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Resumo

As one specifies the effect of a regressor in a time series analysis it is sometimes necessary to assume
that fluctuations in that variable do not have only immediate impact on the mean response, but that
its effects somehow propagate to future times. We adopt, in the present work, transfer functions to
model such impacts, represented by structural blocks Et present in dynamic generalized linear models’
predictors.

All the inference is carried under the Bayesian paradigm and in the context above two sources of
difficulties emerge for the analytical derivation of posterior distributions: non-Gaussian nature of the
response, associated to non-conjugate priors and, if there are autoregressive parameters in the block Et,
also non-linearity of the predictor on these parameters.

The purpose of this work is the to produce complete Bayesian inference on generalized dynamic
linear models with transfer functions, using Monte Carlo Markov Chain methods to build samples of the
posterior joint distribution of the parameters involved in such models.

Several transfer structures are specified, associated to Poisson, Binomial, Gamma and Inverse Gaus-
sian responses. Simulated data are analyzed under the resulting models in order to access their perfor-
mance. Finally, the Gamma models are applied to real data concerning the cumulative effect of daily
rain volumes over pollutant levels.

Keywords: Transfer functions, Dynamic Generalized Linear Models, Bayesian inference, Monte
Carlo Markov chain.
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1 Introduction

There are several situations in which one aims to model the cumulative impact of a regressor on a
response variable through time. For instance, one could be interested in the effect of a marketing campaign
on the sales of some product or in the way rain volumes influence the flow of a river or yet in the effect of
a vaccine on the counts of some disease. In all these cases, knowledge of the mechanisms of propagation of
such impacts should be useful not only for predictive purposes but also to improve control over the output
process, planning optimal times to intervene on the inputs.

Clearly the simplest way to specify, at each time t, the overall impact of a regressor X over a response
Y , both observed temporally, is through distributed lag models, in which such effect is represented by:

Et =
s∑

j=0

βjXt−j . (1)

The form above presents two major difficulties. One is that it is presumed in (1) that s - the regressor’s
horizon of influence on Y - is known, and that the regressor’s effect is null for j > s, what may result in
sub estimation of the overall effect of X. Actually, in practical applications, the pure specification of s
demands careful analysis. Another problem emerges when the effect of X on the output exhibits significant
persistence, therefore implying moderate to large values of s, in which case the estimation of the parameters
β0, · · · , βs is compromised by the autocorrelation in Xt, · · · , Xt−s.

Thus it is usual to impose restrictions on the coefficients of a distributed lag model (Klein, 1958; Solow,
1960; Almon, 1965). A fundamental work on restricted distributed lags is the one by Koyck (1954), in which
it is assumed that in an infinite distributed lag model with coefficients β0, β1, · · · , βb, · · ·, as from lag b (b ≥ 0)
the coefficients in (1) exhibit geometric decay, governed by:

βj = ρjβ, (j ≥ b, 0 ≤ ρ ≤ 1). (2)

The estimation of (2) resumes to ρ and β, thus resulting in a much more parsimonious formulation than (1).
Besides, the structure (2) allows the estimation (instead of arbitration) of the period of significant influence
of X over Y .

Other forms of restriction will be examined. Essentially, Koyck’s formulation is a particular case of the
transfer function models adopted in the present work. We assume, as described by Box et al. (1994), that
the relation between the input X and the output Y can be represented by an effect Et structured as:

(1− ρ1B − · · · − ρrB
r)Et = (ω0 − ω1B − · · · − ωsB

s)Xt−b

= (ω0B
b − ω1B

b+1 − · · · − ωsB
b+s)Xt

or
ρ(B)Et = ω(B)BbXt = β(B)Xt, (3)

where B is the lag operator: BEt = Et−1.
Alternatively, the effect of X can be written as a linear filter:

Et = ν0Xt + ν1Xt−1 + ν2Xt−2 + · · ·
=

β(B)
ρ(B)

Xt

= ν(B)Xt. (4)

The polynomial ν(B) = ν0 +ν1B +ν2B
2 + · · · is called transfer function and represents the cumulative effect

of the regressor X on the output process. The weights ν0, ν1, ν2, · · · are called impulse response function and
express the instantaneous impact of X on the output process at present and further times. In the following
sections we refer to ν(B) in (4) as TF(r, s, b), indicating that ν(B) is the resulting transfer function from
the ratio between two polynomials on B: one of order r, applied on the output, and one of order s applied
on the regressor lagged by b instants.
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The filter (4) is stable if, for |B| ≤ 1, ν(B) is convergent, implying that finite fluctuations in the input
X result in finite fluctuations in the output process Y . The stability conditions for transfer functions are
equivalent to those of stationarity for ARMA models.

