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Sampling Schemes for Asymmetric Models
a comparative study

Abstract

This paper discusses numerical aspects of the Bayesian estimation of the param-
eters in a special class of asymmetric models, the normal-gamma stochastic frontier
model, without restriction in the shape parameter. As is well known, some of the
full conditional distributions are not available in closed form and besides that in same
cases the distribution is not log-concave. Alternative MCMC schemes are compared in
both artificial and real data. Our main finding is that slice sampling produces more
reliable estimates for the parameters related to the stochastic frontier model, being a
more realistic alternative to current proposals, which fail to produce good estimates
for the quantities of interest when the distribution of the inefficiencies concentrates a
significant portion of its probability mass far from the origin.
Keywords: Bayesian stochastic frontier, Slice sampling, Optimized Metropolis sam-
pler, Stochastic simulation - MCMC.

1 Introduction

Current research in statistics is strongly driven by the development of new models to analyze

asymmetric data. Skew-normal regression models are closely related to the econometrics of

the stochastic production frontier. This paper takes into account the relationship among

those research areas and points out some difficulties with estimating its parameters.

The focus of this paper is to compare alternative sampling schemes recently proposed

in the literature to deal with the Bayesian inference in asymmetric models. In particular,

we are interested in the asymmetric model obtained after mixing a normal error component

with a gamma distribution to model the inefficiency term in a stochastic production frontier.

Our proposal is to do inference in this model without imposing a restriction on the shape

parameter of the gamma component. For instance, we emphasize the cases where the method

proposed by Tsionas (2000) fails to give sensible results. We also compare the performance

of the slice sampling algorithm (Neal, 2003) with the former to deal with the inference in

the stochastic frontier model.

The broad class of asymmetric distributions introduced by Azzalini (1985) is in evidence

in the current statistical literature. Particular attention has been devoted to the skew-normal
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(SN) and to the skew t-Student (ST) cases. The most recent and important results related to

the skew-normal models are presented in Azzalini (2005) and Genton (2004). Some numerical

difficulties in estimating the skewness parameter are well documented in the literature. The

likelihood function is not well behaved, which means that with positive probability the

maximum likelihood estimator is not finite (see Liseo and Loperfido (2006) for details). The

ST introduced by Branco and Dey (2001) and Azzalini and Capitanio (2003) is a natural

extension of the SN and involves an extra parameter that controls the tail thickness of the

distribution. This class of models allows one to control simultaneously the skewness and

kurtosis of the data. The estimation of the degrees of freedom also demands some caution

(Fonseca, Ferreira and Migon, 2005).

A very natural context for the use of skew-normal or skew-t distributions arises in the

so-called stochastic frontier (SF) models, used to evaluate the efficiency of some economic

agents, such as firms or countries. The basic idea is that the observed production of a

single unit cannot exceed the (latent) potential production, which is named the frontier ;

the difference between the frontier and the actual production can be used as a measure of

inefficiency. Consider, then, the model

y = f(X, β) + e with e = v− u (1)

where β is a k×1 vector of parameters, X is an n×k full column rank matrix of non-stochastic

inputs, y is an n× 1 vector of outputs, v is an n× 1 random vector of disturbances, and u is

an n× 1 vector of inefficiency terms, with ui > 0 ∀ i = 1, · · · , n and f is a smooth function.

Aigner et al. (1977) show that, when v ∼ Nn(0, Σv), multivariate normal distributed,

and u ∼ N0
n(0, Σu), multivariate normal distributed truncated at zero, then the difference

e = v−u is exactly the density of the multivariate skew-normal distribution (MSN) proposed

by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999). The connection

between the SF models and the multivariate skew-normal has been discussed, among others,

in Domı́nguez-Molina et al. (2004).

