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Abstract

Markov Chain Monte Carlo methods are widely used in Bayesian statistical inference to

sample from the posterior distribution from a target distribution. However, for non-Gaussian

and non-linear state space models, one can find difficulties in calculating the exact likelihood,

thus the proposal distribution of a Metropolis-Hastings algorithm. To overcome problems in

calculating the likelihood function, it is possible to use approximations made by particle filter

methods. Furthermore, an adaptive Metropolis-Hastings algorithm may be applied since

its proposal distribution is updated with previous draws from the posterior distribution.

In this way, this paper discusses the applicability of adaptive Metropolis-Hastings (AMH)

algorithms with random walk or independent proposals combined with estimated likelihoods

through particle filters. We also propose a few model comparison criteria that can be easily

integrated to the AMH. Moreover, we estimate non-linear and non-Gaussian volatility models

for three time series of real index returns.

Keywords: Diminishing adaptation, Sequential Monte Carlo methods, State space model.

1. Introduction

Nowadays is almost impossible to analyze economic data without measuring volatility,

often being considered more important than any other measure in a time series of stock

prices. However, the volatility is an unobservable measure and it has often a property
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called the leverage effect phenomenom (possibly a negative correlation between return and

volatility). Finally, it is important to keep in mind the volatility clustering property.

In this paper, we fit historical series of daily log-returns of stock market indexes with

the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model (Bollerslev,

1986) with noise and the stochastic volatility (SV) model (Jacquier et al., 1994) and a

few variants, including the version with leverage effect. The unknowns of the models are

estimated through the Bayesian approach.

Markov Chain Monte Carlo (MCMC) simulation methods are widely applied to sample

from a joint probability distribution. These methods are generally used in Bayesian inference

where the posterior distribution of the unknown parameters is often difficult to calculate

exactly. However, it is common to come across problems when calculating the likelihood,

commonly for non-linear non-Gaussian models, or in situations where the choice of powerful

proposals is not particularly easy.

When the likelihood does not have a closed form we can approximate it using, for exam-

ple, the standard particle filter (or sequential importance resampling - SIR) of Gordon et al.

(1993) and the auxiliary particle filter of Pitt and Shephard (1999). Moreover, Andrieu et al.

(2010) proved that MCMC methods still converge to the correct posterior distribution even

if the simulated likelihood via SIR or ASIR is used.

To work around problems when choosing effective proposal distributions to use on the

MCMC method, we can apply a few adaptive Metropolis-Hastings (AMH) sampling tech-

niques. In such methods, the parameters of the proposal distribution are tuned by using

previous draws and the difference between these successive parameters of the proposal con-

verges to zero (diminishing adaptation). Important theoretical and practical contributions

to diminishing adaptation sampling were made by Haario et al. (1999), Haario et al. (2001),

and Roberts and Rosenthal (2009) through the adaptive random walk Metropolis sampling

(ARWMS), and Giordani and Kohn (2010) by the independent Metropolis-Hastings sam-

pling (AIMHS) with a proposal distribution based on a mixture of normals.

Thus, we combine the two AMH schemes to either SIR or ASIR in order to estimate

the unknowns of the GARCH with noise and SV models. Our applications include a small
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simulation study to verify if the combined algorithms recover the true values of the param-

eters, and the estimation the parameters for the models applied to three importante stock

market indexes. The results for real data are compared using marginal likelihoods and a few

likelihood based information criteria.

The outline of this paper is organized as follows. Short backgrounds are given in Sec-

tions 2, 3 and 4 about state space models and particle filters, adaptive Metropolis-Hastings

algorithms, and model selection, respectively. The GARCH model with noise and the SV

models are presented in Section 5. The applications are in Section 6. Section 7 concludes.

2. State Space Models and Particle Filters

A state space model can be represented by an observation equation given by f(yt|xt; θ),

t = 1, . . . , n, and a system equation given by f(xt|xt−1; θ), t = 2, . . . , n, where θ and f(.)

represent a parameter vector and general probability (density) functions, respectively. Note

that, y1:n = (y1, . . . , yn) denote the history of measurements and x1:n = (x1, . . . , xn) the

history of states up to time n. The initial state x1 distribution is given by f(x1|θ).

The main problem for a state space model is to evaluate the following integrals from

these equations:

f(xt|y1:t−1; θ) =

∫
f(xt|xt−1; θ)f(xt−1|y1:t−1; θ)dxt−1, (1)

which is used to update the posterior distribution at time t, that is,

f(xt|y1:t; θ) =
f(yt|xt; θ)f(xt|y1:t−1; θ)

f(yt|y1:t−1; θ)
, and (2)

f(yt|y1:t−1; θ) =

∫
f(yt|xt; θ)f(xt|y1:t−1; θ)dxt. (3)

The Equations (1)–(3) allow, in principle, the filtering for a given θ and to obtain the

likelihood function of the observations y1:n,

f(y1:n|θ) = f(y1|θ)
n∏

t=2

f(yt|y1:t−1; θ). (4)

Except in a few cases such as linear Gaussian models, the integrals given in Equations

(1)–(3) are in general hard to solve. To work around this problem, the SIR and the ASIR

can be used to approximate these distributions, in particular the likelihood function.
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2.1. Standard Particle Filter

The standard particle filter, also known as the sampling importance resampling (SIR)

method, was proposed by Gordon et al. (1993). Suppose that we have a sample x
(`)
t−1,

` = 1, . . . , L with probabilities π
(`)
t−1 from f(xt−1|y1:t−1; θ). It is easy to notice that the

simplest values of π
(`)
t−1 are 1/L. An approximation to Equation (1) is given by:

f(xt|y1:t−1; θ) ≈
L∑

`=1

f(xt|x(`)t−1; θ)π
(`)
t−1. (5)