Substituting (4) in (3) results in the following identity:

(1− ρ1B − · · · − ρrB
r)(ν0 + ν1B + ν2B

2 + · · ·) = (ω0 − ω1B − · · · − ωsB
s)Bb, (5)

which, equated on B gives:

νj =





0 j < b
ρ1νj−1 + ρ2νj−2 + · · ·+ ρrνj−r + ω0 j = b
ρ1νj−1 + ρ2νj−2 + · · ·+ ρrνj−r − ωj−b j = b + 1, b + 2, · · · , b + s
ρ1νj−1 + ρ2νj−2 + · · ·+ ρrνj−r j > b + s.

Hence, several shapes can be obtained even with low orders r and s, as may be seen in figure 1.
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Figura 1: Examples of transfer and impulse response functions with 0 ≤ r, s ≤ 2 and b = 0.

Clearly, the shape of an impulse response function (and consequently the shape of a transfer function)
depends on the behavior of the solutions of the difference equation defining it. So, according to Box et al.
(1994), considering a transfer function of order (r,s,b), that is, autoregression of order r on Et and s lags on
BbXt, we have:
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• b null values ν0, ν1, νb−1

• s− r + 1 values νb, νb+1, νb+s−r without fixed pattern (if s < r there are no such values)

• values νj , com j ≥ b + s − r + 1 following the pattern dictated by the difference equation of order r,
with initial values given by νb+s, · · · , νb+s−r+1.

Essentially, the pattern followed by an impulse response function is determined by the roots of the
autoregressive polynomial ρ(B): distinct real roots provide geometric decay terms, distinct complex roots
determine senoidal terms and equal roots provide polynomial terms. Thus the impulse response function is
a combination of geometric, polynomial and senoidal terms.

Transfer functions are well established and applied in different contexts, particularly in Econometrics and
Engineering. Nevertheless, there are few records of estimation of such models under the Bayesian paradigm.
Pole (1988) and Ravines et al. (2006) present Bayesian estimation of transfer function models respectively
applying Gaussian quadrature and Markov chain Monte Carlo methods to obtain posterior information.
However, in both cases - as it is usual in the traditional formulation for this class of models - it is assumed
that the output Y is Gaussian, which in some cases may demand transformations with the cost of lack of
interpretability. Another usual restriction is the assumption that the process governing the relation between
X and Y is static, what leads us to the class of Bayesian dynamic models, in which parameters are allowed
to evolute according to some stochastic law.

West et al. (1985) defines the class of dynamic generalized linear models, in which responses are assumed
to belong to the exponential family of distributions, resulting in an extension to dynamic linear models,
defined by Harrison and Stevens (1976), in which, despite the dynamic pattern addressed to structural
parameters, responses are restricted to follow the Gaussian distribution. Dynamic generalized linear models
are also an extension to generalized linear models, presenting the same observational form, but imposing
stochastic fluctuation to structural parameters, thus implying more flexible predictors. A good description
of dynamic models and recent developments in this area can be found in Migon et al. (2005).

We follow West et al. (1985), inserting a transfer function in dynamic generalized linear models as an
structural component Et, which represents the overall effect accumulated by X over the mean response at
time t. In this context two sources of difficulties emerge for the analytical derivation of posterior distributions:
non-Gaussian nature of the response, associated to non-conjugate priors and, if there are autoregressive
parameters also non-linearity of the predictor on these parameters.

West et al. (1985) approach the posterior via linear Bayes, in terms of first and second moments, an usual
practice during the 80’s to deal with non-normality / non-linearity in dynamic models. Also, some works
have avoided integration by the determination of posterior modes (Singh and Roberts, 1992; Fahrmeir, 1992,
1997). Since the beginning of the 90’s several sampling based approaches have been developed in order to
derive posterior inference. In such approaches samples of the densities involved in the posterior analysis are
propagated and updated, instead of the densities themselves.

There are several examples of approximation of the posterior distribution in non-gaussian/ non-linear
dynamic models using sampling importance (Gordon et al., 1993; Durbin and Koopman, 2000). Another
possibility, applied in the present work, is to use Markov chain Monte Carlo (MCMC) methods, which have
been applied no non-Gaussian/ non-linear dynamic models by Carlin et al. (1992), Carter and Kohn (1994),
De Jong and Shephard (1995), Shephard and Pitt (1997), Knorr-Held (1999), Geweke and Tanizaki (2001),
Durbin and Koopman (2002) and Ferreira and Gamerman (2000), among others.

Our purpose is to produce complete Bayesian inference on generalized dynamic linear models with transfer
functions in their predictors, using Markov Chain Monte Carlo methods to build samples of the posterior
joint distribution of the parameters involved in such models.