Therefore, stochastic frontier models can be represented as standard regression models

with multivariate skew-normal errors; the extension to multivariate skew-t errors, with ν

degrees of freedom, can be easily accommodated by assuming that the difference vector e

in (1), is replaced by ω−1/2(v − u), where ω ∼ Ga(ν
2
, ν

2
) (Azzalini and Capitaneo, 2002),

with Ga(a, b) denoting the gamma distribution with shape parameter a and scale parameter

b. The inference for the parameters of this model, based on the likelihood function, is

described in Tancredi (2003), and a recent paper by Dey and Tchumtchua (2007) introduces

its Bayesian counterpart.
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The skewed compound error vector e is obtained after many different choices of the

components. Assuming that v is multivariate normal and u is the vector with independent

gamma distributed components leads to the normal-gamma stochastic frontier proposed by

Greene (1990) and Beckers and Hammond (1987) as a natural extension of the original

proposal of Aigner, Lovell, and Schmidt (1977), which provides a richer and more flexible

parameterization of the inefficiency distribution than either of the canonical forms: normal-

half normal or normal-exponential. Nevertheless, several attempts to operationalize this

model have had limited success, as the log likelihood is complex. Greene (1990) attempted a

direct, but crude maximization procedure which, as documented by Ritter and Simar (1997),

was not sufficiently accurate to produce satisfactory estimates. Stevenson (1980) restricted

his attention to the Erlang case, a very restrictive model, avoiding some difficulties in the

estimation. Previous Bayesian work involving the normal-gamma model was presented by

van der Broeck et al. (1994). In particular, these authors concentrated in the Erlang case,

integer values for the form parameter, and implemented the inference using importance

sampling. Koop, Steel and Osiewalski (1995) were the first to use the Gibbs sampler to

analyze this model but did so assuming a known shape parameter.

The unrestricted normal-gamma stochastic frontier model presents some difficulties in the

MCMC implementation. The full conditional distributions for same parameters are not in

a known closed form, and in same cases, they are not log-concave. Tsionas (2000) proposed

a rejection method to draw values from these distributions. Unfortunately his method does

not work properly for shape parameters greater than one and also when the ratio of the

inefficiency variance and the total variance of the model is relatively small, as he has shown

empirically. More details will be presented in the Section 4.1.

The rest of the paper is organized as follows. The class of skew models is reviewed in

Section 2. The normal-gamma stochastic frontier model is presented in Section 3, including

prior specification and the full conditional distributions. Alternative methods of stochastic

simulation to sample from the full conditional distributions when they are not available in

closed form are also introduced in this section. In Section 4, some numerical illustrations

based on artificial data are presented with the objective of evaluating the performance of

alternative MCMC methods. An application based on the Greene’s (1990) electricity data

set is presented in Section 5. Finally, concluding remarks and some extensions are discussed

in Section 6.
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2 The Class of Skew Distributions

A general class of skew distributions (Azzalini and Capitanio, 2003) is defined as follows

f(e) = 2g(e)Q(W (e)) (2)

where g(e) is the density function of an n-dimensional continuous random variable which is

centrally symmetric around 0, Q is a scalar distribution function such that Q(−e) = 1−Q(e)

for all e and W (e) is a function from <n to < such that W (−e) = W (e) for all e ∈ <n. A

special case is obtained setting g = φn and Q = Φn, respectively the standard multivariate

normal density and distribution function, and W (e) = λTe, which corresponds exactly to

the multivariate skew normal distribution, denoted as SNn(0, I, λ).

Although the class of skewed distributions introduced before is very broad, it is common

practice to begin with the more well-known members of the family. So the first choices are,

of course, the multivariate SN and the multivariate skew-t. An alternative characterization

of the multivariate skew-normal, is as a linear combination of two independent random vari-

ables. Let u ∼ N(0, 1) and v ∼ Nn(0, In) be independent variables, and ∆ = diag(δ1, ..., δn)

where δi ∈ (−1, 1). Then

e = (In −∆2)1/2v + ∆1n|u| (3)

has distribution SNn (0, In, Λ), with Λ =


 δ1√

1− δ2
1

, · · · , δn√
1− δ2

n


. For instance, if δi =

− σu√
σ2

v+σ2
u

,∀i = 1, · · · , n, then e, in (1), is SNn(0,
√

σ2
v + σ2

uIn,−(σu/σv)1
T ).

