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Abstract

A multimove sampling scheme for the states parameters of non-Gaussian and non-linear dy-

namic models for univariate time series is proposed. This procedure follows the Bayesian frame-

work, within a hybrid Gibbs sampling algorithm with some steps of the Metropolis-Hastings.

This sampling scheme combines the conjugate updating approach for generalized dynamic lin-

ear models, with the backward sampling of the state parameters used in normal dynamic linear

models. Conjugate updating backward sampling (CUBS) significantly reduces the computing

time needed to attain convergence of the chains, and is also simple to implement. A quite ex-

tensive Monte Carlo study is conducted in order to compare the results obtained using CUBS

with those obtained using some algorithms previously proposed in the Bayesian literature. This

method is also applied and, compared, on two different real datasets.
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1. Introduction

Non-Gaussian and non-linear state-space models are widely used in applied statistics (e.g. finance,

environmental areas, etc.), in particular, under the Bayesian paradigm. In this paper, discrete time

dynamic models defined in the exponential family are considered. A general representation of these

models is

yt|ηt, φ ∼ exp[φ{ytηt − a(ηt)}]b(yt, φ), t = 1, . . . , T, (1a)

g(µt) = F t(ψ1)
′θt (1b)

θt = Gt(ψ2)θt−1 +wt, wt ∼ N(0,W ) (1c)

θ0|Y 0 ∼ N(m0,C0),

where the vectors θt are known as state parameters and are related through time via (1c), the

system equation; θ0|Y 0 is the initial information; ηt is the natural parameter and E[yt|ηt] =

µt = ȧ(ηt), is related to θt via a known link function, g(·); and ψ1 and ψ2 denote all the unknown

quantities involved in the definition of F t(ψ1) andGt(ψ2), respectively. Also, wt is the system error

with evolution variance W . Commonly W is a diagonal matrix and can vary through time. Under

the Bayesian framework, the model specification is completed after assigning prior distributions

to all unknowns. The resultant posterior for the parameters in (1) does not have a closed form,

therefore inference cannot be made exactly. Moreover, the θt’s are highly correlated, a posteriori.

This paper aims to propose an efficient (computationally fast and easy to implement), independent

Metropolis-Hastings algorithm to sample from the full conditional distributions of θt, t = 1, . . . , T,

when Markov chain Monte Carlo (MCMC) methods are used.

Before the spread of the use of MCMC techniques, West et al. (1985), Kitagawa (1987) and

Fahrmeir (1992), among others, proposed different methods to obtain approximations to the pos-
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terior distribution in this setting. In recent years, as can be seen in Migon et al. (2005), several

MCMC algorithms to sample from the posterior distributions of the state parameters have been

proposed. In particular, Gamerman (1998) and Geweke & Tanizaki (2001) considered Bayesian

approaches using a Metropolis-Hastings step into the Gibbs sampler. Since the critical problem of

the Metropolis-Hastings algorithm is the choice of the proposal density, they were concerned with

the construction of efficient ones. For instance, Gamerman (1998) suggested the use of an adjusted

normal dynamic linear model in order to build these proposal densities. His approximation can be

used under three different schemes: single and block sampling of the state parameters and single

sampling from the system disturbances. He concluded that single-move sampling performs better

than the multimove one, and the disturbance sampling scheme exhibits a lower autocorrelation

structure, leading to faster convergence of the chains. However, this algorithm requires high com-

putational effort, since it is complicated to code and might need a long time to complete a single

iteration. On the other hand, Geweke & Tanizaki (2001) proposed to sample the state parameters

separately, that is, in single moves. They focused in the formulation of different candidates for

the proposal density function and performed a Monte Carlo study to access their properties. They

concluded that the results are quite robust to the choice of the proposal density.

The proposal here is to sample the state parameters, {θ1, . . . ,θT } of (1), in block, that is,

using multimove sampling, in an analogous scheme to the forward filtering and backward sampling

(FFBS) of Frühwirth-Schnater (1994) and Carter & Kohn (1994) for Gaussian dynamic linear

models. Both papers concluded that sampling the states simultaneously produces faster convergence

to the posterior distribution compared to single-state sampling. The key of FFBS is to use the

decomposition of the posterior density as the product of the smoothing (retrospective) distributions.

In the Gaussian case, the quantities needed for the smoothing conditional densities are supplied by
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the Kalman filter. Therefore, to obtain a sample from the joint full conditional distribution, first

one computes the forward (on-line) moments (the forward filtering step), and then samples from

the smoothed normal distributions (the backward sampling step).

The main idea of the proposal introduced here is to replace the first step of the FFBS by

conjugate updating, introduced by West et al. (1985), for dynamic models in the exponential

family. That is, the forward distributions are approximated by introducing the conjugate prior

for the canonical parameter, and a backward sampling step is used as in the Gaussian case. This

algorithm is called conjugate updating backward sampling (CUBS). The strength of this method lies

in using the information about the correlation structure amongst the components of {θ1, . . . ,θT }.

The main advantages of the proposed scheme are: it is easy to implement and leads to a reduction

of the computational time needed. Conjugate updating can be used within a MCMC algorithm

such that unknown quantities of (1) can be sampled by using standard techniques.

The remainder of this paper is organized as follows. In Section 2. the proposed MCMC sampling

scheme is described and its advantages are pointed out. In Section 3. the results obtained from

CUBS and from some other algorithms previously proposed in the Bayesian literature are compared.

That section presents an extensive Monte Carlo study using artificial datasets and the application of

these algorithms to two real datasets, which illustrate clearly the efficiency of the method. Finally,

Section 4. presents some concluding remarks.

