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Summary
This study applies computationally intensive methods for Bayesian analysis of spatially dis-
tributed data. It is assumed that the space of study is divided in contiguous and disjoint
regions. Different neighboring structures may be available and can be compared, from the
ones which contain few neighbors per region to structures where all sites are neighbors of
each other. The main aim of this work is to evaluate the influence of neighborhood on results
of Markov Chain Monte Carlo (MCMC) methods. Proper and improper prior specification
for state parameters are compared. Three schemes proposed in the literature for sampling
from the joint posterior distribution are also compared. The comparison criteria is based
in the autocorrelation structure of the chains. Two classes of models are studied: one is
characterized by a simple modelling without any explanatory variables and the other one
is an extension with multiple regression components. Initially, interest is concerned with
the performance of the spatial models in terms of their inference results based on different
prior distributions. Finally, extensive analyses confront the outcomes obtained by different
neighboring arrangements of the units.

Key Words: Bayesian inference, Neighboring influence, Sampling Schemes, Multiple Regres-
sion.

1 Introduction

Depending on the problem under study, different types of models, involving spatially distributed
data, can be considered. In this work the spatial modelling considers the division of the space in n

regions. In each region i, the variable of interest yi is observed and y = (y1, y2, ..., yn) is the complete
set of observations. The neighboring structure, establishing the dependence among observations, is
an important aspect to be considered. Assume, for example, a spatial configuration where the regions
are ordered in a line and the neighbors are the two regions immediately adjacent. In this example, the
neighboring arrangement is the simplest non-degenerate one, where degeneracy implies independence.
Cases where regions have three or more neighbors can also be evaluated.

The spatial structure can be based on a map over a region that does not need to be restrict to
IR or IR2. Any spatial structure in IRd, ∀ d ∈ ZZ+ is applicable in the models that will be defined.
The main question addressed here is whether the quantity of neighbors would influence the results
of MCMC algorithms. Also, if this influence actually exists, which behavior can be observed in the
comparison of results? Which neighboring structures provide the best performance? The search for
these questions answers became the target motivating the development of this work.
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A Bayesian analysis will be performed and three schemes, proposed in the literature, will be used
to sample from the posterior distribution. The blocking structure of parameters, determining which
ones will be jointly or individually sampled, is the main aspect that differentiates these schemes.
The performance of the MCMC algorithms, used by the sampling schemes, will be studied in the
presence of different neighboring structures. Reis, Salazar and Gamerman (2006) developed a study,
applied to linear dynamic models, comparing four sampling schemes. Gamerman, Moreira and Rue
(2003) studied the multiple regression spatial model. They described three sampling schemes, that
differ in the way blocks are formed, but did not provide any comparison. Knorr-Held and Rue (2002)
developed a study where several algorithms were proposed to sample the parameters. Knorr-Held
(1999), Rue (2001), Knorr-Held, Raber and Becker (2002), Fernandez and Green (2002) and Rue,
Steinsland and Erland (2004) is a partial list of papers dealing with discussion on algorithms to jointly
update parameters.

The outline of this study is: Section 2 describes the simplest spatial model used in this work.
Proper and improper approaches will be specified for the prior distribution carrying the spatial
information. The section is finished with the description of the data generating process. Section 3
describes the multiple regression spatial model. A model considering regressors is defined and only an
improper approach is used for the prior distribution. Section 4 presents three sampling schemes used
to define algorithms to sample from the joint posterior distribution. Section 5 shows inference results
to check the performance of the spatial models. An optimization study is developed to choose tuning
parameters defined in Metropolis-Hastings steps. In Section 6, distinct neighboring configurations
are applied to the spatial models and the chains, obtained by MCMC methods, analyzed. Each
configuration assumes a different number of neighbors per region. Differences in the algorithms
are shown by studying the behavior of their autocorrelation structure. Section 7 shows the main
conclusions and proposals for future works.

2 Simple spatial model

Many important aspects, common to spatial models in general, can be studied through the simple
model presented here. In this section we introduce notation, elements specifying the model and derive
properties.

A suitable model to represent spatial situations is based in the Markov Random Field (MRF).
In simple terms, a collection of random values X = (X1, X2, . . . , Xn) is said to form a MRF if the
joint distribution of X satisfies the property (Xi | X−i) ∼ (Xi | Xδi), where X−i = (X1, . . . , Xi−1,

Xi+1, . . . , Xn) and δi = {j : i ∼ j}, where i ∼ j means region i and j are neighbors, for i = 1, . . . , n.
Particularly, for the neighboring structure that orders regions in a line, δi = {i − 1, i + 1} and the
MRF property simplifies to (Xi | X−i) ∼ (Xi | Xi−1, Xi+1), for all i 6= 1, n.

It is assumed that each observation yi is associated to a mean value θi and is perturbed by
independent errors vi, for i = 1, ..., n. In this study, vi is assumed normally distributed with mean 0
and variance σ2, fixed along the space. In summary,

yi = θi + vi, vi ∼ N(0, σ2), for i = 1, ..., n. (2.1)

The spatial structure information is inserted through a prior distribution for θ = (θ1, θ2, . . . , θn)′.
Besag, York and Mollié (1991) suggested the following prior specification considering pairwise differ-
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ences

p(θ) ∝ exp

−
n−1∑
j=1

n∑
i=j+1

Zijh(θi − θj)

 . (2.2)

These authors proposed in their work several possibilities and interpretations for the weights Zij and
for function h. A typical choice for the weights is given by

Zij =

{
1, if i ∼ j,

0, otherwise.
(2.3)

Consider that h(x) = x2/(2W ). This specification for function h allow us to rewrite expression
(2.2) as

p(θ) ∝ exp

− 1
2W

n−1∑
j=1

n∑
i=j+1

Zij(θi − θj)2

 . (2.4)

The prior distribution (2.4) establishes the dependence between neighbors in the spatial structure.
The weights Zij , as defined in (2.3), determine that the sum observed in (2.4) contemplates only
differences between θi and its neighbors. This prior distribution for θ follows a MRF.