Therefore, f(xt|y1:t−1; θ) can be viewed as a mixture density with L components. So we

just have to pass the sample x
(`)
t−1 in the system equation, that is, f(xt|x(`)t−1; θ). That would

give us a sample x̃
(`)
t , ` = 1, . . . , L, from the density f(xt|y1:t−1; θ). Now, we can update

the posterior distribution using Equation (2). We obtain a sample x̃
(`)
t , ` = 1, . . . , L from

f(xt|y1:t; θ) by assigning a probability of

π̃
(`)
t =

f(yt|x̃(`)t ; θ)π
(`)
t−1∑L

j=1 f(yt|x̃(j)t ; θ)π
(j)
t−1

(6)

to x̃
(`)
t . Thus,we have a sample x̃

(`)
t , ` = 1, . . . , L with probabilities π̃

(`)
t from f(xt|y1:t; θ).

Note that from Equations (1) and (2) the predictive function can be approximated by

fs(yt|y1:t−1; θ) ≈
L∑

j=1

f(yt|x(j)t ; θ)π
(j)
t−1, (7)

which is a component of the likelihood function (an unbiased estimator of the likelihood

as shown in Pitt et al. (2012)). Finally, we resample L values from the particles x̃
(`)
t with

weights π̃
(`)
t to obtain a sample from f(xt|y1:t; θ), then restarts the procedure for time t+ 1.

2.2. Auxiliary Particle Filter

The auxiliary particle filter (ASIR) of Pitt and Shephard (1999) can be seen as a gener-

alization of the SIR method and the main ideia is to sample from a higher dimension joint

density with the aid of an auxiliary variable. We note that from Equations (2) and (5),

f(xt|y1:t; θ) ∝
L∑

`=1

f(yt|xt; θ)f(xt|x(`)t−1; θ)π
(`)
t−1. (8)
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Introducing an auxiliary variable ` which can be viewed as an index to the mixture in

Equation (8), we are able to adapt the particle filter in a more efficient way. The density we

wish to approximate becomes:

f(xt, `|y1:t; θ) ∝ f(yt|xt; θ)f(xt|x(`)t−1; θ)π
(`)
t−1, for ` = 1, . . . , L, (9)

such that

f(`|y1:t; θ) =
1

f(yt|y1:t−1; θ)

∫
f(yt|xt; θ)f(xt|x(`)t−1; θ)dxtπ

(`)
t−1

where

f(yt|y1:t−1; θ) =
L∑

`=1

∫
f(yt|xt; θ)f(xt|x(`)t−1; θ)dxtπ

(`)
t−1. (10)

Now, if we are able to sample from f(xt, `|y1:t; θ), then we can discard the sampled

values of ` and get back to our filtering density in Equation (8). The next step is to sample

from f(xt, `|y1:t; θ) using sampling importance resampling algorithm. That is, we make K

proposals (x
(k)
t , `(k)), k = 1, . . . , K from some proposal density g(xt, `|y1:t; θ) and compute

the weights

π̃
(k)
t =

1

fa(yt|y1:t−1; θ)
×
f(yt|x(k)t ; θ)f(x

(k)
t |x

(`(k))
t−1 ; θ)π`(k)

t−1

g(x
(k)
t , `(k)|y1:t; θ)

. (11)

From Equation (10), the predictive function can be approximated by:

f(yt|y1:t−1; θ) ≈ fa(yt|y1:t−1; θ) =
K∑
k=1

f(yt|x(k)t ; θ)f(x
(k)
t |x

(`(k))
t−1 ; θ)π`(k)

t−1

g(x
(k)
t , `(k)|y1:t; θ)

, (12)

which in turn can be used to normalize the weights in Equation (11). Usually, K and L are

equal. When Equations (4) and (12) are combined, they produce an unbiased estimator of

the likelihood (Pitt et al., 2012). Finally, we resample L values from the above sample to

obtain a sample from f(xt|y1:t; θ) corresponding to particles x
(`)
t with weights π

(`)
t = 1/L.

This gives us the approximation in Equation (8) which then restarts the procedure for time

t+ 1.

The choice of the proposal density g(·) is left completely to the researcher, however there

are a few particular cases for g(·) that receive specific nomenclatures. This is the case of the

generic auxiliary particle filter and the fully adapted particle filter briefly described below.
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Generic Auxiliary Particle Filter

Assume that z
(`)
t is some point estimate (e.g. mean or median) of the distribution of

xt|x(`)t−1. Then, if we approximate g(·) by

g(xt, `|y1:t; θ) ∝ f(yt|z(`)t ; θ)f(xt|x(`)t−1; θ)π
(`)
t−1, for ` = 1, . . . , L,

we have what the authors call the generic auxiliary particle filter.

Fully Adapted Particle Filter

Suppose again that we have particles x
(`)
t−1 with attached probabilities π

(`)
t−1. If we

are able to rewrite f(yt|xt; θ)f(xt|x(`)t−1; θ)π
(`)
t−1 as the product g(xt|`, y1:t; θ)g(`|y1:t; θ) where

g(xt|`, y1:t; θ) has a known closed-form (probability density function) easy to sample from,

then the particle filter is fully adapted and, as a consequence, the weights π
(`)
t−1 have the

same value for all ` = 1, . . . , L.

3. Adaptive Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm (Hastings, 1970) is a Markov Chain Monte

Carlo based method employed to generate random samples from a probability distribution.

