28) 1.73(0.45) 0.62(0.16)b»i 0.32(0.19) 0.00(0.11) -0.32(0.11) 0.32(0.21) 0.31(0.18)bxi(0:01) -17.14 -14.21 -4.50 -14.56 -5.95

B - Joint Losses - ASIA

Hong Kong India Korea Taiwan Japan

uXi -3.69 -3.59 -4.18 -3.42 -3.08bFXi(uXi) 0.21 0.19 0.33 0.32 0.34b̄
i 1.36(0.43) 1.72(0.50) 1.53(0.30) 1.46(0.31) 1.36(0.32)b»i 0.25(0.16) 0.00(0.12) 0.30(0.11) 0.00(0.15) 0.00(0.10)bxi(0:01) -9.92 -8.63 -13.73 -8.49 -6.37

yNotation in table: uXi is the threshold used for modeling margin i and the corresponding cumulative

probability is bFXi(uXi); the maximum likelihhod estimate and (standard error) of scale is b̄i and of shape
is b»i; the estimated p-quantiles are bxi(p).

Figure 2 shows the scatter plots of the Gumbel transformed monthly minima for a se-

lection of pairs. The ¯gure illustrates the varying degrees of (unconditional) extremal de-

pendence among the Latin American markets. It seems that asymptotic dependence could

be a feasible assumption for plot (b) (Brazil-Mexico), but not for ¯gures (a) (Argentina-

U.S.) and (c) (Chile-U.S.). All other pairs may be considered asymptotically independent,

with those involving Brazil (except the U.S. case) presenting the strongest level of extremal

dependence.

Likewise He®ernan and Tawn (2004), we select the same dependence threshold value

for the ¯ve indexes, that is, we set uYi = u for all i, and choose u such as PrfYi < ug = 0:30.
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Figure 2: Pairwise plots of selected Gumbel transformed monthly minima log-returns from Latin

American markets.

We then ¯t the dependence model (7) consisting of a set of ¯ve conditional models, and a

total of 20 parameters to estimate.

The estimates (ba¢ji; bb¢ji) are given in Table 2. According to the point estimates, all pairs
of minima are asymptotically independent but exhibit positive extremal dependence. This

means that the conditional quantiles of Xj tend to ¡1 as yi ! ¡1. However, there are
two cases of near asymptotic dependence (Brazil j U.S.) and (Mexico j U.S.), as indicated
by the bajj5, j = 2; 4, estimates close to one and bbjj5, estimates close to zero. Interestingly,
these pairs seem to be not weak pairwise exchangeable. The pairs presenting strongest

extremal dependence are (Chile, Mexico) and those combining Brazil and either Argentina,

or Chile, or Mexico.

The convex hulls associated with the point estimates of the dependence parameters

are shown in Figure 3, for the pairs involving the U.S. For each ¯xed (i; j), i6= j, the plots
show the pairwise sampling distribution from 100 bootstrap realizations of the sampling

distribution of (baijj ;bbijj) (solid line), and (bajji;bbjji) (dotted line). For example, in (a)
we show the dependence structure between Argentina (1) and U.S. (5) by plotting the

sampling distribution of (ba1j5;bb1j5) (solid line), and (ba5j1;bb5j1) (dotted line). We observe
11



the already mentioned pairwise non-exchangeability in plots (b), (c), and (d), and the large

variability of estimates, expected since all the bb¢j5 are positive. Note that, given U.S. is
extreme, both Brazil and Mexico convex hulls contain the point (a = 1; b = 0). All other

pairs (not shown here) indicate weak pairwise exchangeability, but likewise He®ernan and

Tawn (2004), we do not attempt to identify a simpli¯ed model.