In the next section we present the proposed models, specified for Poisson, Binomial, Gamma and Inverse
Gaussian distributions and describe the simulation procedure to obtain posterior samples. Section 4 exhibits
the results of the estimation procedure to some simulated data, created in order to evaluate the performance
of the method. In section 5 we apply Gamma models to real data concerning the effect of rain volumes on
particulate material.
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2 Model

In the general form of the proposed models we suppose that Yt ∼ F(χt), F a distribution in the
exponential family with natural parameter χt, so that:

p(yt|χt) ∝ exp
{

ytχt − b(χt)
φt

}
, t = 1, ...T,

g(µt) = ηt = F
′
tαt + Z′tδ + Et (6)

αt = Gtαt−1 + ut, ut ∼ MN(0,Wt),
Et = ν(B)Xt

in which:

• g is a monotone differentiable link function;

• µt = E[Yt|χt] = ḃ(χt) = db(χt)
dχt

.;

• ηt is a predictor whose basic structure is:

αt, vector of parameters governing the evolution of the regressors contained in Ft, which may
include trend as well as other covariates;

Gt is an evolution matrix, governing the stochastic evolution of αt, which may contain unknown
parameters;

δ, is a vector of parameter associated to the covariates Zt, whose impact on the mean response is
supposed constant ;

Et, is the structural block denoting present and past effects of a regressor on the mean response
function µt, following (4) and depending on a parameter vector ψ.

Specifically, the proposed models are obtained by the combination of different observational distributions
F and forms of transfer functions defining the effects Et, as described in (4). The model is completed with
a prior distribution α1 ∼ NM(a1,R1). If all the components of the evolution matrix Gt are known and
Wt = W ∀t, the parametric vector to be estimated is θ = (φt,α1, · · · ,αT ,R1,W,δ′,ψ′).

2.1 Observational Structure

The likelihood function based on model (6) is given by:

T∏
t=1

exp
{

ytχt − b(χt)
φt

}
. (7)

We consider the following distributions in the exponential family:

• Yt ∼ Poisson (λt) → χt = log(λt), b(χt) = eχt and φt = 1, with canonical link:

log(λt) = ηt; (8)

• Yt ∼ Binomial(n, pt) → χt = log
(

pt

1−pt

)
, b(χt) = log[1 + eχt ] and φt = 1/n, with canonical link:

log
(

pt

1− pt

)
= ηt; (9)
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• Yt ∼ Gamma(ϕ, λt) → χt = −λt

ϕ , b(χt) = − log(−χt) e φt = 1/ϕ. In order to guarantee positive
mean response µt, we adopt the logarithm link function, instead of the canonical link µ−1

t :

log
(

ϕ

λt

)
= ηt; (10)

• Yt ∼ Inverse Gaussian(µt, σ
2) → χt = − 1

2µ2
t
, b(χt) = −√−2χt , φt = σ2 and Once again, in order

to guarantee positive mean response, µt, we adopt the logarithm link, instead of the canonical − 1
2µ2

t
:

log(µt) = ηt. (11)

2.2 Transfer Function Specification

In this section, we detail the analytical forms adopted to model the cumulative effect of the regressor Xt,
Et. Throughout this section we assume b = 0. When b > 0 the effects obtained are just delayed by b periods.
In subsection 2.2.1 we use the structure (4) with r = 0 and s > 0, assuming that s is relatively high. We
contour the autocorrelation problems involved in such specification imposing restrictions on the regressor’s
coefficients. generally with r = 1, 0 ≤ b ≤ 2. In subsections 2.2.2 and 2.2.3 we address the cases TF(1, 0, 0)
and TF(1, 0 ≤ s ≤ 2,0). In subsection 2.2.5 we assume an extension to the structure TF(1, 0, 0), assigning a
dynamic pattern to the β coefficients in (4). Finally, in subsection 2.2.4 we add unstructured error terms to
the effect Et, in order to account for factors not present in the predictor.

2.2.1 Polynomial Lag Models

A distributed lag model (1) is a particular case of (4) with ρ(B) = 1. Difficulties associated to such
models have been discussed in section 1. One way to restrict the coefficients β0, β1, · · ·βs in a distributed
lag model (1), overdrawing such difficulties, is to assume that these coefficients’ trajectory may be described
by a low order d polynomial on the lags (Almon, 1965), as exhibited in figure 2:

βj =
d∑

k=0

ζkjk, j=0,...,s, (12)

Figura 2: Polynomial approximation to the coefficients βj in a distributed lag model.

Defining Stj =
∑s

i=0 ijXt−i, j = 0, 1, 2, · · · , d and applying the restrictions (12) to (1), we have:
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Et = ζ0St0 + ζ1St1 + ζ2St2 + ... + ζdStd
. (13)

Therefore the parameters ψ = (ζ0, ζ1, · · · , ζd) are added to the parameter vector θ. We assume a prior
distribution NM(mζ ,Cζ) for ψ. Throughout this paper we suppose prior independence among parameters,
so that the covariance matrixes in normal multivariate prior are diagonal.