Suppose the chain is in the iteration state θm−1 and a value θpm is generated from a proposed

auxiliary distribution qm(θ|θm−1). The new value θpm is accepted with probability:

α(θm−1, θ
p
m) = min

{
1,

f(θpm)

f(θm−1)

qm(θm−1|θpm)

qm(θpm|θm−1)

}
,

and take θm = θm−1 otherwise (see, for example, Tierney (1994)). Note that f(·) is the

distribution of interest and, in a Bayesian context, f(·) can be the posterior density.

In adaptive sampling the parameters of the proposal density qm(θ|θm−1) of the MH algo-

rithm are estimated from the iterates θ1, . . . , θm−1. Under appropriate regularity conditions

the sequence of iterates θm,m > 1 converges to draws from the target distribution (Haario

et al., 2001; Roberts and Rosenthal, 2009; Giordani and Kohn, 2010). Next, we briefly

explain the two proposals used in this paper.
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3.1. Adaptive Random Walk Metropolis

The adaptive random walk Metropolis sampling (ARWMS) algorithm (Roberts and

Rosenthal, 2009) can be divided into two phases, the first one takes place until iteration

m0, defined by the researcher to start the algorithm, and the second one from iteration

m0 to M . For the first phase of the algorithm, the proposed distribution is given by

qm(θ|θm−1) = N(θm−1; (0.1)2Id/d), where N(µ; Σ) is a multivariate d-dimensional normal

density function with mean µ and covariance matrix Σ. Id is a d-dimensional identity ma-

trix. And for the second phase, when m > m0, the proposed distribution is given by:

qm(θ|θm−1) = βN(θm−1; (0.1)2Id/d) + (1− β)N(θm−1; (2.382)Σm/d), (13)

where β is a small positive constant and, in this paper, equals to 0.05. And Σm represents

the covariance matrix estimated through the m− 1 iterations. The part with less variation

(covariance matrix equal to (0.1)2Id/d) avoids the algorithm getting stuck at problematic

values and second part (with the covariance matrix equal to (2.382)Σn/d) is optimal in a

multi-dimensional context (Roberts et al., 1997).

3.2. Adaptive Independent Metropolis Hastings

The adaptive independent Metropolis-Hastings sampling (AIMHS) method (Giordani

and Kohn, 2010) can also be divided into two phases. For both phases, the proposed density

is given by a mixture of four terms according to the equation below:

qm(θ|θm−1) =
4∑

j=1

βjqjm(θ|λjm), βj > 0, for j = 1, . . . , 4 and
4∑

j=1

βj = 1, (14)

where λjm holds all parameters of the density qjm(θ|λjm).

In the first phase, q1m(θ|λ1m) is an initial proposal (via Laplace approximation of the

posterior density or by other methods) and q2m(θ|λ2m) is a heavy tailed version of the former.

The q3m(θ|λ3m) carries the adaptive part of the proposal, being an estimate of the target

density calculated through a normal mixing using k-harmonic means clustering (each update

is done after running a certain amount of iterations - block scheme). And finally, q4m(θ|λ4m)

is a version of q3m(θ|λ3m) with heavy tails. However, the first phase begins with β3 and β4
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being equal to zero until a sufficient number of iterations is reached to obtain q3m(θ|λ3m)

and, consequently, q4m(θ|λ4m). We start this phase with β1 = 0.8 and β2 = 0.2, then we use

β1 = 0.15, β2 = 0.05, β3 = 0.7 and β4 = 0.1.

And finally, in the second phase, q1m(θ|λ1m) is defined as the last form assumed by

q3m(θ|λ3m) in the first phase. The densities q2m(θ|λ2m) and q4m(θ|λ4m) are constructed in

the same manner as the first phase and q3m(θ|λ3m) is maintained until the next update (by

the block scheme).

3.3. Adaptive Sampling with Simulated Likelihood

The posterior distribution of θ is given by f(θ|y1:n) ∝ f(y1:n|θ)f(θ) and this holds for the

cases where the likelihood function f(y1:n|θ) is calculated exactly (with f(θ) being the prior

distribution). Nonetheless, Andrieu et al. (2010) showed that Markov Chain Monte Carlo

samplers still converge to the correct posterior density even when an unbiased estimator of

likelihood, f̂(y1:n|θ), is applied, such as those in Equations (7) and (12) given by particle

filters with finite number of particles.

The simulated likelihood via particle filter algorithms may be seen as f(y1:n|θ, u), where

u is a set of auxiliary variables that are not function of θ such that f(yt|y1:t−1; θ;u) is equal

to fs(yt|y1:t−1; θ) or fa(yt|y1:t−1; θ) obtained from Equations (7) and (12), respectively. Now,

let f(yt|y1:t−1; θ;u) obtained from the particle filter be the estimate of f(yt|y1:t−1; θ). Then,

f̂(y1:n|θ) = f(y1|θ;u)
∏n

t=2 f(yt|y1:t−1; θ;u) is the unbiased estimate of the likelihood (Pitt

et al., 2012) given by f(y1:n|θ).

4. Model Selection

4.1. Estimating the Marginal Likelihood

Marginal likelihoods are often used to compare models and can be seen as the probability

of the data given the model type. Thus the higher its value, the more adjusted is the model

to the data set. Following the previous notation, the marginal likelihood is given by

f(y1:n) =

∫
f(y1:n|θ)f(θ)dθ. (15)
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Suppose that h(θ) is an approximation to f(θ|y1:n) which can be evaluated explicitly.

Bridge sampling (Meng and Wong, 1996) estimates the marginal likelihood as follows. Let

t(θ) =

(
f(y1:n|θ)f(θ)

U
+ h(θ)

)−1

,

where U is a positive constant. Let

B =

∫
t(θ)h(θ)f(θ|y1:n)dθ. Then, B =

B1

f(y1:n)
where B1 =

∫
t(θ)h(θ)f(y1:n|θ)f(θ)dθ.