2. Proposed sampling scheme

In this section we propose a new MCMC sampling scheme based on the combination of conjugate

updating and backward sampling. We also point out its main advantages in detail. To fix the

notation, let Θ = {θ1, . . . ,θT } be the vector of states, Y t = {y1, . . . , yt} be the set of observations
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up to time t, and Φ = (φ,ψ1,ψ2,W ) the vector of all remaining unknown quantities in (1).

According to the specification in (1) and assuming independent priors for φ,Ψ1,Ψ2,W and for the

initial information about θ0, the posterior distribution is

p(Θ,θ0,Φ|Y T ) ∝
T∏

t=1

p(yt|θt, ηt, φ)p(θt|θt−1,F t(ψ1),Gt(ψ2),W )p(θ0)p(ψ1)p(ψ2)p(W )p(φ). (2)

Since the distribution in (2) does not have a known closed form, we propose the use of MCMC

methods to obtain samples from it. The main concern is to sample from the full conditional posterior

of Θ which also does not have a closed form. In particular, we use a hybrid algorithm, a Gibbs

sampling with some steps of the Metropolis-Hastings. Therefore, the focus is on the construction of

an efficient proposal distribution in the Metropolis-Hastings step, when sampling the components

of Θ.

In the eighties, before the advent of the use of MCMC schemes, West et al. (1985), proposed a

sequential algorithm to assess the posterior distribution of the states of dynamic generalized linear

models (DGLM). The conjugate updating algorithm is based on an approximation performed at the

prior level using linear Bayes estimation. In DGLM, the prior on the states is partially specified

through the first and second moments, say at and Rt, and is used to determine rt and st, the

parameters of the conjugate prior (CP ) for ηt, the natural parameter of p(yt|ηt,Φ) at time t, that

is: ηt|Y t−1 ∼ CP (rt, st). This is done by solving a relative simple system of two equations as

shown in the appendix (see Table 6). The parameters of the conjugate posterior for the ηt are

easily obtained after yt is observed. The information in this posterior is then propagated to the

posterior distribution of the states. Since this distribution is not fully specified, West et al. (1985)

proposed the use of linear Bayes estimation with regard to a quadratic loss function to derive an

approximation of the posterior distribution of the state vector. More specifically, the approximation
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is as follows:

p(θt | Y t,Φ) ∝ p(θt | Y t−1,Φ)p(yt | θt,Φ)

=
∫

p(θt | ηt,Y
t−1,Φ) p(ηt | Y t−1,Φ)p(yt | ηt,Φ)︸ ︷︷ ︸

Conjugate Analysis

dηt.

Since the first term in the integrand is partially available, the linear Bayes principle is used to

obtain

p(θt | Y t,Φ) ∝
∫

p(θt | ηt,Y
t−1,Φ)︸ ︷︷ ︸

Linear Bayes’ estimation

p(ηt | Y t,Φ)dηt

∼= [mt,Ct],

where [mt,Ct] indicates that p(θt | Y t,Φ) is partially specified by the first and second moments

given by

mt = at +RtF t(f∗
t − ft)/qt

Ct = Rt −RtF tF
′
tRt(1− q∗t /qt)/qt,

where at = Gtmt−1,Rt = GtCt−1G
′
t + W t and (ft, qt) and (f∗

t , q∗t ) are, respectively, the prior

and posterior, mean and variance of ηt. It is worth pointing out that the well-known Kalman filter

algorithm is recovered under the normal assumption for yt and the identity link function.

In the normal DLM context, it is known that the single move implementation of the MCMC

is strongly inefficient due to the high correlation among the state parameters. To overcome this

situation, Frühwirth-Schnater (1994) and Carter & Kohn (1994) proposed, only for the Gaussian

case, an algorithm to sample the whole Θ in (1), in a multimove step. Their approach is based in

the well known decomposition of the state’s joint full conditional distribution

p(Θ|Y T ,Φ) = p(θT |Y T ,Φ)
T−1∏
t=1

p(θt|θt+1,Y
t,Φ). (3)
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Since p(θt|θt+1,Y
t,Φ) ∝ p(θt+1 | θt,Y

t,Φ)p(θt | Y t,Φ), it is straightforward to show that

p(θt|θt+1,Y
t,Φ) is N(ms

t ,C
s
t ), where

ms
t = mt +CtG

′
t(GtCtG

′
t +W t)−1(θt+1 −Gtmt) (4a)

Cs
t = Ct −CtG

′
t(GtCtG

′
t +W t)−1GCt, (4b)

and where (mt,Ct) are respectively the first and second moments obtained from the Kalman filter.

Therefore, the FFBS algorithm consists mainly of sampling sequentially (backwardly) the elements

of Θ.

Based on the two ideas briefly explained above, when sampling from the full conditional distri-

bution of Θ, p(Θ|·), described in (3), here we propose that a candidate value, Θp = {θp
1, . . . ,θ

p
T },

can be sampled from a multivariate normal, N(ms,Cs), with ms and Cs as given in (4b). More

specifically, in a first step, the filtering densities moments, m,C, are determined by a conjugate

updating running from t = 1 to t = T , instead of using the Kalman filter used in the FFBS. After

that, each θp
t is sequentially sampled, from time T to time 1, from its smoothing distribution, as

in the Gaussian case. So basically, in order to implement this strategy, one needs to complete the

model by introducing a conjugate prior (CP ) for the natural parameter in the exponential family.

Therefore, the main idea of this scheme is as follows. At the i−th iteration of the MCMC scheme,

letm(i)
t andC(i)

t , t = 1, . . . , T be the first two moments of the filtering distributions obtained via the

conjugate updating and ms(i)
t and Cs(i)

t be the first two moments of the smoothing distributions.