The skew factor depends on the ratio of the two scale parameters: the larger σ2
u is

compared to σ2
v , then the larger the probability is that ui assumes large values and the

larger the amount of skewness induced in the law of ei.

It is worth pointing out that the SN frontier models are related to the hierarchical for-

mulation of O’Hagan and Leonard (1976), introduced in the context of estimating a normal

location parameter subject to an inequality constraint indicated by theoretical considera-

tions. Let

y|u, ∼ Nn(Xβ − u, Σv)

u ∼ N0
n(0, Σu)

where Σv = diag(σ2
v , ..., σ

2
v) and Σu = diag(σ2

u, ..., σ
2
u). After some standard algebra it follows

that the marginal distribution of y is skew-normal, that is:

y ∼ SNn(Xβ, (σ2
v + σ2

u)In,−(σu/σv)1
T ) (4)
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This is our preferred form, to be used in the implementation of many alternative stochastic

frontier models, as for example the normal-gamma studied in this paper.

3 Normal-Gamma Stochastic Frontier

In the Bayesian approach, if we assume that the components of the vector u’s are unknown,

the model in (1) can be written as follows

(y|β, Σv,u) ∼ N(Xβ − u, Σv) (5)

(u|P, θ) ∼ GaI(P, θ)

where GaI denotes the product of the gamma density function obtained under the sup-

position of independence and identical distribution of the component of the vector u, and

Σv = diag(σ2
v , ..., σ

2
v).

The density of e follows easily by solving
∫
<n p(e + u)p(u)du:

p(e) =
θnP

Γ(P )n
exp(θ

n∑

i=1

ei + nσ2
vθ

2/2)
n∏

i=1

Pr[Q > 0|ei]h[P − 1, ei] (6)

where h(r, ei) = E[Qr|Q > 0, ei] and Q|ei ∼ N [−(ei + θσ2
v), σ

2
v ], as presented in Greene

(1990). Although this expression is not in the form of equation (2), it corresponds to a skew

distribution.

The prior distribution for the parameters (β, σ2
ν , P, θ) is assumed to be independent:

p(β, σ2
ν , P, θ) = p(β)p(σ2

ν)p(P )p(θ) (7)

where β ∼ Nk(m,C), σ−2 ∼ Ga (n0/2, n0σ
2
0/2), P ∼ Ga (d0, ε0) and θ ∼ Ga (υ0, ω0). The

hyperparameters were chosen in such away that these distributions were vague. For instance,

we set m = 0 and ci,i →∞ in the prior for the elasticities β´s.

3.1 MCMC Methods in Normal-Gamma Frontier

The full conditional posterior distributions for the parameters β, σ2 and θ have known form,

as shown in Appendix 1, then Gibbs sampler is used. The same is not true for the other

parameters: P and ui, i = 1, · · · , n. As can easily be verified, the full conditional distribution

of ui is not log-concave, ∂2

∂2ui
ln(p(ui)) = 1−P

u2
i

> 0, if P < 1. To contemplate this case, an

optimized acceptance/rejection method (optimized Metropolis) was, recently, introduced in
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the literature, while for the log-concave case, P > 1, the ratio-of-uniform method (Ripley,

1988) is advocated. Finally, an exponential prior is defined for P , then the full conditional

distribution of P is log-concave and the optimized Metropolis method is applied.

We propose in this paper the use of slice sampling independently of the nature of the

full conditional distribution. In what follows we briefly discuss the methods we will be

comparing.

• Optimized Metropolis

Let p(x) be the density we want to draw and let g(x, γ) be a proposed distribution for

x. Define R(x, γ) = p(x)/g(x, γ) and r(x, γ) = log R(x, γ), where the parameter λ is

chosen to maximize R(x, γ), that is, to find the maxx minγ{r(x, γ)}.
Given the optimal value of γ, the algorithm follows two steps:

1. Draw xnew from g(x, γ).

2. Accept xnew with probability α(xnew) = R(xnew)/R(x∗) where x∗ is the optimum

value of x, that is, xnew will be accepted if α(xnew) ≥ U , where U is uniformly

distributed in (0, 1).