We examine the scatterplots of pairs of components of the estimated limit distributionsbGji. They indicate that (Brazil, Mexico) for the distribution bZ¡5, and (Mexico, U.S.) for
the distribution bZ¡3, may be considered tail dependent. All other pairs are asymptotically
conditionally independent. A possible interpretation is that Chile drives the dependence

between Mexico and U.S. Probably due to the geographical situation, Chile and Mexico

experiment some degree of contagion. The interpretation of the asymptotic dependence

found for (Brazil, Mexico) given U.S. is extreme is more di±cult, since these markets are

unconditionally tail dependent, and Mexico was also found being asymptotic dependent

on Brazil being extreme. Upper panel of Table 3 summarizes these results.

Table 2: Parameters estimates of dependence models ¯tted to the monthly minima of the Latin
American (left panel) and Asian (right panel) stock markets indexes.

Latin America - Joint Losses Asia - Joint Losses

BrajArg ChijArg MexjArg USjArg IndjHKg KorjHKg TaiwjHKg JapjHKgba 0.3480 0.2542 0.0000 0.1521 0.3598 0.7089 0.6565 0.3669bb 0.6212 0.2310 0.6438 0.2988 -0.5203 0.4441 -0.1754 0.1909

ArgjBra ChijBra MexjBra USjBra HKgjInd KorjInd TaiwjInd JapjIndba 0.7364 0.6194 0.7557 0.2094 0.2235 0.4335 0.3152 0.6887bb 0.3120 -0.3388 0.1277 0.3519 -0.2147 0.2509 -0.6332 0.3471

ArgjChi BrajChi MexjChi USjChi HKgjKor IndjKor TaiwjKor JapjKorba 0.4004 0.7446 0.7707 0.0000 0.8307 0.3590 0.4525 0.8088bb -0.0684 0.6199 0.6784 0.3234 0.2922 0.3524 -0.1160 0.2466

ArgjMex BrajMex ChijMex USjMex HKgjTaiw IndjTaiw KorjTaiw JapjTaiwba 0.6579 1.0000 0.7443 0.0000 0.4380 0.0702 0.0000 0.0000bb -0.1594 0.5001 -0.2579 0.8617 0.4664 -0.1444 0.5835 0.3136

ArgjUS BrajUS ChijUS MexjUS HKgjJap IndjJap KorjJap TaiwjJapba 0.4850 0.7748 0.4871 0.9182 0.5797 0.5192 0.4058 0.2260bb -0.1324 0.1034 0.0003 0.2827 -0.5196 0.1270 0.2062 -0.0459
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Table 3: Unconditional and conditional interdependences and contagion.

Latin America

Pairs Unconditionally Conditionally Given

(Brazil, Mexico) Asymp. Depend. Asymp. Dependent U.S.

(Mexico, U.S.) Asymp. Independ. Asymp. Dependent Chile

Asia

Pairs Unconditionally Conditionally Given

(HKong, Taiwan) Near Asymp. Independ. Asymp. Dependent India or Japan

(India, Japan) Asymp. Independ. Asymp. Dependent Hong Kong
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Figure 3: Bivariate sampling distributions of (baijj ;bbijj) and (bajji;bbjji) for i being the indexes Ar-
gentina (1), Brazil (2), Chile (3), Mexico (4), and j being the U.S. (5). The solid line corresponds

to (baijj ;bbijj), and the dotted line corresponds to (bajji;bbjji).
We now provide our ¯rst application of the estimated models, and investigate the e®ect

of the conditional dependence on portfolio selection. We construct two equally weighted

portfolios (so called portfolios 1 and 2), composed by (Mexico, U.S., Argentina) and

(Mexico, U.S., Chile), and compute their historical accumulated gains. Note that portfolio

1 seems to be a higher risk investment since its Value-at-Risk (VaR) at risks 0.01%, 0.1%,

0.05% values are more extreme than those for portfolio 2, which are, respectively, (-6.86,
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-3.87, -2.26), and (-5.17, -2.84, -1.61). Even though Chile presents less extreme losses

when compared to Argentina, its strong interdependence during bear markets with U.S.

and Mexico, results in smaller accumulated returns for portfolio 2, as we can see in Figure

4.
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Figure 4: Accumulated gains from two portfolios. In black (Mexico, US, Argentina), in orange

(Mexico, US, Chile).