In polynomial distributed models one must choose the degree of the smoothing polynomial, d and also the
influence horizon s of the regressor Xt, which can prove to be a non trivial task, leading us to the following
specifications, based on autoregressive parameters.

2.2.2 TF(1, 0, 0)

Suppose that, in (3), we have r = 1, b = 0 and s = 0, so that:

Et = ρEt−1 + βXt. (14)

Recursively solving the difference equation above we have:

Et = βXt + ρβXt−1 + ρ2βXt−2 + · · · . (15)

Hence we have the following impulse response function:

νj = (ρB)jβ, j = 0, 1, 2, · · · . (16)

If we suppose, without loss of generality, that β > 0, the impulse response function may exhibit the
following patterns:

• 0 < ρ < 1: geometric decay;

• −1 < ρ < 0: geometric decay with alternating signs;

• ρ > 1: geometric growth;

• ρ < −1: geometric growth with alternating signs.

Such patterns are exhibited in figure 3, with β = 1 and different values for ρ.
The model is determined by the parameters ψ = (ρ, β, E0), for which we assume the following prior

distributions: ρ ∼ U(0, 1), β ∼ N(mβ , Cβ) e E0 ∼ N(mE , CE).
The model is stable if |ρ| < 1. In this case it is called geometric lag model and was first associated to

Koyck (1954). This model postulates the gradual decay of the effect of the regressor X, until such effect
eventually diminishes. The autoregressive parameter ρ controls the velocity of the decay. Absolute values of
ρ next to 1 imply more persistent effects of X.
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Figura 3: TF(1,0,0): Behavior of the impulse response function (a) and transfer function (b), for β > 0, |ρ| < 1 and
|ρ| > 1

.

2.2.3 TF(1, s > 0, 0)

Instead of a monotone pattern in the impulse response function as postulated by Koyck’s model, if we
adopt lags on X it is possible to obtain effects which grow up until a vertex and then present geometric
decay. Examples of such behaviors can be seen in figure 1, for r = 1 and 1 ≤ s ≤ 2. The effect Et is then
expressed by:

Et = ρEt−1 + β0Xt + β1Xt−1 + · · ·βsXt−s. (17)

The vector os parameters to be estimated in this formulation is ψ = (ρ, β0, · · · , βs, E0), with prior
distributions: ρ ∼ U(0, 1), β ∼ NM(mβ ,Cβ) and E0 ∼ N(mE , CE). The intrinsic autocorrelation in
Xt, Xt−1,··· may cause some problem to estimation procedures. Nevertheless, usually good fits are obtained
with a low number of lags on X.

2.2.4 TF(1, s ≥ 0,0) with independent random errors

In models which aim to adjust and predict a stochastic process it is usual to have influential variables
omitted, maybe due to difficulties of measurement or even because in most situations it is unrealistic to
presume that one can identify all the factors which influence the output.

In order to address the possible effect of omitted variables we add unstructured error terms to the effect
Et:

Et = ρEt−1 + β0Xt + β1Xt−1 + · · ·βsXt−s + εt, εt ∼ N(0, Qε). (18)
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In this formulation, although we impose more flexibility to the predictor ηt, the impulse response and
transfer functions are maintained constant through time, since ρ e β coefficients are constant. The parameter
vector θ is completed with ψ = (ρ, β0, · · · , βs, E0,
ε1, · · · , εT , Qε), with prior specification given by: ρ ∼ U(0, 1), β ∼ NM(mβ ,Cβ), E0 ∼ N(mE , CE),
Qε ∼ GI(nε

2 , nεsε

2 ).
The relative magnitudes of the errors εt as compared to the magnitude of the whole predictor ηt may

serve as an indicative of the power of the regressors present in ηt to predict the output.

2.2.5 TF(1, 0, 0) with Dynamic Gain Factors

It is assumed by Koyck’s model, described in subsection 2.2.2, that an unitary fluctuation on X at any
time t, results in a constant immediate impact β. This formulation can be extended if we suppose that such
impact varies through time, so that:

Et = ρEt−1 + βtXt. (19)

with the dynamic in βt dictated by some stochastic law, for instance, a random walk :

βt = βt−1 + υt, υt ∼ N(0, Q). (20)

The resulting impulse response function presents dynamic magnitude and shape. One example of such
behavior is exhibited in figure 4, for ρ = 0.9 and Q = 0.005, at times t = 100, 300 e 500. The static model
(14) is obtained as a particular case with Q = 0.

Figura 4: Dynamic impulse response function determined by a random walk on βt, obtained with ρ = 0.9 and
Q = 0.005, evaluated on three different instants.