The proposal distributions suggested in the literature are the exponential and a gamma

distributions, respectively, to P and ui. More details on these procedures can be found

in the work previously cited.

• Slice Sampling

Let us suppose that we want to draw from the density function p(x) = g(x)/c where

x ∈ X ⊆ <. The sliced sampling algorithm introduces an auxiliary variable y and

defines the joint distribution of x and y as uniform over the region U = {(x, y) : 0 <

y < g(x)}. Then the joint density of (x, y) is

p(x, y) =
1

c
I(0,g(x))(y) (8)

Consequently, the marginal density of x is p(x) =
∫ g(x)
0 (1/c)dy = g(x)/c.

In order to draw x, we need to jointly sample from and ignore the second component - y.

Sometimes it is not easy to draw the elements of (x, y), jointly sampling uniformly from

U . An alternative scheme is Gibbs sampling, which demands the following conditional

distributions:
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• (y|x) ∼ U(0, g(x))

• (x|y) ∼ U(S(y)) where S(y) = {x : y < g(x)}

However, drawing uniformly one value of x in S(y) could still be difficult. Alternatively,

Neal (2003) proposes to sample one value of x following these steps:

(a) Draw a value of y from the uniform distribution in (0, g(x0)), where x0 is an initial

value. Then a horizontal slice is defined as: S(y) = {x : y < g(x)}.
(b) Find an interval, I = (L,R), around x0 containing the biggest part of the slice.

This step can be implemented in many different ways. The scheme involves defin-

ing an interval of width w centered around x0 and then increasing this interval

with increments of size w until its extremes fall out of the slice.

(c) The final step consists of drawing a new point x1, from the part of the slice included

in the interval, that is S ∩ I. So, a new point x1 is sampled from an U(L,R) and

this proposed value is accepted if y < g(x1), otherwise if x1 < x0 then L = x1 or

R = x1.

The main advantages of the slice sampling procedure are:

• it demands less implementation effort; and in particular

• it takes less time to tune it to obtain a satisfactory performance than with

other commonly used methods, like the oft-employed Metropolis-Hastings

algorithm.

4 Numerical Study

In this section we present two exercises with the objective of evaluating the performance of

alternative MCMC methods. The first is based on two artificial samples, one corresponding

to P < 1 - not log concave and the other one to the log-concave case, that is P ≥ 1. The

second exercise shows a Monte Carlo study where several simulated datasets are generated

with the objective of evaluating the inefficiency of the MCMC schemes.

4.1 Illustration with Artificial Data

Our aim is to evaluate the performance of the methods introduced in Section 3.1, via artifi-

cially generated data.
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Two datasets were generated from the model in eqn. 5, using an S-plus routine, with

N = 100 and N = 500 elements. We set k = 3 regressors with equal coefficients, that is: β =

(1, 1, 1). The design matrix X is obtained as: the first column is a vector of 1’s corresponding

to the intercept. The second and third columns were generated from N(0, 1) for each of the

N firms involved. With respect to P and θ, two cases will be considered. In the first, case

1, we set (P, θ) = (0.8, 1), corresponding to the case where the full conditional distribution

of u is not log-concave. The second one, case 2, corresponds to set (P, θ) = (2, 1). In this

case, the estimates obtained by Tsionas (2000) were not very precise. In both case cases,

σ2 = 0.05 was fixed. These values where chosen mimicking this reference.

We are mainly interested in three functions of the parameters: the mean inefficiency

defined as m = P/θ; the inefficiency standard deviation, given as S = (P/θ2)1/2; and the

frontier variance proportion, given by ζ = P/θ2

P/θ2+σ2 .