The components σ2 and W are called hyperparameters and these elements are assumed fixed
along the space. Assume prior independence between hyperparameters. The full prior conditional
density p(θ | σ2,W ), carrying the spatial information, can be easily determined as

p(θ | σ2,W ) ∝ exp

− 1
2W

n−1∑
j=1

n∑
i=j+1

Zij(θi − θj)
2

 exp
{
− 1

2R
(θ1 − a)2

}
. (2.5)

The first exponential term is proportional to the pairwise difference prior (2.4). The second term
is associated to an initial information θ1 ∼ N(a,R), where R ∈ IR+. The choice of a and R will
influence the model. Whenever we inform the prior distribution for θ is proper, the specification (2.5)
is assumed. When an improper prior distribution is mentioned, R is assumed to be infinite and (2.4)
is retrieved.

Proceeding with the model prior specification, it is important to express the full prior conditional
density (2.5) in the matrix form. This strategy will facilitate the identification of the associated
probability distribution. Consider the (n × n) matrix K with elements

Kij =


Zi+, if i = j,

−Zij , if i ∼ j,

0, otherwise,
(2.6)

where Zi+ =
∑n

j=1 Zij . If (2.3) is valid, Zi+ represents the number of neighbors of region i =
1, 2, ..., n.

Matrix K carries the spatial information to be considered by the model. Note that the sum of
values in any row or column is equal 0. This kind of matrix is singular and thus (2.4) is improper.
Nevertheless, the full prior conditional density (2.5) can be rewritten as

p(θ | σ2,W ) ∝ exp
{
− 1

2W
θ′Kθ

}
exp

{
− 1

2R
(θ1 − a)2

}
. (2.7)

The expression (2.7) simplifies to

p(θ | σ2,W ) ∝ exp
{
− 1

2W
θ′Kθ

}
(2.8)
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for an improper specification. This is the kernel of Nn(~0,WK−1), where ~0 represents the null vector.
The prior density (2.7) can be rewritten as

p(θ | σ2,W ) ∝ exp
{
−1

2

[
θ′
(

1
W

K

)
θ + R−1θ2

1

]}
, (2.9)

if a = 0. This is the kernel of the multivariate normal distribution with mean given by the null vector
and full rank covariance matrix. The specification R ∈ IR+ establishes that (2.9) is a proper prior
distribution, consequently the respective posterior distribution will also be.

There are other approaches to approximate (2.4) by a proper distribution. These include the work
of Ferreira, Higdon, Lee and West (2005), Fernandez and Green (2002) and Gamerman, Moreira and
Rue (2003). They are all based on the inclusion of an extra term that ties down components of θ to
a specific location.

2.1 Model properties

2.1.1 Full prior conditional joint distribution for θi

It can be shown that

(θ1 | θ−1, σ
2,W ) ∼ (θ1 | θδ1 , σ

2,W ) ∼ N

[
θ̄δ1

(
RZ1+

RZ1+ + W

)
,

WR

RZ1+ + W

]
.

If an improper prior distribution (R → +∞) is assumed for θ, the following limits are obtained for
mean and variance:

lim
R→+∞

θ̄δ1

(
RZ1+

RZ1+ + W

)
= θ̄δ1 and lim

R→+∞

WR

RZ1+ + W
=

W

Z1+
,

where θ̄δi
=
(∑n

j=1 Zijθj

)
/Zi+. Therefore, (θ1 | θδ1 , σ

2,W ) ∼ N
(
θ̄δ1 ,

W
Z1+

)
for R infinite. When

i = 2, ..., n, (θi | θδi , σ
2,W ) ∼ N(θ̄δi ,W/Zi+), irrespective of whether the proper prior (2.7) or

improper prior (2.8) was used.
The neighboring structure determines a dependence of each θi on its neighbors. It determines

which components of θ will enter the average θ̄δi
. The more neighbors region i possesses, the more

elements will compose this average and more information is available about this component since the
number of neighbors of region i is part of the variance expression. A greater number of neighbors
will determine a smaller uncertainty about θi.

2.1.2 Band diagonal neighboring matrix

The neighboring matrix (2.6) can be a band diagonal matrix or it can be band diagonalized. When
this matrix has many null value entries, it is called sparse matrix. There are numerical techniques
to organize elements of a sparse matrix in such a way it becomes band diagonal. In a band diagonal
matrix, the null values concentrate in a band along the main diagonal. The band width depends of
the quantity of neighbors.

The procedure to organize a sparse matrix is known as band diagonalization. Permutations are
performed between rows and between columns without changing the matrix information. Rue (2001)
developed a study where the applied algorithms are based in the use of band diagonalized sparse
matrices. The paper showed the benefit from the matrix organization in the band diagonal format.
Matrix operations such as Choleski decomposition become orders of magnitude faster. Knorr-Held and
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Rue (2002), Rue, Steinsland and Erland (2004) and Rue (2005) use the numeric procedures proposed
by Rue (2001). Knorr-Held, Raber and Becker (2002) also use techniques proposed by Rue (2001),
however, the matrices studied were not sparse and the diagonalization process was unnecessary.

2.2 Joint posterior distribution

Definition: If Ω ∼ IG(α, Σ), where α > 0 and Σ > 0, then:

p(Ω) =
Σα

Γ(α)
Ω−(α+1) exp

{
−Σ

Ω

}
, for Ω > 0.

The full prior conditional distribution p(θ | σ2,W ) is given in (2.9). The following prior speci-
fications will be used here: σ2 ∼ IG(nv, Sv) and W ∼ IG(nw, Sw), where nv, Sv, nw and Sw are
values greater than 0. To perform a conjugate analysis, the Inverted Gamma distribution is chosen to
describe the prior uncertainty about the hyperparameters. As will be seen below, the full conditional
posterior distributions for the hyperparameters will also follow the Inverted Gamma distribution. A
prior independence is assumed to the hyperparameters. Using the Bayes theorem, the joint posterior
density can be written by

p(θ, σ2,W | y) ∝
(
σ2
)−(n

2 +nv+1) exp
{

− 1
2σ2

[(y − θ)′(y − θ) + 2Sv]
}

(2.10)

×(W )−(n−1
2 +nw+1) exp

{
− 1

2W
[θ′Kθ + 2Sw]

}
× exp

{
− 1

2R
θ2
1

}
.

It is not possible to identify in (2.10) the kernel of a known probability distribution. Indirect
methods will be required to generate values from this distribution.