To illustrate the in°uence of conditioning variable on the resulting estimated depen-

dence structure and on the marginal distributions, we show in Figure 5 the pairwise pseudo

samples from the estimated conditional models, in the original scale, given that X2 falls

below its x2(0:05)-quantile. On each pairwise plot, the curve represents equal marginal

quantiles. The small crosses (+) represent the points that fall in the set C5(23), that is,

the points adding up to 23 in the Gumbel scale. The large ¯lled circles are the 6 points

with largest
P5
i=1 yi.

In Figure 5 we observe the near asymptotic dependence of Argentina, Chile, and Mexico

on Brazil, indicated by the simulated points grouping around the equal quantiles curves.

The e®ect of negative estimate for b3j2 is the increasing concentration of this conditional
distribution for larger values of the Chilean index. The conditional distribution of U.S.

given Brazil is extreme, seems to be a mixture of an near independence component and a

tail dependence component. This structure deserves further investigation. We wonder if

this could be caused by another variable being extreme, and also if a more robust estimate

would identify the predominant component.

A brief summary of the other conditional distributions are as follows: Conditional

on Argentina being extreme, Brazil shows weak positive extremal dependence, whereas
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Figure 5: Data simulated from the estimated conditional models and in the original scale. We

show the simulated pairwise conditional distributions, given that the Brazilian index exceeds its

empirical quantile xi(0:95). The vertical lines correspond to the threshold x2(0:95). Points below

and above the thresholds are the original and the simulated data respectively. The "+" represent

the points that fall in the set C5(23). The large ¯lled circles represent the 6 points with the largest

values of
P5

i=1 yi. The curves represent equal marginal quantiles.

all other components show near extremal independence. Given Chile is extreme, Ar-

gentina shows near extremal independence, and all others show asymptotic independence

with positive extremal dependence. Conditional on Mexico being extreme, U.S. shows

near independence, Argentina and Brazil weak positive extremal dependence, and Chile

asymptotic dependence. Conditional on U.S. being extreme, all markets but Brazil exhibit

a mixture distribution.

It would be interesting to have a statistic to measure dependence at extreme levels,

such as Â and ¹Â, see Ledford and Tawn (1966) and Coles, He®ernan and Tawn (1999). To

measure monotone dependence we compute the Kendall's ¿ coe±cient, using the uncondi-
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tional joint distribution and the simulated conditional distribution. The results are given

in Table 4 for some selected pairs. We observe that Brazil does not a®ect the extremal

dependence between Chile and Mexico, as well as Mexico does not a®ect the pair Brazil

and Chile. However, given that the U.S. market is extreme, the monotone interdepence

observed for these two pairs increase.

Table 4: Unconditional and conditional measures of monotone dependence: the Kendall's ¿ coef-
¯cient.

Brazil & Chile Chile & Mexico Hong Kong & India Korea & Taiwan

Uncondit. 0.4142 Uncondit. 0.3641 Uncondit. 0.2626 Uncondit. 0.2847

Given Mex. 0.2574 Given Bra. 0.2539 Given Kor. 0.0600 Given HKg. 0.4922

Given U.S. 0.5015 Given U.S. 0.5258 Given Jap. 0.6810 Given Jap. 0.5259

Table 5: Conditional Value-at-Risk computed using the estimated models for Brazil and U.S. given
the remaining indexes exceed thei empirical 0:05-quantile.