Suppose the sequence of iterates {θ(j), j = 1, . . . ,M} is generated from the posterior

density f(θ|y1:n) and a second sequence of iterates {θ̃(k), k = 1, . . . , K} is generated from

h(θ). Then,

B̂ =
1

M

M∑
j=1

t(θ(j))q(θ(j)), B̂1 =
1

K

K∑
k=1

t(θ̃(k))f(y|θ̃(k))f(θ̃(k)) and f̂BS(y1:n) =
B̂1

B̂

are estimates of B and B1, respectively, while f̂BS(y) is the bridge sampling estimator of

the marginal likelihood f(y1:n).

We take h(θ) from the adaptive independent Metropolis-Hastings (AIMHS) with mixture

of normals proposal. Although U can be any positive constant, it is more efficient if U is a

reasonable estimate of f(y1:n). One way to do so is to take Û = f(y1:n|θ∗)f(θ∗)/h(θ∗), where

θ∗ is the posterior mean of θ obtained from the posterior simulation.

An alternative method to estimate of the marginal likelihood f(y1:n) is to use importance

sampling (Geweke, 1989) based on the proposal distribution h(θ) as before (as the proposal

from the AIMHS). That is,

f̂IS(y1:n) =
1

K

K∑
k=1

f(y1:n|θ(k))f(θ(k))

h(θ(k))
.

Since the proposal distribution of the AIMHS has at least one heavy tailed component,

the importance sampling ratios are likely to be bounded and well-behaved.

4.2. Likelihood Based Information Criteria

In the adaptive Metropolis-Hastings sampling, the log likelihood function is always eval-

uated as a component of the posterior distribution. In that case, each draw θ(j) from the
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posterior distribution produces also the corresponding loglikelihood value, log f(y1:n|θ(j)).

That can in turn be used to compute several likelihood based information criteria.

Let f(y1:n|θ`,M`) be the likelihood for model M` and D(θ`) = −2 log f(y1:n|θ`,M`).

The deviance information criterion (DIC) is defined as

DIC(M`) = 2E[D(θ`)|y1:n,M`]−D(E[θ`|y1:n,My]). (16)

The draws from θ
(j)
` and log f(y1:n|θ(j)` ,M`), j = 1, . . . ,M , can be used to approximate

E[D(θ`)|y1:n,M`] and E[θ`|y1:n,M`] by M−1
∑M

j=1D(θ
(j)
` ) and M−1

∑M
j=1 θ

(j)
` , respectively.

Finally, approximations to DIC can be easily derived. The estimation d̂` of the number of

model parameters on the DIC is given by d̂` = E[D(θ`)|y1:n,M`]−D(E[θ`|y1:n,My]). Thus,

DIC may be rewritten as DIC = D(E[θ`|y1:n,My]) + 2d̂`.

Similarly, the Akaike information criterion (AIC), the Bayesian information criterion

(BIC), their expected versions, EAIC and EBIC, can also be defined. Note that given a set

of models for a given data set, the lowest value of a criterion indicates the best model (but

different criteria may not lead to different models). For more details on these information

criteria, see Spiegelhalter et al. (2002) and references therein.

5. Modelling Volatility

Most financial studies focus on the analysis of returns series rather than the use of asset

prices series. The reason we use a series of returns has two factors, the returns information

serves the interests of investors and has more interesting statistical properties than the price

series. Thus, let Pt be the price of an asset at time t, the log-return at time t is given by:

yt = log(Pt)− log(Pt−1), which is used in our applications.

5.1. Generalized Autoregressive Conditionally Heteroscedastic Model with Noise

A generalized autoregressive conditionally heteroscedastic (GARCH) model (Bollerslev,

1986) is used to model the variance of a time series using values of the past squared

means of the observations and past variances. The observation and system equations of
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the GARCH(1,1) model with noise are given by:

yt = xt + εt, where εt ∼ N (0, σ2)

xt+1 = ωt, where ωt ∼ N (0, τ 2t (xt))

τ 2t+1 = β0 + β1x
2
t + β2τ

2
t ,

where N (µ, σ2) is the Gaussian distribution with mean µ and variance σ, respectively. This

model has the following restrictions on the parameters: σ2 > 0, βj > 0 for j = 0, 1, 2

and β1 + β2 < 1 (stationary condition). Thus, we assume the following prior distribution:

σ2 ∼ HN (c21), β0 ∼ HN (c22), (β1, β2) ∼ U({over the triangle defined by (0,0), (0,1) and

(1,0)}), and x0 ∼ N (0, τ 20 ) with τ 20 = β0/(1 − β1 − β2), where HN (c2i ), i = 1, 2, is a half-

normal distribution with location parameter set to 0 and c2i , i = 1, 2, as the scale parameter.

Here, U denotes a continuous uniform distribution.

5.2. Stochastic Volatility Model and Its Variants

The observation and system equations of the stochastic volatility (SV) model is given by

(Jacquier et al., 1994):

yt = ext/2εt

xt+1 = ξt+1 + ωt, where ξt+1 = α + φ(xt − α)

and εt is the observation error with mean 0 and variance 1.

First, we consider that εt and ωt are independent, with ωt ∼ N (0, τ 2) and εt can be

distributed as a standard normal distribution, N (0, 1), a standard skew normal distribution

(Azzalini, 1985), denoted as SN (λ, 0, 1), a t distribution with 3 degrees of freedom (t(3))

or a skew t distribution (Azzalini and Capitanio, 2003) also with 3 degrees of freedom,

denoted as St(λ, 3), where λ is a parameter of skewness. Additionally, εt and ωt may have

a bivariate normal distribution with correlation ρ and this model is known as a stochastic

volatility model with leverage effect.