Improper prior specification for θ will lead to the posterior density (2.10) without the exponential
term in its third line. Despite its prior impropriety, the joint posterior distribution for (θ, σ2,W ) is
proper (Besag, Green, Higdon and Mengersen 1995). Once again, it is not possible to identify the
kernel of a known probability distribution and indirect methods will be needed to sample from this
distribution.

2.3 Simulated data

The simulation of a dataset allows the analysis of different scenarios for variation of the number of
neighbors. It also allows the verification of the performance of the models in terms of estimates. The
procedure described in this subsection will be applied to generate the data used in the analysis of the
simple spatial model. The first requirement is to obtain vector θ. In the second step we generate yi

as indicated in (2.1).
We assume a model with an improper prior distribution for θ but one has to consider a proper

prior distribution to generate samples for θ. Therefore, the data is generated from an approximating
proper prior distribution. From expression (2.9), the matrix K∗ can be defined through an alteration
in the precision matrix 1

W K as

K∗ =
K

W
+ R−1J, (2.11)

where J = diag(1, 0, . . . , 0) is a (n × n) matrix.
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The matrix K∗ is not singular and, therefore, θ can be generated from Nn

[
~0, (K∗)−1

]
. The

greater the value specified for R, the smaller will be the modification imposed in the precision matrix
1
W K.

3 Multiple regression spatial model

This spatial model is an extension of the simple spatial model. The covariates and coefficients are
inserted in the place of parameter θi.

Suppose the set (yi, x1,i, x2,i, ..., xd−1,i), d = 2, 3, 4, . . ., is observed along the space, for i = 1, ..., n.
Assume further that one wishes to model the association between the response variable yi and the
d − 1 regressors (x1,i, x2,i, ..., xd−1,i). The multiple regression model could be applied to explain the
response variable through the regressors by the following relation: yi = β0 +β1x1,i + ...+βd−1xd−1,i +
vi, vi ∼ N(0, σ2). A more flexible alternative is allowing the regression coefficients to vary in space.
This model assumes the relation, between response variable and regressors, is only local and not fixed
to all observed data. The model can be rewritten as

yi = β′
iXi + vi, vi ∼ N(0, σ2), (3.1)

where β′
i = (β0,i, β1,i, . . . , βd−1,i), X ′

i = (1, x1,i, . . . , xd−1,i) and σ2 is a scalar.
Assume the following notation,β′ = (β′

1, β
′
2, . . . , β

′
n), grouping all regression coefficients. The

spatial structure information is introduced by a prior distribution defined for (β | σ2,W ). There are
several prior proposals for β that follows a MRF. An interesting example is given by the multivariate
form

p(β) ∝ exp

−1
2

n−1∑
j=1

n∑
i=j+1

Zij(βi − βj)′W−1(βi − βj)

 . (3.2)

This proposal was used by Assunção, Gamerman and Assunção (1999) and by Moreira and Migon
(1999) as prior distribution for regression coefficients varying along the space. Similar expressions
can be found in Bernardinelli et al. (1995) and Gelfand and Vounatsou (2001).

In line with comments from the previous section, the more general family of priors can be proposed
with density

p(β | σ2,W ) ∝ exp

−1
2

n−1∑
j=1

n∑
i=j+1

Zij (βi − βj)
′
W−1 (βi − βj)

 (3.3)

× exp
{
−1

2
(β1 − a)′ R−1 (β1 − a)

}
.

The multivariate form for the pairwise difference prior, indicated in (3.2), can be identified in the
first exponential function of (3.3). Taking into account the definition (2.3) for the weights Zij , and
(2.6) for matrix K, expression (3.3) can be rewritten as

p(β | σ2,W ) ∝ exp
{
−1

2
β′ (K ⊗ W−1

)
β

}
exp

{
−1

2
(β1 − a)′ R−1 (β1 − a)

}
, (3.4)

where K ⊗ W−1 denotes the Kronecker product between K and W−1.
The improper prior distribution in (3.2) is recovered by letting R = diag(r, . . . , r), (d× d), where

r → +∞. In this section only this prior specification will be used. Thus, the remaining expression in
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(3.4) is the kernel of Ndn[~0, (K ⊗ W−1)−1] where ~0 is the null vector of order dn. As already discussed,
the neighboring matrix K is singular. Thus the covariance matrix

(
K ⊗ W−1

)−1, indexing the
Normal distribution indicated here, is also singular. Therefore, the prior distribution for (β | σ2,W )
is improper.

Simple extension of results of the previous section shows that (βi|βδi
,W ) ∼ Nd

[
β̄δi

,W/Zi+

]
,

where β̄δi =
(∑n

j=1 Zijβj

)
/Zi+. The neighboring matrix K determines which of the vectors β1, β2, ...,

βn will enter the sum in the expected value of the normal distribution. The larger number of neighbors
of region i, the larger number of vectors entering this sum and less uncertainty about βi.

3.1 Joint posterior distribution

Definition: Suppose Ω is a symmetric (d × d) positive definite matrix. If Ω ∼ IW (α, Σ) then

p(Ω) =
|Σ|α

π
d(d−1)

4
∏d

i=1 Γ
(
α + 1−i

2

) |Ω|−α− d+1
2 exp

{
−tr

(
ΣΩ−1

)}
,

where α > (d − 1)/2 and Σ is a symmetric (d × d) positive definite matrix.
Consider the following prior specifications for the hyperparameters: σ2 ∼ IG(nv, Sv) and W ∼

IW (nw, Sw), where nv > 0, Sv > 0, nw > (d − 1)/2 and Sw is symmetric (d × d) positive definite
matrix. In addition, note that (yi | βi, σ

2) ∼ N(β′
iXi, σ

2) and (β | σ2,W ) ∼ Ndn[~0, (K ⊗ W−1)−1].
A block diagonal matrix X = diag(X ′

1, X
′
2, . . . , X

′
n) can be formed with diagonal blocks X ′

1, . . . , X
′
n.

This matrix notation is inserted to deal with regressors in the model. Based on these results, the use
of Bayes theorem determines

p(β, σ2,W | y) ∝ exp
{
− 1

2σ2

[
y′y − 2y′Xβ + β′ [X ′X + σ2(K ⊗ W−1)

]
β + 2Sv

]}
× exp

{
−tr

(
SwW−1

)} (
σ2
)−n+2nv+2

2 |W |−
n+2nw+d

2 . (3.5)

Despite the impropriety of the prior specification, results from Besag, Green, Higdon and Mengersen
(1995) ensure the posterior distribution is proper.