Then a sample of Θ is obtained as follows:

1. Sample θp
T from N(m(i)

T ,C
(i)
T );
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2. Sample θp
t from N(ms(i)

t ,C
s(i)
t ), t = T − 1, . . . , 1; where

m
s(i)
t = m

(i)
t +C(i)

t G
′
t(GtC

(i)
t G

′
t +W )−1(θp

t+1 −Gtm
(i)
t )

C
s(i)
t = C

(i)
t −C(i)

t G
′
t(GtC

(i)
t G

′
t +W )−1GtC

(i)
t .

3. Set Θ(i) = Θp with probability π and Θ(i) = Θ(i−1) with probability 1 − π, where π =

min(1, A) and

A =
ω(Θp)
ω(Θ)

, (5)

where ω(Θp) =
p(Θp|Y T ,Φ)

q(Θp|ms(i),Cs(i))
, and q(·) is a proposal density with moments m and C.

The CUBS procedure is in fact a kind of data augmentation algorithm where the natural

parameters {η1, . . . , ηT } play the role of a set of latent variables that help efficient simulation of

the state parameters. However, since several approximations are made to attempt to use a block

sampler, this result is actually an alternative procedure to construct an independent proposal

density for a Metropolis-Hastings step. Additionally, although in this paper the use of a normal

proposal distribution is emphasized, one could explore many others distributions, e.g. a t-Student

proposal distribution.

The proposal distribution obtained via CUBS provides a good approximation to the target

distribution p(Θ|·), due to the fact that conjugate updating is generally very accurate, so the

acceptance rates obtained are always reasonable. Another advantage is that CUBS is very easy to

implement, diminishing the chances of involuntary mistakes in programming the routines. In some

cases, numerical methods are needed to compute the exact values of rt and st. However, one can

use approximations that work well and contribute to reduce the computational time burden.

Finally, given the state parameters, Θ, samples from the posterior distribution of other param-

eters in the model, Φ, can be obtained using standard techniques, like a Metropolis-Hastings step,
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slice sampling (Neal, 2003), adaptive rejection Metropolis sampling, ARMS (Gilks & Wild, 1992;

Gilks et al., 1995), etc. This step will not affect the convergence of the state sampler proposed

here, but it can significatively affect the computational time needed to reach convergence of all the

chains (the whole algorithm). However, in most cases, this computational time will be shorter than

the MCMC algorithms proposed by Gamerman (1998) and Geweke & Tanizaki (2001). For ease of

understanding, the MCMC scheme is summarized as follows.

Algorithm

1. Initialization: set initial values Θ(0),Φ(0) and iteration counter i = 1;

2. Sample Θ(i) using CUBS:

(a) Compute the moments of p(θt|Y t,Φ(i−1)), m(i)
t andC(i)

t , t = 1, . . . , T ; with conjugate

updating;

(b) Sample Θp with the backward sampling.

i. Sample θp
T from N(m(i)

T ,C
(i)
T )

ii. Sample θp
t , t = T − 1, . . . , 1, from N(ms(i)

t ,C
s(i)
t );

(c) Set Θ(i) = Θp with probability π and Θ(i) = Θ(i−1) with probability

1− π, where π = min(1, A) and A as defined in (5).

3. Sample Φ(i) using, in general, a Metropolis-Hastings step;

4. Update: set i = i + 1 and return to 2 once convergence is attained and the needed sample

size is reached.
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3. Comparing different sampling schemes

3·1. A Monte Carlo study

This section describes a Monte Carlo study aiming to compare the use of CUBS within a MCMC

algorithm with some single move sampling schemes proposed by Gamerman (1998) and Geweke &

Tanizaki (2001).

3·1..1 Simulation of the artificial data

For the simulation procedure, we used a fairly simple model just to focus the comparisons in the

samples of the state parameters generated by several known methods. The first order dynamic

Poisson model shown in (6), with θ0 = 0.50 and W = 0.01, was used to generate three groups of

100 time series each. The groups differed just in the length of the time series. That is, we assumed

that

yt ∼ Poisson(λt), t = 1, . . . , T, (6a)

ηt = log(λt) = θt (6b)

θt = θt−1 + wt, wt ∼ N(0,W ) (6c)

θ0|Y 0 ∼ N(m0, C0), (6d)

and generated random numbers of θt based on (6c), obtaining Y T based on (6a) for the cases

T = 50, 100, 300. After that, we performed the MCMC routines to obtain samples from the posterior

distributions of Θ and W . In order to complete the model, we assigned an inverse gamma prior

distribution with both parameters equal to 0.001, that is, IG(0.001, 0.001), for W , and a zero mean

normal with some large fixed variance for θ0.
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3·1..2 Sampling schemes under study

The unknown quantities in (6) are (θ0, θ1 . . . , θT ,W ). Since the full conditional distribution of W

is an inverse gamma, one can sample directly from it, while for the state parameters one can use a

Metropolis-Hastings step with different proposed algorithms.

? From Gamerman (1998)

As was mentioned in Section 1., Gamerman (1998) suggested the use of an adjusted dynamic

Gaussian model such as

ỹt = F ′
tθt + vt, vt ∼ N(0, Ṽt) (7a)

θt = Gtθt−1 +wt, wt ∼ N(0,W t), (7b)

where the adjusted observations ỹt and its associated variances Ṽt are

ỹt = ηt + (yt − µt)g′(µt)

Ṽt = ä(ηt)[g′(µt)]2.