In this empirical exercise, we have used 15,000 iterations for the MCMC algorithm,

leaving out the first 5,000 iterations, corresponding to the burn-in period. All the results

presented below are based on the samples after reaching convergence (Brooks and Gelman,

1998). It is worth pointing out that the optmized Metropolis or slice sampling are used to

sample the parameters P and ui, i = 1, · · · , n and, for the others, a Gibbs sampler is applied.

The main results for case 1 using optimized Metropolis or slice sampling for a sample

of 100 units are showed in Table 1, where we present the posterior mean, the standard

deviation, the median and the 2.5 and 97.5 percentiles for all the parameters of the model.

We observe that for both methods, the posterior means are reasonably close to the true

value. All the true values belong to the 95% credibility interval.

*** Insert Table 1 here ***

For the data set with sample size N = 500, although the results are not reported here,

both algorithms again performed quite well. The parameters posterior densities are more

concentrated around the true parameter value than in the case of N = 100. This is not a

surprising, since the posterior standard deviation must decreases with the sample size.

The marginal posterior densities of P and θ for both methods are presented in Figure 1

for the case 2 and N = 100. Clearly, the results obtained with the slice sampling method are

quite impressive, since the densities for almost all the parameters are strongly concentrated

around the true parameter value (the vertical solid line). Nevertheless, the same is not true

with P > 1. Using the proposal of Tsionas (2000), the marginal posterior density for P is

asymmetric to the right.
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*** Insert Figure 1 here ***

Finally, for case 2 with N = 500, both algorithms produce reasonable results. The

marginal posterior densities for the parameters P and θ are shown in Figure 2, where we see

that the densities are centered around the true value of the parameters.

*** Insert Figure 2 here ***

4.2 Simulation Evaluation

The sampling schemes presented in Section 3.1 gave rise to chains with different convergence

properties. Theoretical characteristics, like their autocorrelation or the convergence ratio

can ideally be used to compare those chains.

The autocorrelation is the key ingredient to compare the efficiency of the Monte Carlo

estimators, of any quantity of interest h(θ), obtained after the generated data. Its variance

h̄M = (1/M)
∑M

i=1 h(θ(i)) is given by V ar[h̄M ] = (σ2
h/M)i, where σ2

h is the posterior variance

of h(θ) and i is the chain inefficiency factor, given as:

i = 1 + 2
M−1∑

k=1

(M − k)

M
ρk (9)

where ρi is the lag k autocorrelation of the sampled values of h(θ). Therefore, the i factor

evaluates the sampling inefficiency of a MCMC scheme.

The simulation study developed in this section includes four alternative settings, differing

in the sample size N (100 or 500) and on the value of the parameter P of the gamma

component: 0.8 and 2. These values correspond just to the cases considered before in the

literature and also used in the former section. The other parameter of the gamma component

is fixed as θ = 1.

For each alternative setting, 100 replications were generated and analyzed via the two

alternative sampling schemes discussed in this paper. Based on these sampling replications,

envelopes for the autocorrelation function and for the inefficiency factor were built up.

We run a total of 15, 000 iterations for each chain. For all the chains, the convergence for

all the parameters of interest occurred after the first 5,000 iterations, although in some cases

it happened almost immediately. We developed the computer code in Fortran and used an

AMD Athlon XP 2300, 1.8GHz, 512MB RAM to run it. The computational times spent by

each method are shown in Table 2.
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Notice that for N small and any value of P , the optimized Metropolis method takes 1.5

times longer than the slice sampling method. For N = 500, the computational time is 2.2

times longer than for the optimized Metropolis method, this is because this method requests

an optimization of each interaction.

*** Insert Table 2 here ***

Figures 3 and 4 show the autocorrelation functions for the chains of values of P , θ.

For each of the 4 combinations of values N and P , 100 estimates of the autocorrelation

functions are obtained, and thus, mean and envelopes can be constructed. For P and θ, the

optimized Metropolis method shows a slow decay in the autocorrelation for the generated

chains, reflecting the strong dependence between the parameters previously mentioned. The

slice sampling method, in turn, presents a very fast decay in those autocorrelations. For

example, for the case P = 2 and N = 100 (resp. N = 500), the autocorrelation for the chain

generated with the slice method is about 0.50 (resp. 0.60) at lag 20, while the optimized

Metropolis reaches the same value only at lag 100.