To complete our model specification, we assume the following prior distribution: τ 2 ∼

IG(a1, b1), φ ∼ Beta(a2, b2), α ∼ N (a3, b
2
3), λ ∼ N (a4, b

2
4), x0 ∼ N (α, τ 2/(1 + φ2)), where
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IG(a1, b1) is the inverse-gamma distribution with a1 and b1 as shape and scale parameters;

and Beta(a2, b2) is the beta distribution with a2 and b2 as shape parameters.

6. Applications

In this section we carry out a simulation study that consist of estimating the parameters

of five simulated series for GARCH(1,1) model with noise, stochastic volatility model with

Gaussian noise and stochastic volatility model with leverage. Each simulated series has

1.000 observations. Next, we model daily log-return data of three stock market indexes -

namely BOVESPA, NASDAQ and S&P500 - from January 2012 to March 2016 resulting in

a time series with more than one thousand observations each.

Note that it is possible to estimate the likelihood of the GARCH with noise model by

applying both particle filters (SIR and ASIR). In addition, for this model, it is possible to

apply the fully adapted particle filter (see Appendix A). However, it is not possible to use

a fully adapted particle filter for the SV model, so we tried to apply the generic version of

ASIR, but the estimates, when found, were not as expected and the computational time

spent extremely high. Therefore, we have chosen to apply only SIR method for the SV

models (see Appendix B for the SV model with leverage). In adittion, to determine the

number of particles of the filters, we use the methodology proposed by Pitt et al. (2012). In

our applications, we set c1 = c2 = 10, a1 = b1 = a2 = b2 = 1, a3 = a4 = 0 and b3 = b4 = 106

as parameters for the prior distributions.

The estimation strategy used in all datasets and models is to first create an initial

estimate for the parameters and covariance matrix through the ARWMS, then use them as

initial values in the AIMHS. Therefore, all results shown below refer only for the last part

when we use AIMHS.

6.1. Simulation

The main objective of this simulation study is to verify if the algorithm is actually

estimating the true parameters. For this, we generate 5 time series of the intended models

and observe if the estimation is being done correctly. The parameters used to generate the

12



data of GARCH(1,1) model with noise were σ2 = 0.00009, β0 = 0.000002, β1 = 0.15 and

β2 = 0.84. For the stochastic volatility model with Gaussian noise were τ 2 = 0.20, α = −9.6

and φ = 0.84. And for the stochastic volatility model with leverage were τ 2 = 0.11, α = −11,

φ = 0.98 and ρ = −0.7. To obtain the results of this section, we ran all AMH algorithms

with 50.000 iterations with the first half of them being discarded for the calculation of the

final estimates.

In Tables 1, 2, 3 and 4 we can observe the posterior mean, median, standard deviation

and credibility interval of 95% (CI0.025 and CI0.975 are, respectively, the lower limit and upper

limit of the interval) for the parameters of each model.

Table 1: Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

σ2 0.0000630 0.0000258 0.0000076 0.0000637 0.0001097

β0 0.0000037 0.0000020 0.0000009 0.0000033 0.0000090

β1 0.1463449 0.0453058 0.0790899 0.1408561 0.2472860

β2 0.8290534 0.0459327 0.7252073 0.8343345 0.8992350

2

σ2 0.0000883 0.0000253 0.0000319 0.0000910 0.0001317

β0 0.0000061 0.0000053 0.0000010 0.0000046 0.0000220

β1 0.2257102 0.1003751 0.0829156 0.2067775 0.4762093

β2 0.7226548 0.1125832 0.4477203 0.7420469 0.8822469

3

σ2 0.0000529 0.0000269 0.0000059 0.0000524 0.0001051

β0 0.0000037 0.0000023 0.0000008 0.0000033 0.0000100

β1 0.0905114 0.0390999 0.0337985 0.0833210 0.1868716

β2 0.8807635 0.0440161 0.7734476 0.8890788 0.9410084

4

σ2 0.0000546 0.0000325 0.0000045 0.0000549 0.0001182

β0 0.0000049 0.0000025 0.0000009 0.0000045 0.0000093

β1 0.1269757 0.0345311 0.0762891 0.1201576 0.2073463

β2 0.8506429 0.0345098 0.7679393 0.8602096 0.9070856

5

σ2 0.0000718 0.0000213 0.0000256 0.0000741 0.0001085

β0 0.0000032 0.0000021 0.0000008 0.0000027 0.0000088

β1 0.1865094 0.0585892 0.0933376 0.1799826 0.3186721

β2 0.8007600 0.0591066 0.6671012 0.8084501 0.8941634

In order to obtain the estimates of the GARCH(1,1) model with noise parameters using

SIR filter (Table 1), 3.000 particles were used for the preliminary part (ARWMS) and 2.000

in the final part (AIMHS). Notice that for all replicas, all credibility intervals contain the

true parameter values, which indicates satisfactory behaviour of our approach.
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However, to obtain the estimates of the GARCH(1,1) model with noise parameters using

ASIR filter, 50 particles were used for both the preliminary and final parts. Note that this

algorithm is much more efficient than the one using SIR filter, because it uses much fewer

particles (saves computational time) and obtains results as satisfactory as the previous one,

as can be verified in Table 2.