In the case of (6) ỹt = log(λt) + λ−1
t (yt − λt) and Ṽ = λ−1

t . Based on (7), Gamerman (1998)

proposed two different sampling schemes, as described below:

• Proposal I. Sample wp
t , a candidate value for the system disturbance wt in (6c), from the

full conditional distribution obtained considering the following re-parametrization of (7):

ỹt = F t

t∑
j=1

Gt−jwj + vt, Gt = G∀t, t = 2, . . . , T,

vt ∼ N(0, Ṽt), wt ∼ N(0,W ), w1 ∼ N(m1,C1)

• Proposal II. Sample θp
t , a candidate value for θt in (6), from the full conditional distribution

of θt in (7) (with a normal proposal density).
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Actually a third alternative was proposed, which consists of applying the FFBS algorithm in (7).

However, this proposal is not recommended by the author due the low acceptance rates it produces,

therefore, it is not investigated in this paper.

? From Geweke & Tanizaki (2001)

Geweke & Tanizaki (2001) tested different proposal densities and recommended sampling the

state parameters separately, that is, sampling the state parameters one at a time. Three of the

schemes they proposed are:

• Proposal I. Sample θp
t from the density function obtained from the system equation. There-

fore, θp
t is sampled from N(Gt(ψ2)θt−1,W t), in this case, from (6c), N(θt−1,Wt).

• Proposal II. Sample θp
t from a normal density with mean and variance based on the extended

Kalman smoothed estimates at time t. The extended Kalman filter and smoother is an

algorithm for exponential family state space models. It consists of applying the Kalman filter

and smoother in an approximating Gaussian dynamic model, as defined in (7). Specifically,

in order to approximate the posterior mode of the states, the response function (the inverse of

the link function) is linearized and the observation model (1) is approximated with a Gaussian

observation model. In the case of (6), the approximating normal model is constructed with

ỹt = exp(−ηt)yt + ηt − 1 and Ṽ = exp(−ηt).

• Proposal III. Sample θp
t from a normal density with mean based in a random walk and

variance based on the extended Kalman smoothed estimates at time t.

In this paper, we compare the two proposed single moves alternatives from Gamerman (1998),

and the three alternatives from Geweke & Tanizaki (2001) described above. We also considered the

smoothed moments obtained after the use of conjugate updating to construct individual proposal
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densities to θt. This was done to evaluate the single move sampling, which derives straightforwardly

from the proposed scheme. Also this might be considered as an analogous alternative to proposal II

of Geweke & Tanizaki (2001). Therefore, the following seven alternatives to construct the proposal

density are compared:

I. Conjugate updating and backward sampling (CUBS): Multimove sampling, as explained in

Section 2..

II. Conjugate updating - single-move: The proposal is a normal density with mean and variance

based on the smoothed moments of the conjugate updating at time t;

III. From Gamerman (1998) - Proposal I: Single move, sampling from the system disturbances;

IV. From Gamerman (1998) - Proposal II: Single move, sampling from the state parameters;

V. From Geweke & Tanizaki (2001) - Proposal I: The proposal is the density function obtained

from the system equation.

VI. From Geweke & Tanizaki (2001) - Proposal II: The proposal is a normal density with mean

and variance based on the extended Kalman smoothed estimates at time t.

VII. From Geweke & Tanizaki (2001) - Proposal III: The proposal is a normal density with mean

based on a random walk (mean equals the current value of the chain) and variance based on

the extended Kalman smoothed estimates at time t.
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3·1..3 Performance comparison criteria

In order to compare the sampling schemes, we computed the inefficiency factor and the root mean

square error (RMSE) for Θ and Y . The inefficiency factor is given by

INEF = 1 + 2
n−1∑
j=1

n− j

n
ρj ,

where ρj is the autocorrelation of lag j for the values of a specific chain of length n (n →∞). INEF

aims to evaluate the efficiency of the MCMC estimation. The larger INEF is, the less efficient the

sampling scheme is (see Gamerman & Lopes (2006) for further details). Let RMSEθt be the root

square error for θrep,t defined by

RMSEθt =
( 1

K

K∑
k=1

(
θ̂
(k)
rep,t − θ

(k)
t

)2
)1/2

,

where θ̂
(k)
rep,t is the posterior sample mean and θ

(k)
t is the true value of the t−th latent variable

(state) of the k−th artificial dataset (K = 100). The mean and standard deviation of RMSEθt , are

given, respectively, by

mean(RMSEΘ) =
1
T

T∑
t=1

RMSEθt

and

sd(RMSEΘ) =
( 1

T

T∑
t=1

(
RMSEθt −mean(RMSEΘ)

)2
)1/2

.

In other words, mean(RMSEΘ) and sd(RMSEΘ) are summaries of the RMSEθt obtained

considering all the replications of all instants for each dataset. The values for RMSEY are obtained

in an analogous way.

Other complementary criteria reported are: the computational time elapsed and the acceptance

rates. The time series were generated in R (see R Development Core Team (2005)) and the MCMC

routines were written in Ox version 3.20 (see Doornik (2002))1.
1The computational routines are available for free from http:/www.dme.ufrj.br/romy.
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3·1..4 Results

The results showed in this section are based on samples of size 10000 obtained from chains which

were run for 50000 iterations, where the first 40000 were discarded as the burn-in period. The only

exception is Scheme III, whose chains were run for 15000 iterations and the burn-in was 10000. We

adopted this strategy following the results reported by Gamerman (1998) about its fast convergence

and the high time needed to complete each iteration. A thinning interval was not used to produce

the summaries. This is because one of the goals of this study was to measure the autocorrelation

each method produces, one iteration after the other.

An interesting result is that under Scheme I, inefficiencies exhibited by the state parameters’

chains are independent of the position in time, that is, the inefficiencies of the chains of θt for

t at the beginning, middle or end of the time series are almost the same, unlike in the other

sampling schemes. Also, inefficiencies do not depend on the time series’ size. Although this is a

multimove step, the acceptance rates were always reasonable, on average, between 26% and 46%.