*** Insert Figure 3 here ***

*** Insert Figure 4 here ***

These results can be summarized by seeing them as inefficiencies aggregated into the

figures referred to in the previous section. For each value of P and each scheme, 100 MCMC

inefficiency values for the parameters θ, P and σ2 are obtained, one for each replication.

These can be summarized as in the box-plots of Figures 5 and 6. For all schemes considered,

the inefficiencies becomes larger as the length of the sample gets larger and as P gets smaller.

The figures show that the slice sampling method appears to be the most efficient scheme for

P , θ, β2 and σ2
v . As can be seen the central boxes do not overlap for almost all the simulated

alternatives and all the parameters examined.

*** Insert Figure 5 here ***

*** Insert Figure 6 here ***

For each MCMC replication, we save the values of u only for the best and the worst firm

(DM unit). Remember that we known precisely who they are, since they were artificially

generated. During the MCMC iterations, we evaluate the autocorrelation function for lags
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up to 100 and summarize these results using the MCMC inefficiency statistic defined by

eqn. (9). The above-mentioned procedure is replicated M times, providing a sample from

the MCMC inefficiency measure. We denote by umin and umax, respectively, the MCMC

inefficiency statistics calculated over the u´s for each of the two firms mentioned above.

These values are plotted in the box-plots presented in Fig. 7, for the cases N = 100, 500

and P = 0.8, 2. Again, for almost all the simulation alternatives, the median inefficiencies

obtained using the slice method are slightly better.

*** Insert Figure 7 here ***

5 An Example using the Greene Electricity Data

In this section we present an illustration using a real data set previously explored in the

literature. The dataset considered by Greene (1990) includes 123 electricity firms in the

United States for 1970. These data were also analyzed by Van den Broeck et al. (1994).

Greene (1990) fitted a cost function derived from the Cobb-Douglas production function,

but generalized it to include a quadratic term (log of the output Q), allowing the return of

scale to vary with Q. In this data set, we have three input factors: labor, capital and fuel,

with the respective prices denoted by Pl, Pk and Pf ; The cost function is specified as:

yi = − β0 − β1lnQi − β2ln
2Qi − β3ln(Pl/Pf )

− β4ln(Pk/Pf ) + υi − ui, (10)

where yi= - ln(cost of the ith firm / Pf )

The aim of this application is to show how well the slice sampling algorithm performs on

real data. Furthermore, we use this application to reinforce the advantages of the Bayesian

approach, which allows obtaining the posterior density probability function of the inefficien-

cies for each firm ri = exp(−ui).

All the results presented are based on the final 10,000 iterations out of the 20,000, in this

way avoiding the presence of transients. In Table 3 the posterior mean, median, standard

deviation and the 2.5 and 97.5 percentiles for all the parameters obtained using slice sampling

are shown, together with the results previously obtained by Greene (1990) and Van den

Broeck et al. (1994).

*** Insert Table 3 here ***
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Note from Table 3 that the results are not that different when compared with those

obtained by Greene (1990) and Van den Broeck et al. (1994). Figure 8 shows the posterior

marginal densities for the parameters θ, P , σ2, β1 obtained via the slice sampling algorithm.

*** Insert Figure 8 here ***

The posterior moments for the individual efficiencies ri (i = 1, . . . , 5) for the first five

firms, are shown in Table 4, together with the point estimates of van den Broeck et al.

(1994).

Comparing the figures in Table 4 with those obtained by Greene (1990) and van den

Broeck et al. (1994), one notes some differences in the estimates for the parameters describing

the efficiencies. For example, it is easy to note that the efficiencies for the first five firms

in the dataset are smaller when obtained via slice sampling than those obtained by Greene

(1990) and van den Broeck et al. (1994). We can also note that the ranking of these five

firms obtained using the slice sampling method and that of van den Broeck et al. (1994) are

almost the same.