Conditional Var of Brazil (Losses)

Risk jArg jChi jMex jU.S. Unconditional

1% -13.66 -16.67 -14.12 -15.78 -14.10

0.1% -18.11 -23.30 -21.05 -20.09 -15.74

Conditional Var of U.S. (Losses)

Risk jArg jBra jChi jMex Unconditional

1% -5.55 -6.35 -5.34 -8.97 -6.32

0.1% -7.49 -13.00 -6.30 -14.22 -6.86

Conditional Var of India (Losses)

Risk jHgKg jKor jTaiw jJapan Unconditional

1% -6.16 -11.98 -6.29 -7.82 -8.09

0.1% -6.77 -16.63 -7.94 -13.25 -10.63

Conditional Var of Japan (Losses)

Risk jHgKg jInd jKor jTaiw Unconditional

1% -6.41 -7.07 -6.87 -7.03 -6.29

0.1% -6.92 -8.01 -7.65 -7.26 -6.65

The varying levels of dependence observed among the Latin American markets suggest

inspecting the magnitudes of extreme values of a ¯xed index given that each other in turn

is extreme. This is actually the ¯rst new risk measure computed, the VaR conditional

to another variable being extreme, the model based conditional quantile. For example,

Table 5 shows the conditional and the unconditional VaR for Brazil and U.S. at the 1%

and 0.1% exceedance probabilities. For both markets, the VaR values computed using the

estimated models are more extreme when compared to the unconditional empirical VaR,
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re°ecting the positive extremal dependence existing among the components. We observe

that the worst scenarios for Brazil occur when either Chile or U.S. are extreme, and for

the U.S. occur when either Brazil or Mexico are extreme.

We introduce here our second new risk measure, the Conditional Expected Shortfall

of risk ®, de¯ned as the E[Xj jXi < xi(®)], ® a small probability, i; j = 1; ¢ ¢ ¢ ; 5. We
compute the thresholds xi(®) as the empirical ®-quantiles of the original data and set

® = 0:05 and ® = 0:01. This is a di®erent risk measure since we compute the expected

loss for some variable, given that another one is extreme, or exceeds a particular level. It

may be considered a generalization of the well known Expected Shortfall, recovered when

i = j. In Table 6 we provide estimates for this quantity, conditional on U.S. falls below

its thresholds ¡3:26 and ¡4:73. For ® = 0:05 we compare the model based expectations
to the empirical ones. For ® = 0:01 the empirical values are not reliable and are not used.

Since all variables are positively associated, the conditional expectations increase as we

consider higher quantiles.

Table 6: Empirical and model-based estimates of Conditional Expected Shortfall for the Latin
American losses, given that U.S. falls below its 0:05 and 0:01-quantiles, in the upper panel; and for

the Asian losses, given that Japan falls below its 0:05 and 0:01-quantiles, in the lower panel.

Latin America - Joint Losses

Xj E[Xj ] E[Xj jX5 < x5(0:05)] E[Xj jX5 < x5(0:01)]
Empirical Empirical Model based Model based

Argentina -4.51(0.27) -6.94(0.63) -9.14(0.16) -10.72(0.11)

Brazil -4.84(0.22) -8.93(0.54) -11.85(0.29) -12.94(0.19)

Chile -1.66(0.08) -2.49(0.25) -3.10(0.09) -3.16(0.10)

Mexico -3.56(0.21) -7.40(0.73) -12.40(0.77) -16.50(0.80)

U.S. -1.86(0.08) -5.07(0.23) -6.91(0.18) -10.28(0.23)

Asia - Joint Losses

Xj E[Xj ] E[Xj jX5 < x5(0:05)] E[Xj jX5 < x5(0:01)]
Empirical Empirical Model based Model based

Hong Kong -2.83(0.15) -5.39(0.76) -8.49(0.73) -8.90(0.88)

India -2.82(0.13) -5.29(0.96) -6.61(0.38) -7.61(0.39)

Korea -3.72(0.21) -8.87(1.23) -14.62(0.81) -14.99(1.43)

Taiwan -3.10(0.14) -3.89(0.51) -5.42(0.61) -5.97(0.69)