The single-move schemes (II, V, VII and VII) were the least efficient ones. Although the empirical

autocorrelation functions are not shown here, in most of the cases, the ones from Scheme I are as

good as those of Scheme III.

From Table 1 it can be noticed that the RMSE’s of all the schemes are very similar, as expected,

for both, the response (Y ) and state (Θ) variables. The acceptances rates of Schemes III and IV

are the highest, more than 90% in all cases, while the acceptance rates of V, VI and VII are always

between 30% and 50%. The acceptance rates of Scheme I are, on average, similar to the other single

move schemes. In some series its acceptance rate is the smallest, as expected, since it corresponds

to a multimove step. However, it is far different from zero, contrary to the result reported by

Gamerman (1998) when using his proposal in a multimove step. In addition, as also expected, it
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can be noted that the global acceptance rate decreases as the length of the time series increases.

The computational times elapsed for Schemes I, II, V, VI and VII are similar, however, Scheme

III needed almost the same time to complete only 10% of the number of iterations completed by

the other schemes. Attention must be paid to the results obtained under Scheme IV for the time

series of size 300. The RMSEY ’s were much greater than the errors under other schemes. This can

be partially explained by the acceptance rate obtained with this method. Although its mean was

95.5%, its standard deviation was 14.12, indicating that for some observations in some replications

the acceptance rate was small (almost zero), leading to a poor adjustment. The latter is reflected

in the RMSEΘ’s, which are also the greatest ones.

Considering all the 100 time series, Figure 1 shows the summary, through a box plot, of the log

inefficiencies of the sampled chains of the states, θt, at times t = 5, 25, 45 for T = 50, t = 5, 45, 95 for

T = 100, t = 5, 145, 295 for T = 300 and W for all the cases. From Figure 1, it can be noticed that

for series of sizes T = 50 and T = 100, Schemes V, VI and VII exhibit the highest inefficiencies,

while for Scheme III the inefficiency decreases through time. The box plots under Scheme I show

that with this method the best inefficiencies were obtained at t = 5 and t = 25, and the second

best at t = 45. In the case of T = 300, Scheme III performed slightly better than Scheme I in the

middle of the time series, e.g., t = 145, and better at the end, e.g., t = 295. Nevertheless, Scheme

I was better than the rest of the single-move sampling methods used.

Figure 2 presents the box plots of the logarithm of the medians of the samples from the posterior

distributions of W . The estimates are reasonable under all the schemes. Nevertheless, under Scheme

V it seems that the state’s variance is always underestimated. This could be due to a poor mixing

of the chains. Additionally, it is worth commenting that results not shown here revealed that when

the value of W is larger, for example, W = 0.1, Schemes III and IV could have problems to
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Table 1: Root Mean Square Error (RMSE), Acceptance Rate (mean of T × K rates)

and Computational Time (mean of K = 100 elapsed times) for time series of size

T = 50, 100, 300.

RMSEY RMSEΘ Acceptance rate Time

Scheme mean sd mean sd mean sd

T = 50

I 1.2525 0.1095 0.2366 0.0361 42.6297 – 280.30

II 1.2766 0.1169 0.2342 0.0263 33.5253 7.1575 214.98

III 1.2599 0.1107 0.2492 0.0513 97.2529 1.2287 629.08

IV 1.2443 0.1148 0.2583 0.0290 98.1449 0.6814 120.79

V 1.3155 0.1322 0.2376 0.0345 51.4230 4.5316 89.04

VI 1.2403 0.1137 0.2611 0.0280 37.7968 6.3019 248.25

VII 1.2365 0.1109 0.2596 0.0303 44.6136 5.8161 219.65

T = 100

I 1.3099 0.1334 0.2244 0.0277 38.4543 – 334.25

II 1.3272 0.1435 0.2266 0.0243 32.3509 6.9867 257.16

III 1.3137 0.1347 0.2335 0.0409 97.9422 0.8513 1533.09

IV 1.4342 0.3821 0.2542 0.0491 98.7127 3.2285 147.62

V 1.3831 0.1526 0.2861 0.0388 51.4612 4.0418 104.54

VI 1.3128 0.1420 0.2357 0.0199 34.2718 6.8640 301.94

VII 1.3078 0.1405 0.2304 0.0216 42.0167 6.0428 274.08

T = 300

I 1.6085 0.3039 0.2281 0.0352 31.3526 – 247.76

II 1.6158 0.3065 0.3798 0.2213 32.1778 9.4706 314.09

III 1.6107 0.2980 0.2273 0.0376 98.4285 0.6872 2158.93

IV 4.5229 3.7538 0.5459 0.2526 95.5152 14.1218 163.87

V 1.7110 0.3295 0.4718 0.1330 51.3656 4.1081 74.44

VI 1.6076 0.3012 0.2365 0.0344 32.8817 8.9858 371.31

VII 1.6066 0.3025 0.2739 0.0876 40.3615 7.8025 338.89
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Figure 1: Box plots of the (log)inefficiencies of θt, at three different instants, and W :

(a)–(d) T = 50, (e)–(h) T = 100 and (i)–(l) T = 300.

approximate the target posterior distribution, causing zero acceptance rates.
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Figure 2: Box plots of the (log)medians of the samples from the posterior distribution

of W .