It is not possible to recognize the kernel of a known probability distribution in expression (3.5),
therefore, indirect methods will be necessary to sample from this posterior distribution.

3.2 Simulated data

The problem faced with simple spatial model is experienced again. The precision matrix, K⊗W−1,
is not invertible. Therefore, the prior distribution for (β | σ2,W ) is improper and, thus, it is not
possible to generate β. The prior (3.4) is easily shown to be a N(~0, (K∗)−1) distribution where

K∗ = K ⊗ W−1 + J ⊗ R−1,

J = diag(1, 0, . . . , 0) is a (n× n) matrix. Componente a is equal ~0 and the (d× d) covariance matrix
R is diag(r, . . . , r) where r ∈ IR+. The smaller value attributed for r, the smaller the change verified
in the precision matrix

(
K ⊗ W−1

)
.

Matrix K∗ is not singular, hence we can generate β from (3.4). After obtaining β, the data
generating process is accomplished by generation of y, using equation (3.1). It is worth noting
again that the procedure used here to generate regression coefficients is just one of the options that
can be implemented to overcome the difficulties faced by the use of an improper prior distribution.
Gamerman, Moreira and Rue (2003) discussed alternatives.
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4 Sampling schemes

Given the analytic intractability of the posterior distributions, approximating methods must be
used. In this paper, MCMC methods are considered, therefore, transition kernels must be proposed
and compared. These will be detailed below. Three sampling schemes are proposed to sample from
the joint posterior distribution. These schemes differ in the way they group parameters, establishing
blocks. The literature indicates blocking parameters is beneficial for the sampling schemes. Liu,
Wong and Kong (1994) studied the Gibbs Sampling method considering correlation structure and
convergence rates. They showed estimates obtained by blocking components are more accurate than
those obtained considering each component separately.

4.1 Full posterior conditional distributions for the simple spatial model

The full posterior conditional distribution for θi is obtained by the following application of the
Bayes theorem

p(θi | θ−i, σ
2,W, y) ∝ p(yi | θi, σ

2) p(θi | θδi , σ
2,W ).

Straightforward calculations show that the full posterior conditional of θ1 is N [(y1V
∗ +σ2M∗)/(V ∗ +

σ2), (σ2V ∗)/(V ∗+σ2)] where V ∗ = WR/(RZ1++W ) and M∗ = Z1+θ̄δ1 [R/(RZ1++W )]. This param-
eter is the only component of θ whose full posterior conditional distribution depends on R. For θi, i =
2, ..., n, the full posterior conditional is N

[
(yiW + σ2Zi+θ̄δi

)/(W + σ2Zi+), (σ2W )/(W + σ2Zi+)
]
,

irrespective of a proper or improper specification.
Components of θ can be individually sampled, using the full conditional distributions previously

presented, but can also be jointly sampled. It is not difficult to show that the full posterior conditional
of θ is N(µ, σ2Σ) where the expression for µ and Σ vary with prior specification. When a proper
prior is assumed, µ =

(
σ2K∗ + In

)−1
y, Σ =

(
σ2K∗ + In

)−1 and K∗ is defined in (2.11). When an
improper prior is assumed, µ = [(σ2/W )K + In]−1

y and Σ = [(σ2/W )K + In]−1.
The full posterior conditional distributions for σ2 and W are not influenced by the prior specifi-

cation for θ. Consider the factorization p(θ, σ2,W | y) = p(σ2 | θ, W, y) p(θ, W | y). From this result,
the density of interest p(σ2 | θ, W, y) is easily obtained as

p(σ2 | θ, W, y) ∝
(
σ2
)−(n

2 +nv+1) exp
{
− 1

2σ2
[(y − θ)′(y − θ) + 2Sv]

}
.

This is the kernel of the distribution IG[(n/2) + nv, (y − θ)′(y − θ)(1/2) + Sv].
The full posterior conditional distribution of hyperparameter W is easily obtained by noting that

p(θ, σ2,W | y) = p(W | θ, σ2, y) p(θ, σ2 | y). The density of interest p(W | θ, σ2, y) is

p(W | θ, σ2, y) ∝ (W )−(n−1
2 +nw+1) exp

{
− 1

2W
[θ′Kθ + 2Sw]

}
.

This is the kernel of IG[(n − 1)(1/2) + nw, (θ′Kθ)(1/2) + Sw].

4.2 Full posterior conditional distributions for the multiple regression spatial model

Considering only the improper prior distribution for (β | σ2,W ), the full posterior conditional dis-
tribution for βi can be obtained by the following Bayes theorem application: p(βi | β−i, σ

2,W, y) ∝
p(yi | β−i, σ

2) p(βi | βδi ,W ). It is immediate to obtain that (βi | β−i, σ
2,W, y) ∼ Nd(M,V )

where V −1 = (1/σ2)XiX
′
i + Zi+W−1 and M = V −1(yi/σ2)Xi + Zi+W−1β̄δi . Similarly, the full
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posterior conditional distribution for β can be obtained as (β | σ2,W, y) ∼ Ndn(Σµ, Σ) where
Σ =

[
(1/σ2)X ′X +

(
K ⊗ W−1

)]−1 and µ = (1/σ2)X ′y.
The full posterior conditional of σ2 is an IG[(n/2) + nv, (y′y − 2y′Xβ + β′X ′Xβ + 2Sv)/2] distri-

bution. To consider the full posterior conditional for W , define the (n × d) matrix B containing all
regression coefficients: B = (β′

1, β
′
2, . . . , β

′
n)′. Note that each row contains d regression coefficients as-

sociated to an observation yi in the dataset. In the jth column, all coefficients βj−1, for j = 1, . . . , d,
are found. β is the column vectorization of matrix B. The full posterior conditional of W is an
Inverted Wishart distribution with parameter [(B′KB) + 2Sw]/2 and [(n − 1)/2] + nw degrees of
freedom.