Table 2: Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using ASIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

σ2 0.0000622 0.0000253 0.0000107 0.0000633 0.0001090

β0 0.0000038 0.0000020 0.0000010 0.0000034 0.0000086

β1 0.1473738 0.0469848 0.0755105 0.1413896 0.2562844

β2 0.8276800 0.0473448 0.7176016 0.8336273 0.9008290

2

σ2 0.0000904 0.0000251 0.0000344 0.0000935 0.0001340

β0 0.0000057 0.0000051 0.0000010 0.0000042 0.0000192

β1 0.2363900 0.1041273 0.0817055 0.2210820 0.4786691

β2 0.7152533 0.1143224 0.4405373 0.7351936 0.8782488

3

σ2 0.0000514 0.0000279 0.0000034 0.0000505 0.0001068

β0 0.0000038 0.0000024 0.0000007 0.0000032 0.0000099

β1 0.0903956 0.0400999 0.0364844 0.0820313 0.1903948

β2 0.8812510 0.0437155 0.7677189 0.8886806 0.9442178

4

σ2 0.0000585 0.0000297 0.0000050 0.0000585 0.0001154

β0 0.0000045 0.0000026 0.0000009 0.0000041 0.0000108

β1 0.1307535 0.0370271 0.0707828 0.1264888 0.2162167

β2 0.8482669 0.0385817 0.7639958 0.8517576 0.9141380

5

σ2 0.0000718 0.0000209 0.0000262 0.0000734 0.0001082

β0 0.0000032 0.0000021 0.0000008 0.0000027 0.0000085

β1 0.1895439 0.0600698 0.0929562 0.1821909 0.3298645

β2 0.7979995 0.0612526 0.6584258 0.8055708 0.8956539

Table 3 shows the results of the estimations made for the parameters of the SV model

with Gaussian noise using SIR filter. For this model, we use 350 particles in both algorithms

(first ARWMS, then AIMHS). Notice that all credibility intervals also contain the true values

of the parameters. Finally, Table 4 refers to results on the SV model with leverage using

SIR filter estimations where 1.750 particles for both ARWMS and AIMHS.

This simulation study is not exhaustive and does not include all models used in the

real data application. However, it can be seen that the combined AMH with SIR or ASIR

algorithms are able to recover the true values of the parameters and it is expected that the
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Table 3: Posterior mean, median, standard deviation and credibility interval for the parameters of SV model

with Gaussian noise using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

τ2 0.2209872 0.0537652 0.1344007 0.2140449 0.3433991

φ 0.8233984 0.0444285 0.7214496 0.8283471 0.8959334

α -9.6640155 0.1045723 -9.8683794 -9.6628164 -9.4591694

2

τ2 0.2307925 0.0617954 0.1360358 0.2217310 0.3726260

φ 0.8234385 0.0460480 0.7156061 0.8289964 0.8975777

α -9.4129225 0.1029042 -9.6095164 -9.4162568 -9.2053341

3

τ2 0.2571744 0.0593681 0.1613926 0.2504576 0.3912914

φ 0.8386231 0.0371395 0.7578607 0.8417097 0.9017371

α -9.5249343 0.1145634 -9.7559453 -9.5251857 -9.2956183

4

τ2 0.2448653 0.0675171 0.1391726 0.2355385 0.4004809

φ 0.7908226 0.0511464 0.6745926 0.7955630 0.8759804

α -9.7202447 0.0934316 -9.9040991 -9.7201533 -9.5385561

5

τ2 0.2616024 0.0633620 0.1616784 0.2547169 0.4088322

φ 0.7973314 0.0450955 0.6948007 0.8012077 0.8710793

α -9.7114517 0.0956238 -9.8984855 -9.7100075 -9.5280789

Table 4: Posterior mean, median, standard deviation and credibility interval for the parameters of SV model

with leverage using SIR filter.

Replica Parameters
Posterior estimations

Mean Std. dev. CI0.025 Median CI0.975

1

τ2 0.1300850 0.0208358 0.0940193 0.1280196 0.1747818

φ 0.9852177 0.0061611 0.9722945 0.9857468 0.9956883

α -10.850556 1.0132163 -13.471119 -10.649624 -9.4863125

ρ -0.7031984 0.0619436 -0.8091877 -0.7079091 -0.5718210

2

τ2 0.1167414 0.0187372 0.0850963 0.1149657 0.1584491

φ 0.9820628 0.0059646 0.9697027 0.9823247 0.9928902

α -10.814652 0.5032284 -11.944318 -10.776913 -9.9164817

ρ -0.7130920 0.0630058 -0.8197065 -0.7176833 -0.5789504

3

τ2 0.1403466 0.0216788 0.1036933 0.1376562 0.1888396

φ 0.9813912 0.0056285 0.9697771 0.9815278 0.9927614

α -10.071973 0.6470769 -11.125004 -10.131074 -8.6076082

ρ -0.6913779 0.0585517 -0.7884205 -0.6965849 -0.5628501

4

τ2 0.1404871 0.0204211 0.1057169 0.1382987 0.1849773

φ 0.9823382 0.0047879 0.9726977 0.9824653 0.9913064

α -10.921940 0.4967491 -11.980299 -10.870996 -10.062043

ρ -0.7975224 0.0453794 -0.8753869 -0.8017720 -0.6978566

5

τ2 0.0928752 0.0162011 0.0666495 0.0915056 0.1293698

φ 0.9679708 0.0096341 0.9468060 0.9687180 0.9846366

α -10.848615 0.2664703 -11.364805 -10.853792 -10.320197

ρ -0.6733129 0.0858376 -0.8204434 -0.6786633 -0.4914737
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same behaviour is found in all other models.

6.2. Real data

As said before, we model daily log-return data of BOVESPA, NASDAQ and S&P500

indexes from January 2012 to March 2016. Figure 1 shows the prices and log returns for all

indexes. For all series, t = 200 corresponds to October 2012, t = 400 to July 2013, t = 600

to May 2014, t = 800 to February 2012 and t = 1000 to December 2015. As expected, the

log returns are around zero with increasing volatilities when prices tend to decrease.
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Figure 1: BOVESPA, NASDAQ and SP500 price and log-return series.