3·2. Modeling rainfall in Tokyo

We used all the sampling schemes described in the previous section to fit a dynamic binomial model

to the number of occurrences of rainfall over 1mm in Tokyo for each day during 1983-1984. This

example was analyzed by Kitagawa (1987) and Gamerman (1998), among others. The goal here

is to estimate the probability of success (occurrence of rainfall) for each calendar day. The model

considered follows a binomial response with success probability πt, such that logit(πt) follows a

first-order dynamic trend, that is

yt|n, πt ∼ Binomial(n, πt), t = 1, . . . , 366; n = 1 if t = 60 and n = 2 if t 6= 60,

logit(πt) = θt (8a)

θt = θt−1 + wt wt ∼ N(0,W ). (8b)

One chain of 106 iterations was run and after a burn-in period of 90000, every 50th iteration

sample was stored (except for Scheme III). In this particular case, due to the small values of the

response variable, we used numerical methods to compute the moments of the conjugate prior of

πt under CUBS.
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Table 2 shows the RMSEY , the mean and standard deviation of the acceptance rates, consid-

ering all θt. It is clear, from these figures that the goodness of fit obtained with all the schemes was

very similar. The lowest acceptance rate corresponds to the multimove sampling schemes, while

the highest ones correspond to Schemes III and IV. Figure 3 shows the autocorrelation functions

of θt at t = 50, 150, 250, 350. It can be seen that the samples with the lowest autocorrelations were

obtained under Schemes I and III, while the samples under Schemes IV, V, and VI exhibit a

higher autocorrelation.

The box plots of the log inefficiencies computed for the whole state vector are shown in Figure

4(a). From this, it can be noticed that the best results were also obtained under Schemes I and III

(chains with the lowest inefficiencies). However, Scheme III exhibits a high dispersion associated

with this measure. As observed from our Monte Carlo study, this sampling scheme tends to be

more efficient when sampling those state parameters which are closer to the end of the time series

than those which are on the beginning.

Table 3 shows some summaries of the samples from the posterior distribution of W and Figure

4(b) shows the box plot of the posterior samples of the variance W . The posterior medians obtained

are between 0.04 and 0.10 (except for scheme V, which, from our Monte Carlo study, is expected

to underestimate the state variance).

3·3. Modeling runoff as a function of rainfall

Based on the previous results, it can be concluded that the two best schemes were I and III. In this

section we compared the performance of both schemes in a non-linear dynamic model. Specifically,

we fitted a non-linear dynamic model for runoff as a function of rainfall for data from the Fartura

River in São Paulo, Brazil. The time series are from January 1960 to December 1964. The dataset
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Table 2: RMSEY and acceptance rates for the Tokyo rainfall data.

RMSEY Acceptance rate

Scheme mean sd mean sd

I 0.4698 0.2814 9.6400 –

II 0.4928 0.2825 29.9859 3.3905

III 0.4714 0.2836 98.0405 1.0536

IV 0.4772 0.2831 99.6911 4.9041

V 0.5771 0.2958 52.0549 1.8006

VI 0.4686 0.2891 26.6605 8.1579

VII 0.4793 0.2835 43.5408 4.0982

Table 3: Summaries from the posterior samples of W for the Tokyo rainfall data.

Scheme mean sd 2.50% median 97.50% log(ineff)

I 0.0919 0.0477 0.0235 0.0841 0.2187 3.5850

II 0.0492 0.0392 0.0079 0.0407 0.1496 3.7911

III 0.0903 0.0489 0.0254 0.0830 0.1984 2.8077

IV 0.0716 0.0443 0.0179 0.0618 0.1777 2.4307

V 0.0004 0.0003 0.0001 0.0003 0.0012 4.1382

VI 0.0838 0.0392 0.0326 0.0756 0.1787 4.1091

VII 0.0662 0.0380 0.0192 0.0570 0.1646 3.1724
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Figure 3: Autocorrelations of θt, t = 50, 150, 250, 350. for the Tokyo rainfall data.
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Figure 4: Box plots of the (log)inefficiencies of θt, t = 1, . . . , 366 and posterior samples of

W for the Tokyo rainfall data.
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is available in Monteiro (1992).

Let yt and xt denote the runoff and rainfall at month t. Since yt is a continuous positive variable,

it can be assumed that it follows a gamma distribution, so the proposed model is

yt ∼ Gamma(µt, ν), t = 1, . . . , T, (9a)

log(µt) = α + Et (9b)

Et = ρEt−1 + γxt + ωt; ωt ∼ N(0,W ) (9c)

where µt is the mean and ν is the shape parameter of the gamma distribution. α represents the

basic level or stream flow, ρ represents the recharge factor or permanence rate of the rainfall effect,

γ is the velocity of response to precipitation, related to soil saturation and ωt is the system error

that characterizes the stochastic transfer function (Migon & Monteiro, 1997).

The full conditional distributions of γ and W in (9) are normal and inverse gamma, respectively,

so they can be sampled directly. The ones of α and ρ do not have a known closed form, therefore

one can use a Metropolis-Hastings step to generate samples of α and the slice sampling method

to generate samples of ρ. Given ρ and γ, the previous generalized dynamic linear model setting is

obtained. Therefore, in order to obtain samples from the posterior distribution of E, one can use

either scheme I or III, in independent routines.

Aiming to do a fair comparison, we ran two parallel chains under each scheme for a period of

10 minutes, that is, we ran the routines for a fixed period of time and observed the length of the

generated chains. Table 4 shows the number of iterations performed under each scheme. It can be

observed that under algorithm I, on average, 77477 iterations were performed, while under III only

3946 were obtained. However, the minimum size of burn-in needed for the convergence of all the

chains was of 2000 iterations for Scheme I, while it was just 500 iterations for Scheme III. These

numbers were defined after a visual inspection of all the resultant trace plots.
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In order to compare the autocorrelations and inefficiency factors of the chains obtained, samples

of size 3363 were used. This number was computed as follows: the number of iterations, after the

burn-in period, performed under Scheme I was divided by the number of iterations performed under

Scheme III and the result was taken as the thinning interval to be used in the first one. According

to Table 4, the thinning interval in this case was 22 iterations long. The motivation for this exercise

is the known fact that a practical solution to overcome the high autocorrelation exhibited by the

outputs of a MCMC routine is to run a large number of iterations and to store samples after every

k iterations.