4.3 Sampling schemes description

There are several options to sample from the joint posterior distribution. Three of them will be
studied here. To unify the presentation, a new notation is introduced: Ωi = θi and Ω = θ when the
simple spatial model is considered and Ωi = βi and Ω = β when the multiple regression spatial model
is considered.

Scheme 1 samples the parameters Ω1, . . . ,Ωn, σ2 and W separately. Scheme 2 jointly samples
Ω1, . . . ,Ωn, therefore, three blocks are formed: Ω, σ2 and W . Gibbs sampling method is applied in
these sampling schemes since all full posterior conditional distributions have already been presented
and are available for easy sampling.

Scheme 3 jointly samples all the parameters in a single block (Ω, σ2, W ). Consider the posterior
distribution factorization p(Ω, σ2,W | y) = p(Ω | σ2,W, y) p(σ2,W | y). The terms, in the right
side of this expression, summarize the two steps to be taken when we apply Scheme 3: first, jointly
generate the hyperparameters from p(σ2,W | y); then, generate Ω from p(Ω | σ2,W, y). We have
already applied the second step in Scheme 2. A new problem appears when considering the first step.
Assume the simple spatial model where a proper prior distribution is specified for p(θ | σ2,W ). It
can be shown that

p(σ2,W | y) ∝
(
σ2
)−(n

2 +nv+1) exp
{
− 1

2σ2

[
y′y − µ′Σ−1µ + 2Sv

]}
×
∣∣∣∣K∗ +

1
σ2

In

∣∣∣∣− 1
2

(W )−(n−1
2 +nw+1) exp

{
−Sw

W

}
,

where µ = Σy, Σ =
(
σ2K∗ + In

)−1 and K∗ is the matrix defined in (2.11). Small changes are
required when considering the improper prior case.

Analogously, for the multiple regression spatial model,

p(σ2,W | y) ∝
(
σ2
)−(n+2nv+2

2 ) (W )−(−n+2nw+d
2 ) exp

{
−tr

(
SwW−1

)}
×|Σ|

1
2 exp

{
− 1

2σ2

[
2Sv + y′y − σ2µ′Σµ

]}
,

where µ = (1/σ2)X ′y and Σ =
[
(1/σ2)X ′X + (K ⊗ W−1)

]−1.
Note that in all the cases showed, it is not possible to recognize the kernel of a known proba-

bility distribution for the joint posterior distribution of the hyperparameters. Metropolis-Hastings
algorithm is necessary to sample from these distributions.

The first step is define the probability distribution used to generate proposals for the hyper-
parameters. In the simple spatial model, propose σ2

(prop) from IG(K1,K1σ
2
(prev)) and W 2

(prop) from
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IG(K2,K2W(prev)). In the multiple regression spatial model generate σ2
(prop) from IG(K1,K1σ

2
(prev))

and W 2
(prop) from IW (K2,K2W(prev)). The notation (prev) is used to indicate the previous value of

the parameter. Tuning parameters index the proposal generating distributions. These constants are
positive integer values denoted by K1 and K2. Their specifications will influence the acceptance rate
of the algorithm. Assume q [(a1, a2) → (b1, b2)] is the proposal to generate values (b1, b2) from the
product of densities indexed by (a1, a2).

When considering the Simple spatial model, q[(σ2
(prop),W(prop)) → (σ2

(prev),W(prev))] is the product
of the densities IG(K1,K1σ

2
(prop)) and IG(K2,K2W(prop)). In the Multiple regression spatial model,

this is the product of IG(K1,K1σ
2
(prop)) and IW (K2,K2W(prop)). The probability to accept or reject

a proposal in a Metropolis-Hastings step is

min

1,
p(σ2

(prop),W(prop) | y)

p(σ2
(prev),W(prev) | y)

q
[(

σ2
(prop),W(prop)

)
→
(
σ2

(prev),W(prev)

)]
q
[(

σ2
(prev),W(prev)

)
→
(
σ2

(prop),W(prop)

)]
 .

Next step of Scheme 3 is to generate Ω from p(Ω | σ2,W, y). There is no difficulty in this task as
this distribution is known and was obtained in Scheme 2.

5 Applications and results

Programs were implemented to develop each sampling scheme procedure, using MCMC methods.
The Ox environment was used here, see Doornik and Ooms (2006) for further information.

5.1 Efficiency comparison

The sampling schemes, proposed in the last section, provide chains with different characteristics.
One of the main problems, in the analysis of serial data, is decide whether observations are originated
from a process considering independent random variables or not. In practical terms, chains obtained
via MCMC have an autocorrelation structure, and samples extracted from these chains will not be
independent. Autocorrelation has influence over estimators, harming the quality of its estimates.
Consider a sequence of quantities z1, . . . , zn. The (assumedly constant) autocorrelation of lag j can
be estimated by

ρ̂j =

∑n
i=j+1(zi − z̄) (zi−j − z̄)∑n

i=1(zi − z̄)2
, where z̄ =

n∑
i=1

zi

n
.

The process of sampling from the posterior distribution, using MCMC methods, is an approxi-
mation and, therefore, has an associated error. Let f denote any real function applied to vector α

containing all parameters in the model. Function f can be defined from the parametric space to any
space IRd, d = 1, 2, . . .. Assume α(i) a vector containing the ith elements in the Markov chain gener-

ated for α. The ergodic theorem ensures f̄n
a.s.
→ E[f(α)], as n → ∞, where f̄n = (1/n)

∑n
i=1 f(α(i))

is a Monte Carlo estimator of E[f(α)] and n represents the size of the chain. The variance of estimator
f̄n is

V ar[f̄n] =
σ2

f

n

(
1 + 2

n−1∑
k=1

n − k

n
ρk

)
, (5.1)

where σ2
f is the posterior variance of f(α) and ρk is the autocorrelation of lag k for the chain of f(α).

For further details about this result, see Gamerman and Lopes (2006).
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Autocorrelation plays an important role in the determination of efficiency of Monte Carlo estima-
tors obtained from samples of the chain. For a random sample, expression (5.1) will be σ2

f/n, because
ρk = 0 for all k = 1, . . . , n− 1. Summarizing the autocorrelation information in the generated chains
for each parameter, consider the efficiency factor

dneff = 1 + 2
L∑

i=1

ρ̂i,

where ρ̂i is the autocorrelation estimate of lag i = 1, . . . , L. In this study consider L = 50.
The further away from 1 the value of dneff , the more autocorrelated the chain is, less efficient

the sampling scheme is, and the further away from a random sample the studied sample is.
Another statistic that will be useful to interpret results, related to the chain autocorrelation

structure, is called effective sample size. This statistic, denoted by neff , is obtained dividing the
chain size n by the efficiency factor

neff =
n

1 + 2
∑L

i=1 ρ̂i

.