The model is completely specified by the parameter vector θ containing ψ = (ρ, E0, β1, · · · , βT , Q), Once
the errors υt, t = 1, · · · , T are known, the structural coefficients βt, t = 1, · · · , T are easily obtained. Due to
computational issues detailed further in section 3 we then work in terms of ψυ = (ρ, E0, υ1, · · · , υT , Q), whose
components follow prior distributions: ρ ∼ U(0, 1), E0 ∼ N(mE , CE), υ1 ∼ N(aυ, Rυ), Q ∼ GI(nυ

2 , nυsυ

2 ).
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3 Posterior Distribution and Computational Issues

We assume that Gt = G and Wt = W, constant ∀t, assigning the following prior distributions to the
components of the parametric vector θ: δ ∼ NM(aδ,Rδ), with Rδ supposed known, and usually a diagonal
matrix, α1 ∼ NM(a1,R1), and inverse Wishart for W. Hence the posterior distribution associated to the
proposed models is given by:

π(θ|y1, · · · , yT ) ∝ ∏T
t=1 exp

{
ytχt(θ)−b[χt(θ)]

φt

}

× exp
{− 1

2 (δ − aδ)′R−1
δ (δ − aδ)

}
× exp

{− 1
2 (α1 − a1)′R−1

1 (α1 − a1)
}

×∏T
t=2 π(αt|αt−1,W)

×π(W)π(ψ)
∏T

t=1 π(φt).

(21)

This distribution does not present closed form and is approached computationally, through Markov Chain
Monte Carlo methods. We use Gibbs sampler and in particular, the only parameters whose full conditionals
are available are: W, which follows an inverse Wishart posterior distribution and, if we assume inverse
Gamma priors for Qε and Q, these also have inverse Gamma posterior distributions.

The remaining parameters in θ are sampled via Metropolis-Hastings steps in the Gibbs sampler. We
follow Gamerman (1998), using proposal densities obtained as the full conditionals for each of the components
of θ in the work model:

ỹt = ηt + ṽt, ṽt ∼ N(0, Ṽt). (22)

where ηt follows (6) and ỹt are modified observations given by:

ỹt = ηt + (yt − µt)ġ(µt) (23)

with variance:

Ṽt = Ṽt(θt) = φtb̈(χt)[ġ(µt)]2, (24)

where ġ and b̈ respectively denote first and second derivatives of the functions g and b.
In dynamic models, the convergence of the Markov chain is perturbed by the inherent autocorrelation in

structural parameters such as αt (6) and βt (20) (Früwirth-Schnatter, 1994; De Jong and Shephard, 1995;
Shephard and Pitt, 1997; Knorr-Held, 1999). We follow Gamerman (1998), expressing such parameters in
terms of their respective evolution errors, ut and υt, for which we assume prior serial independence. Then
these evolution errors are updated following a single movement Metropolis-Hastings scheme, with proposal
densities given by the work model based on (22). Thus, at each step of the algorithm, u1, · · · ,uT and/or
υ1, · · · υT are sampled. The computational cost implied is the reconstruction of the structural parameters
αt and/or βt, at each iteration of the MCMC procedure, but we expect that the gain due to the absence of
prior autocorrelation overcomes such costs. We assume that the evolution errors covariance matrix Wt = W
constant ∀t and assign an inverse Wishart distribution to W, basing the inference procedure on θu =
(φt,u1, · · · ,uT ,W,δ′,ψ′

υ), with ψυ written in terms of the evolution errors υt, t = 1, · · · , T , in (20) , and
hence the resulting posterior distribution is:

π(θu|DT ) ∝ ∏T
t=1 exp

{
ytχt(θu)−b[χt(θu)]

φt

}

× exp
{− 1

2 (δ − aδ)′R−1
δ (δ − aδ)

}

×∏T
t=1 exp

{− 1
2 (ut)′W−1(ut)

}

×π(W)π(ψυ)
∏T

t=1 π(φt).

(25)
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In most time series applications, one aims to predict a vector a vector of future values yf = (yT+1, yT+2, · · · , yT+h)
given the observed data y = (y1, y2, · · · , yT ). The predictive distribution is given by:

p(yf |y) =
∫

p(yf |y, θ)π(θ|y)dθ

=
∫

p(yf |θ)π(θ|y)dθ

= E(θ|y)[p(yf |θ)] (26)

and thus once the posterior distribution is obtained the predictive distribution follows directly. Hence our
focus is on the approximation of the posterior distribution (25).

4 Simulated Data

In order to evaluate the identifiability of the proposed models as well as the performance of the MCMC
scheme adopted, we have simulated artificial data accordingly to the proposed models. Specifically in the
following subsections we present the results of the estimation procedure for two simulated datasets: a binomial
response model including in its predictor a dynamic level and a TF(1,0,0) structure and a Poisson response
model including a dynamic TF(1,0,0) structure due to dynamic gain factors.