Table 4: Comparison of Schemes I and III with Rio Fartura data

Criterion I III

Time elapsed by chain (in seconds) 600 600

Iterations completed by chain 1 78949 3961

Iterations completed by chain 2 76005 3931

Average of iterations by chain 77477 3946

Time to perform 100 iterations (in seconds) 0.77 15.20

Burn-in (from trace plots) 2000 500

Thinning interval 22 1

Final sample size by chain 3363 3363

Figure 5 shows the box plots and autocorrelations of the samples from the posterior distributions

of some of the parameters in (9). Notice that, as expected, the resultant posterior samples are very

similar, under both schemes. Also, the autocorrelations obtained from samples under Scheme I are

lower than those under Scheme III.

Table 5 presents the potential scale reduction factors, PSRF or R̂ (Gelman & Rubin, 1992), and

the inefficiency factors, INEF, for some of the parameters in (9). From this we observe that all the
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(b) ρ
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(c) γ
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(d) E15
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Figure 5: Box plots and autocorrelations of some parameters’ chains of the model in

(9) for Rio Fartura data.
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values of PSRF, are close to 1, indicating that all the chains converged. The INEF obtained when

the whole sample is used, that is, when the thinning interval is 1, shows that samples generated

under Scheme I are more autocorrelated than those under Scheme III. However, taking advantage

of the larger number of iterations performed under Scheme I, that is, using the thinning interval

equal to 22, the INEF’s are smaller for I. This result reinforces the idea that the fact of performing

thousands of iterations under CUBS in a few seconds is an advantage over other sampling schemes.

Table 5: Potential scale reduction factors and Inefficiency factors for some of the pa-

rameters in (9)

I III

PSRFa INEF by chain PSRFa INEF by chain

R̂ 97.5% 1 b 2 b 1 c 2 c R̂ 97.5% 1 b 2 b

α 1.01 1.03 5.12 5.11 2.87 2.48 1.02 1.08 4.77 4.89

ρ 1.00 1.01 4.58 4.57 2.36 2.14 1.14 1.52 4.68 4.97

γ 1.00 1.00 2.75 2.70 1.13 1.22 1.07 1.29 3.59 3.49

ν 1.00 1.00 3.91 3.85 1.43 1.47 1.08 1.31 3.61 3.70

W 1.00 1.00 3.40 3.40 1.29 1.34 1.04 1.18 3.06 3.32

E0 1.00 1.00 3.91 3.86 1.88 1.55 1.00 1.01 3.53 3.86

E5 1.00 1.02 4.83 4.81 2.67 2.27 1.02 1.10 4.28 4.55

E15 1.00 1.01 4.80 4.77 2.65 2.31 1.00 1.00 4.37 4.56

E35 1.01 1.03 4.85 4.83 2.63 2.37 1.01 1.04 4.41 4.70

E55 1.00 1.01 4.86 4.84 2.63 2.42 1.01 1.07 4.41 4.61

a Potential scale reduction factors (Gelman & Rubin, 1992).

b Every iteration.

c Every 25th iteration.
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4. Concluding remarks and current research

In this paper we showed that the algorithm proposed by West et al. (1985), conjugate updating,

can be used with satisfactory results to construct a proposal density in a Metropolis-Hastings step

to sample in block all the state parameters of a generalized dynamic model. A Monte Carlo study

was performed to compare this proposal with other sampling schemes previously established in

the literature. We observe that CUBS works well, brings satisfactory results and has as main

advantages: the ease of implementation and its low computational demand, resulting in fewer

autocorrelated posterior samples.

Although the model used in the Monte Carlo study is a simple one, it can be stated that CUBS

works well even with complex models like transfer functions where, for example, Scheme IV should

not be used and Scheme III is hard to implement and is very computationally demanding.

Similar methods were independently developed by Yuhong Wu, Huiyan Sang and Mike West,

in an unpublished work presented at the Valencia/ISBA 8th World Meeting on Bayesian Statistics,

2006. Their sampling scheme is also based on linear Bayes’ idea. They used their approach in

analyzing a collection of long, multiple time series of monthly rainfall patterns over a collection

of geographical locations. They obtained really satisfactory results and encourage the use of the

method in complex models (applications). This Duke’s experience further verifies the utility and

accuracy of the proposed sampling scheme.

As was illustrated here, the response variable can be a time series, where the parameters in (1)

vary over time, but also the response can be an i.i.d. sample from a model with fixed parameters. In

that case, posterior samples can be obtained using a Metropolis-Hastings step where the proposal

density is constructed using CUBS. The idea of this approach is that the fixed parameters can be

estimated sequentially: as new observations are introduced to the algorithm, more information is
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gained about the fixed parameters, so at the end of the sample (when the last observation is used

in the conjugate updating step), one must be really close to the mode of its posterior distribution.

Although the emphasis of CUBS applications resides in the exponential family distributions,

this algorithm is more general because what is really needed is the existence of a conjugate prior

for the location parameter of the response distribution. For example, CUBS can be used with the

log-normal distribution.

The application of the scheme proposed to make inference in k-parameter distributions is one

of our current topics of research. The idea is to use a multivariate conjugate prior for exponential

family distributions (Bernardo & Smith, 1994, Chapter 5) to approximate the first moments of the

state parameter’s filtering distributions.
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A Some equations for prior and posterior parameters

Let rt and st be the parameters of the conjugate prior of ηt. Consider ft and qt the prior moments

obtained from the linear model and f∗
t and q∗t the posterior ones. Table 6 shows the equations to

be solved in order to compute f∗
t and q∗t in the most frequently used distributions. In Table 6,

γ(·) and γ′(·) denote the digamma and trigamma functions, respectively. In the last column the

following approximations are used: γ(x) ≈ log(x) and γ′(x) ≈ 1/x (see Abramovitch & Stegun

(1965) for details).