In a random sample extracted from the chain, the autocorrelations would be all equal 0, hence the
statistic neff would assume the sample size value. In practical terms, the efficiency factor assumes
values larger than 1, thus the effective sample size is smaller than n. As an example, suppose this
denominator equal 2 which determines neff = n/2. The following interpretation can be made: 2n

observations are needed from the chain to obtain a sample equivalent, in terms of information, to a
random sample of size n.

5.2 Search for the tuning parameters

This subsection describes a searching strategy for optimal tuning parameters in Scheme 3. Only
the simple spatial model, where a improper prior distribution is specified for (θ | σ2,W ), will be
studied.

When considering a large value for K1 the expected value and mode, of σ2 proposal generating
function, are close the previous value. In terms of variance, the larger K1, the smaller variance.
This conclusion can be extended for W since the expected value, mode and variance of its proposal
generating function is equally structured, changing only the involved parameters. Hence, large tuning
parameters provide a greater dependence between values in the chain.

Reis, Salazar and Gamerman (2006), in the first order dynamic linear models context, used Scheme
3 with the same proposal generating distribution. They chose the tuning parameters K1 = K2 = 35
which ensure accepting rates between 50% and 70% in Metropolis-Hastings, but provide high chain
autocorrelations. It configures a disadvantage for Scheme 3 when a comparative analysis is performed
among the proposed sampling schemes. Choice of appropriate values for K1 and K2 are based in the
optimization algorithm described as follows.

Assume a space divided in 100 regions, ordered along a line, where the neighboring structure
establishes 2 neighbors for all but the limiting (first and last) regions. In the data generating process,
R = 100 was set and the true values of the hyperparameters are σ2 = W = 2. The IG(2.1, 6.2) was
chosen as prior distribution for both hyperparameters. Its mode is 2 (real value), expected value is
5.63 and its variance is 317.68. In the MCMC algorithm consider the seeds: σ2(0) = 2 and W (0) = 2.
Chains of size 1500 were generated. Values considered for tuning parameters were 0.5, 1, 1.5, 2,
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. . ., 35, thus determining 4900 pairs (K1,K2). Scheme 3 was applied for each pair, and the effective
sample size is calculated.

(a) (b) (c) (d)

Figure 1: neff vs. tuning parameters, σ2 in the first row and W in the second row. (a) - for each K1, points

represent different values of K2; (b) - for each K1, median of points of panel (a); (c) - for each K2, points

represent different values of K1; (d) - for each K2, median of points of panel (c).

Figure 1, in the first row, shows the behavior of the effective sample size for chains of σ2. For
a fixed K1, 70 pairs (K1,K2) are formed by varying K2. Note that, for chains of σ2, the largest
effective sample size is obtained when K1 = 5. The graphic for K2 indicates this parameter should be
large to provide a less autocorrelated chain. The second row of Figure 1 shows the same analysis for
W . Comparing to σ2 panels the observed behavior is inverted. The larger the value of K1, the larger
effective sample size is obtained for chains of W . Graphic (d) indicates the less autocorrelated chain is
obtained when K2 = 5. Graphics for other parameters are inconclusive, therefore, the decision about
choosing the tuning parameters is based in the chains of σ2 and W . The chosen configuration for
Scheme 3 hereafter is K1 = K2 = 5, which gives accepting rates around 10% in Metropolis-Hastings
but is optimal in terms of the efficiency results above.

5.3 Inference for the simple spatial model

The focus here is to compare the behavior of the estimates provided by the simple spatial model,
assuming proper and improper prior distribution for (θ | σ2,W ). Another purpose is to show that this
model provides good estimates for the parameters. Consider a space with 500 regions where (i − 1)
and (i + 1) are neighbors of region i = 2, . . . , 499. The data generating process assumes R = 100
and the real values σ2 = 10 and W = 0.1. The model considers the prior distributions: IG(5, 60)
for σ2 and IG(2.001, 0.3001) for W . The mode of these distributions is the real value specified for
the hyperparameter. In addition, E(σ2) = 15, V ar(σ2) = 75, E(W ) = 0.30 and V ar(W ) = 89.88.
When the model with a proper prior distribution is considered, it is assumed that R = 100 is known
as specified in the data generating process. In the MCMC algorithms, the respective true value was
attributed as initial value for the hyperparameter chain. Scheme 1 requires the specification of seeds
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for each component of θ. In this case, 0 was considered as starting point of the chain.
An important parameter function to be monitored is the logarithm of the joint posterior density

related to the model being considered. The logarithm function is used to avoid the analysis of values
with high magnitude. Denote by C1(θ, σ2,W ) the expression indicated in the right hand side of
(2.10). Let C = 1/

∫
W

∫
σ2

∫
θ
C1(θ, σ2,W ) dθ dσ2 dW be the normalizing constant. Assume the

following notation in the simple spatial model: log(π) = log[p(θ, σ2,W | y)] − log(C).
For each parameter of interest, 7000 iterations of the MCMC algorithm were performed to generate

chains. The burn-in period involves the first 2000 iterations. A visual analysis, based on trace plots,
was performed to study convergence. Chains with different starting points were considered. Similar
variability, and traces located in the same position can be observed through these graphics. This
behavior is indicated in all cases leading us to conclude about the convergence of the chains.

Table 1: Estimates for the simple spatial model, 500 regions and 2 neighbors.

proper prior improper prior
Sampling σ2 W σ2 W

schemes Mean Var. Mean Var. Mean Var. Mean Var.
Scheme 1 10.35 0.48 0.09 0.001 10.44 0.47 0.09 0.001
Scheme 2 10.34 0.48 0.10 0.002 10.35 0.47 0.10 0.002
Scheme 3 10.32 0.48 0.10 0.002 10.41 0.51 0.09 0.002

Scheme 1 Scheme 2 Scheme 3

Figure 2: 95% credibility interval (dashed line), mean (continuous line) and real values (dots) of the θ

components. Proper prior distribution for (θ | σ2, W ) in the first row, improper prior distribution in the

second row.