4.1 Binomial(n,pt) with TF(1,0,0) and Dynamic Level

Assuming the following structure:

yt ∼ Binomial(n, pt)
ηt = αt + Et + δ1Z1t + δ2Z2t

αt = αt−1 + ut, ut ∼ N(0, W ), (27)
Et = ρEt−1 + βXt,

we have simulated 1000 observations (y1, · · · , y1000) with n = 5 and the following values for the components
of the parameter vector: β = 0.05, ρ = 0.9, E0 = 0.5, δ1 = −0.1, δ2 = 0.1, W = 0.005, conditioning on the
regressors Xt, Z1t and Z2t, exhibited in figure 5.
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Figura 5: Binomial(5, pt): Covariates used to simulate the binomial data.

The full conditional distribution for W is Inverse Gamma. For the remaining parameters, whose full
conditional is not avalilable for sampling, we have adopted Metropolis-Hastings steps in the Gibbs sampler.
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Following Gamerman (1998), The evolution errors u1, · · · , u1000 have been sampled individually, with pro-
posal distributions based on (23) and(24). The same proposal has been used to update β, E0 and the vector
(δ1, δ2). We have adopted a random walk proposal for logit(ρ).

Histograms obtained after convergence of the MCMC procedure for the samples of the posterior dis-
tributions of the parameters involved in model (27) are exhibited in figure 6. Vertical lines indicate the
”real”values of each parameter.
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Figura 6: Binomial(5, pt) simulated data: Histograms of the posterior distribution samples for the parameters involved
in model (27).

Both transfer function parameters, β and ρ - which account for the immediate impact and the memory
of impact of Xt on the mean response - are very well estimated. There is significant uncertainty on the value
of the impact of Xt already accumulated in the beginning of the analysis, E0, which is just as expected. The
estimation procedure has been able to recover the value of δ1, but δ2 is slightly underestimated, maybe due
to the more volatile trajectory of Z2. Also underestimeted is the variance of the evolution errors, W , which
is quite difficult to estimate, once it is not present in the likelihood. Although the trajectory of the posterior
mean of dynamic level αt is quite smooth, its theoretical values have been captured by 95% credibility limits,
with only a few isolated points outside these bounds, as can be seen in figure 7.
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Figura 7: Binomial(5, pt) simulated data. Dynamic level αt: traces of theoretical αt (bold line), posterior mean and
95 % credibility limits estimated through MCMC.
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The estimation of the evolution of the impact of Xt and its accumulated effect through time, as measured
respectively by the impulse response function and transfer function is exhibited in figure 8, with accurate
point estimates given by the posterior means of each function. Except for a few points, the mean response
function is also captured by 95% credibility bounds, as can be seen in figure 9.
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Figura 8: Binomial(5, pt) simulated data. Impulse response and transfer functions: theoretical values (solid line),
posterior mean and 95 % credibility limits estimated through MCMC.
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posterior mean and 95 % credibility limits estimated through MCMC.

4.2 Poisson(λt) with TF(1,0,0) and Dynamic Gain Factors

Using the same regressor variables exhibited in figure 5 and assuming that the immediate impact Xt has
on the mean response λt may vary through time, we have simulated 1000 points (y1, y2, y1000), according to
the formulation

yt ∼ Poisson(λt)
ηt = α + Et + δ1Z1t + δ2Z2t

Et = ρEt−1 + βtXt, (28)
βt = βt−1 + υt, υt ∼ N(0, Q),

adopting the following theoretical values for the parameters: α = 1.0, ρ = 0.7, E0 = 0.1, δ1 = −0.05,
δ2 = 0.05 and Q = 0.0005.
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We have adopted the same MCMC scheme detailed in subsection 27, with single movements based on
proposals built from (23) for the parameters, except for Q, whose full conditional is available for sampling and
logit(ρ), for which we have adopted a random walk proposal. Figure 10 exhibits histograms of the posterior
distribution samples, showing very good results, maybe except for δ1 and δ2, both slightly overestimated.
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Figura 10: Poisson(λt) simulated data: Histograms of the posterior distribution samples for the parameters involved
in model (28).

As can be seen in figure 10, the posterior distribution of Q exhibits positive skewness, with higher density
to values of Q under the theoretical postulated value. Consequently the resulting estimated trajectory of βt is
smoother than its theoretical trajectory, but still very well estimated if we consider the estimated credibility
limits exhibited in figure 11.
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Figura 11: Poisson(λt) simulated data. Dynamic gain factor βt: traces of theoretical βt (bold line), posterior mean
and 95 % credibility limits estimated through MCMC.