B Gamma likelihood

In this section we show the CUBS for a dynamic gamma model:

yt|µt, ν ∼ Gamma(µt, ν), t = 1, . . . , N (10a)

log(µt) = F ′
tθt (10b)

θt = Gtθt−1 + wt, wt ∼ N [0,W ] (10c)

θ0|D0 ∼ N [m0, C0], (10d)

where Gamma(µt, ν) refers to a gamma distribution with expected value µt and shape parameter

ν.

Moments for log(µt)

Assuming ν known, from the conjugate analysis we have (−ηt|rt, st) ∼ Gamma(s + 1, r). Since

log(µt) = − log(−ηt) = g(ηt), we have

E[g(ηt)] = E[− log(−ηt)] = −E[log(−ηt)] = log rt − γ(st + 1).

V ar[g(ηt)] = V ar[− log(−ηt)] = V ar[log(−ηt)] = γ′(st + 1),
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Table 6: Example of equations to be solved to compute the prior and posterior parameters involved

in the updating step of CUBS.
Distribution Link Prior and posterior moments Approximations

Binomial logit
f

(1)
t = γ(rt)− γ(st)

g
(1)
t = γ′(rt)− γ′(st)

≈ log(rt)− log(st)

≈ 1/rt − 1/st

f∗
t = γ(rt + yt)− γ(st + nt − yt)

g∗
t = γ′(rt + yt) + γ′(st + nt − yt)

Binomial identity
rt = ft/nt[ft/qt(nt − ft)− 1]

st = (1− ft/nt)[ft/qt(nt − ft)− 1]

f∗
t = nt(rt + yt)/(rt + st + nt)

g∗
t = [f∗

t (nt − f∗
t )]/(rt + st + nt + 1)

Poisson log
f

(1)
t = γ(rt)− log(st)

g
(1)
t = γ′(rt)

≈ log(rt)− log(st)

≈ 1/rt

f∗
t = γ(rt + yt)− log(st + 1)

g∗
t = γ′(rt + yt)

Poisson identity
rt = f2

t /qt

st = ft/qt

f∗
t = (rt + yt)/(st + 1)

g∗
t = (α + yt)/(st + 1)2

Gamma log
f

(1)
t = log(rt)− γ(st + 1)

g
(1)
t = γ′(st + 1)

≈ log(rt)− log(st + 1)

≈ 1/(st + 1)

f∗
t = log(rt + νyt)− γ(st + ν + 1)

g∗
t = γ′(st + ν + yt)

(1) numerical methods or approximations can be used to obtain rt and st.

where γ(x) = d log Γ(x)/dx = Γ′(x)/Γ(x) ≈ log(x) is the digamma function and γ′(x) ≈ 1/x is the

trigamma function.

CUBS for the Gamma Dynamic Model in (10)

I. Set t = 1;

II. Compute the posterior moments for the states, mt and Ct :
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(a) Compute from the model the moments of the prior on θt and g(ηt):

θt|Dt−1 ∼ [at,Rt], where at = Gtmt−1 and Rt = GtCt−1G
′
t +W t (11)

g(ηt)|Dt−1 ∼ [ft, qt], where ft = F ′
tat and qt = F ′

tRtF t; (12)

(b) Determine from the conjugate analysis the moments of the prior of g(ηt):

E[g(ηt)|Dt−1] = ft = log rt − γ(st + 1) ≈ log rt − log(st + 1) (13)

V ar[g(ηt)|Dt−1] = qt = γ′(st + 1) ≈ 1/(st + 1); (14)

(c) Obtain from the conjugate analysis the moments of the posterior for g(ηt):

E[g(ηt)|Dt] = f∗
t = log(rt + νyt)− γ(st + ν + 1) (15)

V ar[g(ηt)|Dt] = q∗t = γ′(st + ν + 1); (16)

(d) Compute from the model the moments of the posterior distribution for θt:

θt|Dt ∼ [mt,Ct], where:

mt = at +RtF t(f∗
t − ft)

1
qt

(17)

Ct = Rt −RtF tF
′
tRt

(
1− q∗t

qt

) 1
qt

. (18)

III. Set t = t + 1 and return to II if t < N ;

IV. Sample θN from N(mN , CN );

V. Set t = N − 1 and sample θt from p(θt | θt+1, Dt,θ) = N(ms
t ,C

s
t );

VI. Set t = t− 1 and return to V if t > 1.
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Steps IIb and IId above are specific for each conjugate family. Steps IV-VI form the Backward

Sampling. The moments of p(θt | θt+1, Dt,θ) are obtained from:

θt|Dt ∼ N
[
mt,Ct

]
θt+1|θt, Dt ∼ N

[
Gt+1θt,Gt+1CtG

′
t+1 +W t+1

]
 θt+1

θt

∣∣∣Dt

 ∼ N

[Gt+1mt

mt

 ,

Gt+1CtG
′
t+1 +W t+1 Gt+1Ct

CtGt+1 Ct


]
.

Let Rt+1 = Gt+1CtG
′
t+1 +W t+1 and Bt = CtG

′
t+1R

−1
t+1, then

θt|θt+1, Dt ∼ N
(
ms

t ,C
s
t

)
,

where

ms
t = mt +Bt(θt+1 −Gt+1mt)

Cs
t = Ct −BtRt+1B

′
t.
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