Table 1 informs the estimates for each parameter based in the 5000 observations extracted from
the respective chain. A comparison between the results of the model with proper and improper prior
distribution for (θ | σ2,W ) can be made. All estimates are close to the real value and, thus, they
are similar to each other. The simple spatial model with improper prior distribution has an alike
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performance not showing any noticeable disadvantage when compared to the model with proper prior
specification. The estimates obtained for each sampling scheme are quite similar, as expected after
convergence.

Figures 2 show the 95% credibility interval for the real values of θ components. The first row is
related to the simple spatial model with proper prior distribution, and the second row represents the
model with improper prior distribution. When comparing both rows, we can not find any significative
difference. Both approaches have a satisfactory performance in terms of θ estimates. The trace follows
the behavior of the real values and most dots are inside the credibility interval. The model considering
improper prior distribution for (θ | σ2,W ) does not have any disadvantage when compared to the
approach where a proper prior distribution is specified.

5.4 Inference for the multiple regression spatial model

The larger number of parameters and the quantity of regions influence the execution time of the
algorithms. Calculations involving matrices take longer, hence an analysis with 500 regions is not
performed here.

Assume a space containing 150 regions and 2 regressors for the model, hence 3 regression co-
efficients are defined for each region. The sets of regressor values were generated from N(0, 1).
Assume that region i has 2 neighbors, (i − 1) and (i + 1) for i = 2, . . . , 149. To generate the data
we considered the proper prior distribution with R = diag(100, 100, 100). In addition the following
real values were specified for the hyperparameters: σ2 = 10 and W is a symmetric (3 × 3) ma-
trix where W1,1 = W2,2 = W3,3 = 0.10, W1,2 = −0.05, W1,3 = 0 and W2,3 = 0.05. Consider the
prior specifications as follows: σ2 ∼ IG(5, 60), as in Subsection 5.3, and W ∼ IW (2, Sw) where
Sw = diag(2/15, 2/20, 2/15).

In the MCMC algorithms, initial values for the hyperparameters were set at their real values.
Particularly, Scheme 1 requires the definition of a seed for each β component. As before, value 0 was
assigned as starting point of the chain. Consider C1(β, σ2,W ) the expression in the right hand side of
(3.5). Denote C = 1/

∫
W

∫
σ2

∫
β

C1(β, σ2,W ) dβ dσ2 dW . Let log(π) = log[p(β, σ2,W | y)] − log(C).
As before, the chains of each parameter are formed by 7000 iterations of the MCMC algorithms.

The first 2000 iterations were considered the burn-in period and then discarded. The visual analysis,
based on trace plots, was developed in this case to study the behavior of the chains. Again, different
starting points were considered and similar variability observed. The same trace position is registered
after the burn-in period. Convergence was verified for all generated chains, and therefore, the sample
of observations is valid for inference.

Table 2: Multiple regression spatial model estimates, 150 regions and 2 neighbors. The real values for those
elements are 10 and 0.0005, respectively.

Sampling σ2 det(W )

schemes Mean Median Var. Mean Median Var.
Scheme 1 10.97 10.88 1.93 0.0005 0.0003 4 ×10−7

Scheme 2 10.96 10.85 1.88 0.0005 0.0003 3 ×10−7

Scheme 3 10.83 10.85 1.60 0.0005 0.0003 5 ×10−7

Consider the estimates indicated in Table 2, for σ2 and for det(W ). Note that throughout the table
the mean and median estimates are close the real value. This aspect shows the model is satisfactory
in terms of inference for those components. Comparing sampling schemes, their estimates are similar,
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including variability. Again, this result was expected because the three schemes are sampling from
the same joint posterior distribution.

Figure 3 the real value is inside the credibility interval in all panels and in most cases the mean
is very close to the real value. These results together with the estimates of Table 2 confirm the good
performance of the multiple regression spatial model in terms of inference and the irrelevance of the
proper prior approximation.

Scheme 1 Scheme 2 Scheme 3

Figure 3: 95% credibility interval, posterior mean estimate and real value for components of β and matrix

W . The analysis is developed for regression coefficients of regions 1, 75 and 150 and for 6 components of the

symmetric matrix W .

6 Neighboring influence on the MCMC algorithms

A spatial model can be used to analyze any neighboring structure, for example those establishing 2
neighbors for each region or those where the amount of neighbors is greater. Our focus is to compare
the efficiency in each scheme based on the chain autocorrelation obtained with different neighboring
structures. For each combination model/scheme, 50 replications were considered.

6.1 Simple spatial model analysis

A space divided in 500 regions will be analyzed. Several neighboring configurations can be studied,
particularly assume the specifications with 2, 10, 20, 50, 100, 200, 300, 400 and 499 neighbors. The
last configuration represents a space where all regions are neighbors of each other.

Each neighboring structure requires the generation of a distinct dataset. The same real values are
specified for the hyperparameters (σ2 = 10 e W = 0.1) to ensure an homogeneous data generating
process. The prior distribution with R = 100 was used in all neighboring configurations to generate θ.
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The prior specifications adopted for hyperparameters are σ2 ∼ IG(5, 60) and W ∼ IG(2.001, 0.3001),
used in the analyses of the previous section.

Scheme 1 Scheme 2 Scheme 3

Figure 4: Box-plots over the 50 replications of neff (in log scale) vs. number of neighbors: θ1, θ250, θ500,

σ2, W and log(π).

In the MCMC algorithms, the real values previously informed are the starting points for the
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chains of hyperparameters. Scheme 1 assumes value 0 as seed of the generated chain, for each θi.
The amount of 1500 iterations of the algorithms will be performed to build the chains. Analysis is
based on 6 parameter functions: θ1, θ250, θ500, σ2, W and log(π).

The statistic neff is calculated for each chain replication. The autocorrelation structure of chains,
obtained for each neighboring configuration, is evaluated through this criteria. Figure 4 shows a
comparison of box-plots summarizing the information of samples of effective sample size.