Figure 12 exhibits the excellent results in the estimation of impulse response functions at three instants
and following, in figure 13 it can be seen that the mean response function has also been very well captured
by the MCMC scheme.
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values(solid lines), posterior mean and 95 % credibility limits estimated through MCMC.
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5 Application: Effect of Rain Volumes on Particulate Material

Particulate matter is a pollutant constituted by liquid and solid material in suspense in atmosphere due
to its diminished size (we consider particles with diameter inferior to 10µm). Particulate matter serves as a
vehicle to other substances like hydrocarbon and metals, which aggregate to the particles. Larger particles are
retained in the superior part of the respiratory system, but the thinner ones may affect pulmonary alveolus.
Among the symptoms associated with the inhalation of particulate matter are allergies, asthma e chronic
bronchitis. Thus it is usual to consider particulate matter levels as one of the regressors in epidemiological
models for such outputs. Nevertheless, it is usual to have periods without information on the pollutant, due
to problems in the monitor system. Hence, models which aim to predict pollutant levels are very relevant in
this context.

We propose to model particulate matter levels (PM10) in Rio de Janeiro - Brazil, using as regressors
climatic variables, such as daily minimum temperature and relative humidity, with particular attention
focused on the effect of rain volumes over the levels of such pollutant. We assume that the effect of a rainy
day may affect the pollutant levels in the following days, thus adopting transfer functions to model such
inertia. We also include calendar dummies in the predictor.

The data refer to 670 observations daily collected in 5 neighborhoods, from September/2000 to Au-
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gust/2002. We do not consider spatial effects and so the the level of the pollutant used for each day in
the analysis period is the average level over the monitor stations. Meteorological conditions are registered
in four different spots and once again we consider the average level of temperature and humidity over the
four measurement stations. Figure 14 exhibits PM10 levels (µg/m3) recorded in the analysis period and
meteorological variables are exhibited in figure 15.
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Figura 14: Daily levels of PM10 (µg/m3) in Rio de Janeiro, Brazil - September/2000 to August/2002.
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We denote the PM10 level at day t by yt and the fitted models follow the structure:

yt ∼ Gama(ϕ, λt)

log
(

ϕ

λt

)
= ηt = α + Et + δ′CCt + δ′DDt + δ′SSt,

in which:

• Et is a structural block representing the cumulative effect of rain volumes up to time t, expressed by
different forms adopted to transfer functions;
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• C′
t = (Humidityt, T emperaturet);

• D′
t = (Mont, Tuet, Q = Wedt, Thut, F rit, Satt,Holt) is a vector of dummy variables, accounting for

the week days and holidays;

• S′t =
(
Cos

(
2πt
365

)
, Sin

(
2πt
365

))
. is a vector of seasonal effects.

In table 1 we present the values obtained to model comparisons criteria DIC (Spiegelhalter et al., 2002)
and EPD (Gelfand and Ghosh, 1998), for different specifications of the predictor ηt.

Tabela 1: Comparison of models fitted to daily PM10, considering cumulative impact of rain volumes.

Predictor Specification Transfer Function Specification DIC EPD

(pD=13.1)

1: (r = 1, s = 0),δS = 0 Et = ρEt−1 + βChuvat 5419.7 74.3

(pD=13.6)

2: (r = 1, s = 1),δS = 0 Et = ρEt−1 + β0Raint + β1Raint−1 5416.9 74.0

(pD=13.9)

3: (r = 1, s = 0),δS 6= 0 Et = ρEt−1 + βRaint 5301.5 62.4

(pD=14.2)

4: (r = 1, s = 1),δS 6= 0 Et = ρEt−1 + β0Raint + β1Raint−1 5303.8 62.7

(pD=13.1)

5: (r = 0, s = 30, d = 2), δS = 0 Et =
∑30

j=0
βjRaint−j 5431.2 75.7

βj =
∑2

k=0
ζkjk

(pD=13.4)

6: (r = 0, s = 30, d = 3), δS = 0 Et =
∑30

j=0
βjRaint−j 5415.4 74.0

βj =
∑3

k=0
ζkjk

(pD=236.6)

7: (r = 1, s = 0),δS = 0 Et = ρEt−1 + βRaint + εt 5399.9 51.3
erros iid εt ∼ N(0, Qε)

r=autoregression order, s=number of lags in rain volume, d=degree of polynomial approximation to βj , j = 1, · · · , s.