Table 5 presents a few descriptive statistics of all log return series. They have means

and medians about zero and positive excess kurtoses. However, NASDAQ and S&P500
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have negative skewness whilst BOVESPA has positive skewness. Thus, all log return series

present evidence of non-normality.

Table 5: Descriptive statistics of the indexes return series.

Statistics
Indexes

BOVESPA NASDAQ S&P500

Mean -0.00014 0.00057 0.00045

Standard Deviation 0.01481 0.00958 0.00830

Median -0.00096 0.00088 0.00049

Skewness 0.24131 -0.32704 -0.24698

Kurtosis 0.75280 1.44709 1.66029

Next, we apply a few volatility models to these data sets using AMH algorithms com-

bined with particle filters methods. In order to perform the model comparisons by means of

likelihood-based information criteria and marginal likelihoods, we initially estimated the pa-

rameters for our data sets (BOVESPA, NASDAQ and S&P500 return series) using GARCH

and SV models presented in Sections 5.1 and 5.2, respectively. We ran all AMH algorithms

with 200.000 iterations with the first half of them being discarded for the calculation of final

estimates. In addition, we first generate an initial estimate of the parameters and covariance

matrix using the ARWMS method to use them as initial values in AIMHS method.

Furthermore, we are interested in the results given by the output of the AIMHS since this

algorithm allows computations of all model selection criteria in Section 4. Remember that

the lowest value of a likelihood-based information criterion indicates the best model whilst

largest value of a marginal likelihood, such as those given by f̂BS(y) and f̂IS(y), results also

the best model. The values in bold refer to the model most adjusted to the data according

to the respective selection criteria.

To obtain the results shown in Table 6, we used the following quantity of particles in all

filters: 2.000 for the GARCH(1,1) model with noise and SIR, 50 for the same model with

ASIR, 200 for the SV(N ) model, 50 for the SV(t3) model, 230 for the SV(SN ) model, 45 for

the SV(St3) model and 350 for the SV with leverage model. Note that all model selection
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criteria indicate the GARCH model with noise as the most adjusted to BOVESPA return

series - either with SIR or ASIR.

Table 6: Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

BOVESPA series.

Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -5997.9 -5978.0 -6001.0 -5981.2 -6012.1 2.2× 10−230 2.1× 10−230

ASIR -5989.5 -5969.6 -6000.5 -5980.6 -6019.5 2.3× 10−230 2.2× 10−230

SV(N )

SIR

-5974.6 -5959.7 -5976.9 -5962.0 -5985.2 1.9× 10−232 1.9× 10−232

SV(t3) -5909.7 -5894.8 -5907.5 -5892.6 -5911.3 5.5× 10−246 5.7× 10−246

SV(SN ) -5974.4 -5954.6 -5974.0 -5954.1 -5981.5 3.6× 10−235 3.5× 10−235

SV(St3) -5897.0 -5877.1 -5900.7 -5880.8 -5912.4 2.2× 10−249 2.3× 10−249

SV lev -5989.4 -5969.6 -5986.5 -5966.7 -5991.6 1.9× 10−231 2.2× 10−231

Therefore, the posterior mean, median, standard deviation and credibility interval of

95% of the GARCH(1,1) model with noise are given in Table 7.

Table 7: Posterior mean, median, standard deviation and credibility interval for the parameters of

GARCH(1,1) model with noise using ASIR applied to BOVESPA series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
σ2 0.0000913 0.0000259 0.0000294 0.0000942 0.0001342

β0 0.0000020 0.0000015 0.0000005 0.0000016 0.0000060

β1 0.1512039 0.0517068 0.0676217 0.1448260 0.2735384

β2 0.8408180 0.0512353 0.7203291 0.8471988 0.9208007

For the models applied to NASDAQ return series, we used the following quantity of

particles in all filters: 2.000 for the GARCH(1,1) model with noise and SIR, 75 for the

same model with ASIR, 350 for the SV(N ) model, 200 for the SV(t3) model, 400 for the

SV(SN ) model, 200 for the SV(St3) model and 400 for the SV with leverage model. Model

comparison results are shown in Table 8.

In addition, with the exception of DIC that indicated GARCH with ASIR as the model

most adjusted to the data, all criteria pointed to the SV model with εt having a skew-normal

distribution. Now, when considered only marginal likelihood criterion for model selection,

stochastic volatility model with skew Gaussian noise is considered the best one applied to

NASDAQ data. Hence, the posterior mean, median, standard deviation and credibility

interval of 95% of this model are given in Table 9.
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Table 8: Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

NASDAQ series.

Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -6942.0 -6922.2 -6940.9 -6921.0 -6947.7 1.3× 10−25 1.3× 10−25

ASIR -6911.9 -6891.3 -6940.4 -6920.5 -6977.6 1.4× 10−25 1.3× 10−25

SV(N )

SIR

-6954.9 -6940.0 -6952.9 -6938.0 -6956.9 1.6× 10−19 1.6× 10−19

SV(t3) -6906.2 -6891.3 -6907.4 -6892.5 -6914.7 8.6× 10−30 8.4× 10−30

SV(SN ) -6974.5 -6954.6 -6971.1 -6951.2 -6975.7 7.1× 10−18 6.7× 10−18

SV(St3) -6924.4 -6904.5 -6919.8 -6899.9 -6923.2 3.6× 10−29 4.1× 10−29

SV lev -6954.0 -6934.1 -6956.9 -6937.0 -6967.8 9.3× 10−20 8.8× 10−30

Table 9: Posterior mean, median, standard deviation and credibility interval for the parameters of stochastic

volatility model with skew Gaussian noise using SIR applied to NASDAQ series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
τ2 0.2032857 0.0590969 0.1139529 0.1945681 0.3426287