For Scheme 1, the graphics related to the extremes configurations (2 and 499 neighbors) indicate
less autocorrelation, larger box-plot ’s, larger neff . Schemes 2 and 3 apply the same procedure to
sample θ. This fact is observed through the similar levels of effective sample size. Comparing
schemes, in most cases is evident the worst performance of Scheme 1 in terms of chain autocorrelation,
as expected. Schemes 2 and 3 are undistinguishable in terms of θ’s.

The hyperparameter σ2 for Scheme 1 provides the most evident case of difference in efficiency
along the distinct neighboring configurations. A greater number of neighbors per region determines a
greater variability in the sample and a better performance of Scheme 1 in terms of less autocorrelated
chains for σ2. Chains for W and log(π) in Scheme 1 do not indicate difference in efficiency among
the distinct neighboring configurations.

Results for σ2 seems more erratic and indicate a small increase in efficiency as the number of
neighbors increases for Scheme 2. Results of Scheme 3, for chains of this hyperparameter, do not
exhibit a clear neighboring influence. Efficiency measures for Scheme 3 are lower than those of Scheme
2, indicating a better performance of the latter in terms of autocorrelation. The improvement in
efficiency for Scheme 1 for large numbers of neighbors makes it achieve the performance of Scheme 2
and overcome Scheme 3.

Schemes 2 and 3 register a clear decrease in efficiency for parameters W and log(π) as the number
of neighbors increases. Considering these chains, we can assert that smaller autocorrelation is obtained
for structures with fewer neighbors for each region. These conclusions seem more evident for Scheme
3. Also, Scheme 3 seems to outperform the other schemes for all neighboring structures considered.

Given the more volatile behavior of the results for σ2 and given the importance of the transfor-
mation log(π) as a prime summarizer of the posterior distribution, it seems safer to rely more heavily
on the results obtained for the latter, confirmed by the results obtained with W .

6.2 Multiple regression spatial model analysis

Assume a space containing 150 regions. The following neighboring configurations are applied: 2,
10, 20, 50, 100 and 149 neighbors. The latter case represents a space where all regions are neighbors
of each other.

A simulated dataset must be generated for each neighboring configuration. For an homogeneous
data generating process the following real values are specified in the 6 procedures: σ2 = 10 and
W is a symmetric (3 × 3) matrix, where W1,1 = W2,2 = W3,3 = 0.1, W1,2 = −0.05, W1,3 = 0 and
W2,3 = 0.05. The approximating prior distribution with R = diag(100, 100, 100) allows the generation
of β. The prior specification adopted for the hyperparameters: σ2 ∼ IG(5, 60) and W ∼ IW (2, Sw)
where Sw = diag(2/15, 2/20, 2/15). These choices were previously used in the multiple regression
spatial model.

The MCMC algorithms generate chains for the hyperparameters considering as starting points
the real values previously indicated. In Scheme 1, specify 0 as initial value for components of β. The
coefficients of regions 1, 75 and 150 will have their chains analyzed. Among the other parameters, this
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study considers σ2, log(π) and the parameter transformation det(W ) summarizing the information
about W .

Scheme 1 Scheme 2 Scheme 3

Figure 5: Box-plots over the 50 replications of neff (in log scale) vs. number of neighbors: β0,1, β0,75, β0,150,

σ2, det(W ) and log(π).

The comparative results for the regression coefficients are quite similar. Thus this section presents
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only an analysis for the intercept β0,i. Results for the other regression coefficients and the components
of matrix W are shown in the Appendix.

Figure 5 shows a comparison of the different neighboring configurations. Neighboring influence,
on the chain autocorrelation level, can not be observed for the regression coefficients in Scheme 1.
The efficiency is smaller than for Schemes 2 and 3. Schemes 2 and 3 show a growth in the effective
sample size as the number of neighbors is increased.

The same behavior registered in the simple spatial model analysis, can be observed for σ2. Chains
for det(W ) and log(π) in Scheme 1 do not seem to indicate a neighboring influence. For det(W )
and log(π), smaller number of neighbors provides chains less autocorrelated for Scheme 2. This
characteristic is registered in the simple spatial model and can be also noted for log(π) in Scheme
3. Although influence can not be noted in this case for det(W ), Figure A.2 in Appendix shows
there is neighboring influence on the autocorrelation of chains for W components. The smallest
autocorrelation levels are determined by structures with few neighbors per region.

7 Conclusions

This paper is concerned with the study of the simple spatial model and the multiple regression
spatial model. It was shown that appropriate approximation distributions do not alter substantially
the posterior distribution and can be used to replace proper by improper prior distributions or vice-
versa.

An extensive computational exercise was also performed to provide guidance about the choice of
appropriate proposals. The optimality was based on efficiency measures taking into account the chain
autocorrelation instead of the commonly used but misleading figures of acceptance rates.

The most important contribution was to provide some light into the influence of the neighboring
structures on the efficiency of the MCMC approximations. It was shown that neighboring structure
influences the results, both for simple and regression spatial models.

The results obtained do not provide a unified point of view but seem to indicate a few directions.
One of them is that, if suitable proposals can be found, it is generally beneficial to block parameters
(in a single block, if possible). If a summarizer is required, results based on the (log) posterior density
could be used. It contains information from all parameters, appropriately weighed. The result seem
to indicate that the autocorrelation is smaller when the number of neighbors get smaller.

The spatial models, used in this study, belong to the class of normal observations. One of the main
areas to extend results here is to consider non-normal observations. In the literature there are several
applications involving spatial models considering other distributions, for example, studies using the
Poisson distribution to analyze count data. Most of these studies are related to disease mapping, see
for example Knorr-Held and Rue (2002) and Fernandez and Green (2002). An interesting extension of
this study is analyze the neighboring influence on the MCMC methods considering non-normal spatial
models. It can be anticipated that similar results will be observed if the conditional independence of
observations is retained.
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Appendix: additional graphics for neighboring influence analysis

Box-plots over the 50 replications of neff (in log scale) vs. number of neighbors. Graphics for
Scheme 1, 2 and 3 are respectively in the left, middle and right hand side.

Figure A.1: β1,1, β1,75, β1,150, β2,1, β2,75 and β2,150.



On computational aspects of Bayesian spatial models 21

Figure A.2: W1,1, W2,2, W3,3, W1,2, W1,3 and W2,3.
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