According to the DIC criteria, the best models are the seasonal terms included in the predictor, with a
slight advantage to model 3, which presents a TF(1,0,0) structure. On the other hand, EPD criteria favours
model 7, in which random erros have been introduced in order to account for factors not explicitly included
in the model. We have then turned to the predictive likelihood for yf = (y671, · · · , y700) resulting from both
models. For each model M the predictive likelihood based on a horizon of h = 30 days is given by:

p(yf |M, DT ) =
∫ ∫

p(yf , ϕ,λf|M, DT )dϕdλf

=
∫ ∫

p(yf |ϕ,λf,M, DT )π(ϕ,λf|M, DT )dϕdλf

= Eϕ,λf|M,DT
[p(yf |ϕ,λf, M, DT )],

Once a sample ϕ = (ϕ(1), · · · , ϕ(N)) and (λ(1)

f , · · · ,λ(N)

f ) of the posterior distribution π(ϕ,λf|M, DT ) is
avalilable, the Monte Carlo estimate of the predictive likelihood is given by:

Êλf|M,DT
[p(yf |ϕ,λf,M, DT )] =

N∑
n=1

p(yf |ϕ(n),λ(n)

f ,M, DT )

N

=
N∑

n=1

∏h
i=1 p(yT+i|ϕ(n), λ

(n)
T+i,M, DT )

N
.

The predictive likelihood favors model 7, in accordance to EPD criteria. Following we describe the results
obtained from this model.

17



Descriptive statistics associated to the samples of the marginal posterior distributions of each parameter
involved in model 7 are presented in table 2. There were 2 days without PM10 information in the analysis
period. We have formally treated the uncertainty due to these missing points estimating them in the MCMC
procedure together with the other unknown quantities.

Tabela 2: Effect of rain volumes on PM10 levels in Rio de Janeiro, Brazil - model 7: Statistics associated to the
posterior distribution samples.

ϕ α β ρ E0 Qε δ.Humid δ.Temp δ.Mon
Min 16.10 4.11 -0.0881 0.572 -0.07 0.005 -0.05 -0.027 0.00
Q1 21.43 4.27 -0.0693 0.696 0.35 0.015 -0.04 -0.004 0.10
Median 24.11 4.32 -0.0651 0.722 0.51 0.019 -0.03 0.002 0.12
Mean 24.81 4.33 -0.0652 0.719 0.53 0.019 -0.03 0.001 0.12
Q3 27.43 4.38 -0.0608 0.746 0.68 0.023 -0.03 0.008 0.14
Max. 48.85 4.66 -0.0447 0.834 1.47 0.041 -0.01 0.032 0.21
s.e. 1.1659 0.0065 0.0005 0.0020 0.0191 0.0016 0.0004 0.0008 0.0020

δ.Tue δ.Wed δ.Thu δ.Fri δ.Sat δ.Hol y478 y479

Min 0.05 0.08 0.10 0.15 0.024 -0.24 25.540 29.260
Q1 0.15 0.18 0.19 0.21 0.091 -0.13 45.030 50.220
Median 0.17 0.20 0.21 0.23 0.117 -0.10 52.810 59.200
Mean 0.17 0.20 0.21 0.24 0.116 -0.10 53.830 60.480
Q3 0.19 0.22 0.23 0.26 0.141 -0.08 60.460 69.160
Max. 0.27 0.31 0.32 0.34 0.210 0.02 116.100 119.200
s.e. 0.0021 0.0021 0.0021 0.0020 0.0021 0.0025 0.7420 0.8586

We notice a growth trend of the pollutant levels towards Fridays, maybe due to the great volume of traffic
usual in Rio de Janeiro on Fridays. Such levels decay on Saturdays. The pollutant levels are also significantly
reduced at Hllidays. Temperature does not present a significant impact on PM10 levels according to this
model and humidity presents negative effect. We are currently working on models with transfer function
structure assigned to the climatic variables. The negative estimate of β indicates lower levels of PM10 on
rainy days. Actually, the rain ”washes”the atmosphere, depositing the particles on the ground. Besides,
such reductive effect has a significant persistence,as can be seen in figure 16 which exhibits impulse response
and transfer function estimatesassociated to one standard error raise on rain levels. Figure 17, presents the
reduction on the pollutant level caused by the maximum rain volume observed, compared to a non-rainy day.
According to the estimated model, such rain volume would cause a 50% decay on PM10 and the pollutant
would return to its original level in 20 days.
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Figue 18 exhibits predictive distribution samples’ histograms for PM10 levels across 30 daysThe vertical
lines represent the true observed value of the pollutant on each day. Except for the 12th day in the predictive
horizon, in which there has been an unusual high level of pollutant, not captured by the model, the predictive
distributions follow very well the observed levels. Predictions based on the estimated predictive mean present
a relative error of 17.0%, similar to the median which gives a relative error of 16.8%.
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Figura 18: Efeito de CO sobre óbitos de crianças em SP - modelo 7: Histogramas das amostras das distribuições
preditivas para o número de óbitos, com horizontes variando de 1 a 30.
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