*** Insert Table 4 here ***

6 Conclusions and Extensions

In this paper we discuss some numerical aspects involved with the normal-gamma stochastic

frontier model and present two alternative strategies to deal with the stochastic simulation

procedure.

Based on the results obtained with both artificial and real data sets, we conclude that

the slice sampling algorithm performed better to draw samples from the non log-concave full

conditional posterior distribution, in the normal-gamma model. Besides being more efficient,

it demands less computational time.

The first exercise clearly demonstrate that the optimized Metropolis algorithm does not

perform well for several cases.

Since the error vector component u is an N dimensional parameter, the implementation

of the algorithm proposed by Tsionas (2000) needs to solve N optimization problems in each

Gibbs sampling step, imposing a high computational cost for its implementation.
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Appendix - Full Conditional Distribution of the Param-

eters

In order to implement the MCMC procedure, the full conditional distributions of the pa-

rameters must be evaluated. These distributions are given as:

• β|y, X, σ2, P, θ, u ∼ Nk

(
(X

′
X)−1[X

′
(y + u)], σ2(X

′
X)−1

)

• σ2|y, X, β, P, θ, u ∼ GI
(

(N+n0)
2

, ((y+u−Xβ)
′
(y+u−Xβ)+a0)
2

)

• θ|y, X, β, σ2, P, u ∼ G

(
NP + υ0,

N∑

i=1

ui + ω0

)

As can be seen, the above full conditional distributions are available for sampling, since

they have known form. In contrast, the full conditional distribution for the parameters

P and ui’s are not in closed form.

• π(P |Y, X, β, σ2, θ) ∝ P d0−1Γ(P )−N exp[(
∑N

i=1 log ui − ε + N log θ)P ]

• Para i = 1, . . . , N , π(ui|y, X, β, σ2, θ, P ) ∝ uP−1
i exp

[
−(ui+θσ2+yi−x′iβ)2

2σ2

]

It is worth noting that the distribution of P is not log-concave for d0 < 1, and for

P < 1 the full conditional distribution of ui is not log-concave.

There is a natural hierarchy in the application of the following alternative sampling

schemes. If the full conditionals are not available for sampling but if they are log-

concave, we can apply the adaptive sampling procedure of Gilks et al. (1992). More-

over if log concavity fails, slice sampling (Neal, 2003) can be used because the full

conditional distribution is defined in a limited interval. A third alternative consists of

using Metropolis-Hastings. For instance, the strategy used in WinBugs is to generate

ui and P through the slice sampling method.
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Table 1: Posteriori distribution summary for all the parameters of the model obtained via slice
sampling and optimized Metropolis, considering case 1: (P, θ) = (0.8, 1) and N=100 (the true

value of the parameters are inside the brackets)

Case 1 Methods

N=100 Slice Sampling Optimized Metropolis

Parameters Mean s.d. Median 2.5% 97.5% Mean s.d. Median 2.5% 97.5%

β1[1] 1.026 0.103 1.016 0.960 1.082 1.050 0.107 1.063 0.973 1.125
β2[1] 0.972 0.046 0.972 0.940 1.001 0.959 0.045 0.959 0.929 0.988
β3[1] 0.914 0.048 0.913 0.883 0.945 0.910 0.048 0.911 0.882 0.941

σ[0.05] 0.077 0.023 0.074 0.060 0.090 0.054 0.025 0.051 0.036 0.068
θ[1] 0.862 0.255 0.834 0.681 1.003 0.861 0.234 0.857 0.695 1.011

P [0.8] 0.716 0.276 0.662 0.533 0.838 0.733 0.243 0.738 0.554 0.892
m[0.8] 0.831 0.181 0.816 0.702 0.945 0.847 0.148 0.847 0.747 0.944
s[0.89] 1.009 0.201 0.978 0.867 1.117 1.017 0.171 0.994 0.900 1.108
ζ[0.94] 0.923 0.036 0.930 0.904 0.950 0.948 0.029 0.953 0.934 0.968