φ 0.8365621 0.0441244 0.7357273 0.8422046 0.9071204

α -9.5973375 0.1023758 -9.7981681 -9.5970571 -9.3955176

λ 0.0014686 0.0003089 0.0008629 0.0014690 0.0020713

Finally, for the models applied to S&P500 return series, we used the following quantity of

particles in all filters: 4.000 for the GARCH(1,1) model with noise and SIR, 50 for the same

model with ASIR, 250 for the SV(N ) model, 200 for the SV(t3) model, 400 for the SV(SN )

model, 200 for the SV(St3) model and 1.750 for the SV with leverage model. Results in

Table 10 indicates that, among the models applied to S&P500 return series, all selection

criteria point to the SV model with leverage as the model most adjusted to the data, except

for the DIC that, as for NASDAQ data, indicated GARCH with ASIR.

Table 10: Model comparisons by means of likelihood-based information criteria and marginal likelihoods for

S&P500 series.

Model PF AIC BIC EAIC EBIC DIC f̂BS(y) f̂IS(y)

GARCH
SIR -7274.6 -7254.8 -7272.7 -7252.8 -7278.8 6.0× 10−171 6.0× 10−171

ASIR -7183.6 -7163.8 -7273.0 -7253.1 -7370.3 6.5× 10−171 6.4× 10−171

SV(N )

SIR

-7297.9 -7283.0 -7294.6 -7279.7 -7297.3 1.1× 10−162 1.1× 10−162

SV(t3) -7246.5 -7231.5 -7244.6 -7229.7 -7248.8 6.5× 10−174 6.2× 10−174

SV(SN ) -7308.7 -7288.8 -7308.7 -7288.9 -7316.8 5.4× 10−162 5.2× 10−162

SV(St3) -7250.7 -7230.8 -7250.0 -7230.1 -7257.3 7.0× 10−175 8.2× 10−175

SV lev -7319.4 -7299.5 -7323.3 -7303.4 -7335.2 5.0× 10−158 5.6× 10−158

Again, the marginal likelihood criterion indicates the stochastic volatility model with
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leverage as the best one applied to S&P500 data. Therefore, the posterior mean, median,

standard deviation and credibility interval of 95% of this model are given in Table 11.

Table 11: Posterior mean, median, standard deviation and credibility interval for the parameters of stochastic

volatility model with leverage using SIR applied to S&P500 series.

Parameters
Summary of the posterior distribution

Mean Std. dev. CI0.025 Median CI0.975
τ2 0.1082816 0.0204612 0.074450 0.1063194 0.1550263

φ 0.9828918 0.0155592 0.9423327 0.9874117 0.9990852

α -11.096292 1.8050948 -16.746751 -10.532022 -9.3502158

ρ -0.6686287 0.0956189 -0.8154062 -0.6827698 -0.4396470

It is worth mentioning that applications were performed in three real series because they

had different behaviours, which was confirmed by the results of the model comparisons,

which pointed to different models in each of the series.

7. Concluding remarks

This paper deals with modelling volatility through GARCH(1,1) model with noise and a

few stochastic volatility models. These models are in the class of non-linear or non-Gaussian

state space models. In order to infer on the static parameters and the state vector, we

have proposed to work with particle filters and adaptive Metropolis-Hastings algorithms.

The particle filters are suitable for obtaining the filtering distributions as well as to obtain

an unbiased estimate of the likelihood. The latter is coupled into an adaptive Metropolis-

Hastings scheme to sample from the posterior of the static parameters. The proposed method

used in this paper is a powerful tool since it allows inference in a large class of models, such as

change the prior distributions, without much effort in implementing the MCMC or to worry

about proposal distributions and how to choose the hyperparameters. On the other hand,

due to generality of our proposed approach, the resulting algorithm may be slow compared

to other known methods. In any case, theoretical properties guarantees that the algorithm

really draws a sample from the correct posterior distribution.

Moreover, we have also applied the mentioned models above to simulated series and three

log-returns data sets - namely BOVESPA, NASDAQ and S&P500. In our applications and
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methodology, we computed likelihood-based information criteria and marginal likelihoods

to do model comparisons. From the Bayesian perspective and in our algorithms, all these

measures for model comparisons are easily obtained in the adaptive indepent Metropolis-

Hastings sampling, which is another advantage of our approach.

For future work, there is a need of more detailed versions of particle filters in order to

reduce the variability of the likelihood estimator, thus improving on the convergence and

other properties of the adaptive Metropolis-Hastings sampling. In addition, the methodology

may also be applied to other class of state space models, including multivariate ones.
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Appendix A. Fully Adapted Particle Filter for the GARCH(1,1) with Noise

First, consider the GARCH(1,1) model with noise given in Section 5.1. Moreover, we

omit the dependence of τ 2t on xt−1 for while. It follows that

−2 log(f(yt|xt)f(xt|x(`)t−1)) = κ+ log σ2 + log τ
2(`)
t +
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(`)
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Appendix B. Standard Particle Filter for the SV with Leverage

Here, consider the stochastic volatility model with leverage given in Section 5.2. It follows

that

f(yt, xt|xt−1) =
1

2πext/2τ
√
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exp(−ut/2),
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− κ(xt),

where κ(xt) = ρ2ext(xt − ξt)2/τ 2. Taking into consideration that

f(yt, xt|xt−1) = f(yt|xt, xt−1)f(xt|xt−1),

thus

yt|xt, xt−1 ∼ N
(
ρ

(xt − ξt)
τ

ext/2, ext(1− ρ2)
)

and xt|xt−1 ∼ N (ξt, τ
2).

Note that κ(xt) is treated as a constant of f(yt|xt, xt−1).
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