Japan -2.82(0.10) -6.03(0.13) -6.52(0.19) -7.04(0.49)

Another appealing and useful novelty provided by the model is the computation of the

conditional VaR of a portfolio, given that one of their components (or some other variable

in the model) is extreme. This is equivalent to estimate return levels of linear combina-

tions of the Gumbel transformed variables. The Gumbel scale emphasizes the e®ect of

dependence on extreme combinations, and facilitates the comparisons. We consider the
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¯ve-dimensional sets C5(v) de¯ned as C5(v) = f(y1; y2; y3; y4; y5) 2 <5 :
P5
i=1 yi < vg, for

some extreme negative value v. For a ¯xed probability ®, we report the estimated return

level v® | the Conditional VaR | the value implicitly de¯ned by PrfY 2 C5(v®)g = ®,
which depends upon the conditional dependence model and the marginal models.

To illustrate, we show in Figure 6 the Conditional model based VaR of an equally

weighted portfolio given that variable i is extreme, i 2 f2; 5g, that is, given that Brazil is
extreme, and given that the U.S. is extreme. For the exceedance probability 1%, the VaR

values are respectively ¡3:994 and ¡3:858; and for the 5% risk the values are ¡2:849 and
¡2:614, re°ecting the important in°uence of Brazil in the Latin America.
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Figure 6: Conditional Value-at-Risk of a equally weighted portfolio e conditional on Brazil and
U.S., respectively, being extreme, for joint losses in Latin America. The return level is

P5
i=1 yi,

represented by the solid line. Dotted lines correspond to the 0.95 con¯dence interval. The points

\o" represent the empirical return levels. The horizontal axis has the logarithm of the exceedance

probabilities.

3.2 Conditional extremal dependence in the Asian markets

We now use the emerging Asian markets to illustrate the applications of the conditional

model. All the inference steps carried on in the previous section are repeated for the 5

major Asian indexes. The marginal and dependence models point estimates are shown

in tables 1 and 2. The statistical variability of marginal estimates are similar to those

observed for the Latin American markets. The Asian markets considered seem to have

shorter left tail when compared to the Latin American ones, as indicated by the marginal

0:99-quantiles. The plots of the Gumbel transformed variables show di®erent levels of

unconditional extremal dependence, being all pairs asymptotic independent. The sam-

pling distributions of the pairs (baijj ;bbijj) and (bajji;bbjji), for all i; j, indicate weak pairwise
exchangeability with the convex hulls showing large intersections.

The scatterplots of pairs of components of Z¡i, for all i, reveal that India-Japan
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are conditionally asymptotically dependent when Hong Kong is extreme, and that Hong

Kong-Taiwan may be considered asymptotically conditionally dependent given either India

or Japan is extreme. Interesting to note that all pairs are asymptotically unconditionally

independent. A possible interpretation is that the interdependence observed at high quan-

tiles between India and Japan may be a contagion of a crisis disseminated by Hong Kong.

In the case of the pair Hong Kong and Taiwan the contagion is driven by either India or

Japan. These results are summarized in Table 3.

By examining the estimates (baijj ;bbijj), for all i6= j, we observe that there is a strong
dependence between the markets Hong Kong and Korea, with evidence that they might be

near asymptotically dependent. All (i; j) pairs of estimates indicate positive association,

with (Taiwan, Japan) close to independence.

Figure 7 illustrates the di®erent degrees of dependence and show pseudo-samples on

the measured scale from the conditional distribution of the remaining variables given that

India is extreme. The conditional distributions of Hong Kong and Korea, given India

is extreme, may be considered as mixtures of an independent component and extremal

positive dependence. According to He®ernan and Tawn (2004) this may induce bias in

the estimates. Japan is asymptotically dependent, but Taiwan shows near asymptotic

independence.