17



Table 2: Computing times (in seconds)

Sampling Scheme N=100 N=500

P = 0.8 P = 2 P = 0.8 P = 2

Slice 329 320 713 720

Optimized Metropolis 442 454 1691 1565
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Table 3: Posterior distribution summary for all models´ parameters using slice sampling approach
and also the results obtained by van den Broeck et al. (1994) and Greene (1990) - Industrial

Electricity Service - US

Frontier de Normal-Gama

Slice Sampling van den Broeck Greene

et al 1994 1990

Parameters Mean s.d. Median 2.5% 97.5% Mean s.d. Mean s.d

β1 -7.471 0.362 -7.470 -7.713 -7.226 -7.442 0.343 -7.810 0.378

β2 0.413 0.043 0.413 0.385 0.442 0.407 0.042 0.473 0.043

β3 0.030 0.003 0.030 0.028 0.032 0.030 0.003 0.026 0.003

β4 0.248 0.069 0.247 0.201 0.294 0.257 0.068 0.291 0.068

β5 0.059 0.065 0.058 0.015 0.102 0.060 0.064 0.025 0.066

σ2 0.015 0.003 0.015 0.013 0.017 0.016 0.004 0.018 0.002

θ 17.432 6.561 16.827 12.236 21.691 23.446 11.368 21.347 3.944

P 2.841 2.013 2.109 1.129 4.192 2 - 2.450 1.102

m 0.149 0.066 0.141 0.094 0.201 - - 0.115 -

s 0.093 0.019 0.093 0.081 0.105 - - 0.005 -

ζ 0.367 0.118 0.366 0.287 0.446 - - 0.226 -
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Table 4: Posterior distribution summary of the efficiencies for the first five firms using slice
sampling and the approaches of van den Broeck et al. (1994) and Greene (1990) - Industrial

Electricity Service - US

Normal-gama Frontier

Slice Sampling van den Broeck Greene

et al., 1994 1990

Parameters Mean s.d. Rank Mean Rank. Mean s.d

r1 0.723 0.112 120 0.826 121 0.743 0.101

r2 0.930 0.055 2 0.998 3 0.939 0.036

r3 0.887 0.077 48 0.912 36 0.906 0.059

r4 0.872 0.082 68 0.897 77 0.896 0.065

r5 0.917 0.063 4 0.928 4 0.928 0.043
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Figure 1: Posterior density for: P, θ using the: slice sampling (solid line) and optimized
Metropolis methods (broken line), based on case 2: (P, θ) = (2, 1) and N=100
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Figure 2: Posterior density for: P, θ using the: slice sampling (solid line) and optimized
Metropolis (broken line), based on case 2: (P, θ) = (2, 1) and N=500
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Figure 3: Autocorrelation function for the chain values of P and θ for two alternative sampling
schemes and two different value of P : (a) P = 0.8 and N = 100; (b) P = 2 and N = 100. The
solid lines are the means of 100 replications and the broken lines the 90% credibility interval.
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Figure 4: Autocorrelation function for the chain values of P and θ for alternative sampling
schemes and two different value of P : (a) P = 0.8 and N = 500; (b) P = 2 and N = 500. The
solid lines are the means of 100 replications and the broken lines the 90% credibility interval.
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Figure 5: Box-plots of inefficiency factors for P , θ, β2 and σ2
v for two alternative sampling

schemes and two different value of P : (a) P = 0.8 and N = 100; (b) P = 2 and N = 100.
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Figure 6: Box-plots of inefficiency factors for P , θ, β2 and σ2
v for two alternative sampling

schemes and two different value of P : (a) P = 0.8 and N = 500; (b) P = 2 and N = 500.
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Figure 7: Box-plots of inefficiency factors of umin, umed and umax for 2 sampling schemes and
different values of P : (a) P = 0.8 and N = 100; (b) P = 2 and N = 100; (c) P = 0.8 and

N = 500; (d) P = 2 and N = 500.
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Figure 8: Posterior density for: θ, P , σ2, β1 using the slice sampling method
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