Figure 8 shows pseudo-samples on the measured scale from the conditional distribu-

tions of India given each one of the remaining variables is extreme. It seems that all of

them are mixtures, have a component related to a near asymptotic independence, and

another related to positive extremal dependence. Large values are observed when either

Korea or Japan is extreme. On the other hand, Japan is also a®ected by India. Given

India is extreme, we observe tail dependence with Japan. Given Hong Kong is extreme

we observe near independence for Japan.

To help understanding the e®ect of this conditional dependence we construct again two

equally weighted portfolios composed by 1: (Hong Kong, Taiwan, India), and 2: (Hong

Kong, Taiwan, Korea). Note that portfolio 2 includes Korea, a market which does not

imply tail dependence on the pair (Hong Kong, Taiwan). The VaR-0.01%, 0.1%, 0.05%

values for portfolios 1 and 2 are, respectively, (-5.74, -3.07, -1.77), and (-6.79, -3.64, -2.13).

We compute the historical accumulated gains of the two portfolios, and observe that even

though portfolio 2 presents more extreme VaR values, it shows higher accumulated gains

higher than those from portfolio 1, probably due the extreme losses presented by the

combination in portfolio 1. This deserves a more comprehensive investigation, as the

behavior of a portfolio also depends on the marginal distributions.

We show in Table 5 the Conditional VaR of India and of Japan. The e®ect of the

di®erent levels of positive conditional dependence is seen by comparing these ¯gures to

the unconditional VaR. Korea is the market a®ecting India the most, and India is the one

a®ecting Japan the most.
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Figure 7: The simulated pairwise conditional distributions, given that India exceeds its empirical
quantile xi(0:95). The vertical lines correspond to the threshold x2(0:95). Points below and above

the thresholds are the original and the simulated data respectively. The "+" represent the points

that fall in the set C5(23). The large ¯lled circles represent the 6 points with the largest values ofP5
i=1 yi. The curves represent equal marginal quantiles.

Finally, using the pseudo-samples we compute the Conditional Expected Shortfall,

shown in Table 6. They are the mean loss of all markets given that Japan has fallen

bellow its empirical 0:05- and 0:01-quantile. A portfolio manager may be interested in

assessing these functionals under the di®erent conditional distributions to help selecting

portfolio components.

4 Discussion

In this paper we have exploited the conditional model proposed by He®ernnan and Tawn

(2004), providing another application of the new extreme value model. The investigation

carried out here may help to better understand the strengths and applicability of the
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Figure 8: Tthe simulated pairwise conditional distributions for India given that each market has
exceeded its empirical quantile xi(0:95). The vertical lines correspond to the threshold xi(0:95).

Points below and above the thresholds are the original and the simulated data respectively. The

"+" represent the points that fall in the set C5(23). The large ¯lled circles represent the 6 points

with the largest values of
P5
i=1 yi. The curves represent equal marginal quantiles.

multivariate conditional model, while providing new insights on the complex behavior

of emerging stock markets. One of the contributions of the modeling strategy is the

computation of the new conditional risk measures.

We found that many of the conditional distributions possess two di®erent components,

which may be related to other economic and political aspects. One of the components

act as if the variables involved were independent, whereas the other one implies positive

extremal dependence. The phenomenon of contagion may also contribute on this kind of

behavior. As discussed in the original paper, the mixture distributions my result in bias

in the estimators. For example, we observed that for Brazil and Argentina, just a few

points seemed to have been generated by the near independence component. We wonder

if robust estimates, using their main property which is to identify the distribution followed
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by the majority of the data, in this case the near asymptotic dependent component, would

provide better estimates, and would re°ect the worst cases scenarios for interdependence

in Latin America. We have replaced the Gaussian model by the t-student distribution,

but this did not lead to better ¯ts.

For this particular application, we did not address the issue of robustness of results to

changes on data collection. In a future work we may investigate whether or not results

substantially change if we take bi-weekly or bi-monthly componentwise minima.
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